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Instabilizability Conditions for Continuous-Time
Stochastic Systems Under Control Input

Constraints
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Abstract—In this paper, we investigate constrained con-
trol of continuous-time linear stochastic systems. We show
that for certain system parameter settings, constrained
control policies can never achieve stabilization. Specifi-
cally, we explore a class of control policies that are con-
strained to have a bounded average second moment for
Ito-type stochastic differential equations with additive and
multiplicative noise. We prove that in certain settings of
the system parameters and the bounding constant of the
control constraint, divergence of the second moment of
the system state is inevitable regardless of the initial state
value and regardless of how the control policy is designed.

Index Terms— Stochastic systems, constrained control,
linear systems

I. INTRODUCTION

S
TABILIZATION under control input constraints is an

important research problem due to its wide applicability to

systems with actuator saturation. The works [1], [2] describe

the challenges of this problem and provide comprehensive

discussions of the important results. A key result on this

problem is an impossibility result: linear deterministic systems

with strictly unstable system matrices cannot be globally

stabilized if the norm of the control input is constrained to

stay below a constant threshold [3], [4].

There is a rapidly growing interest in exploring control

input constraints for stochastic systems. For instance, [5]–[8]

proposed stochastic model predictive controllers with control

constraints; [9] and [10] developed reinforcement learning

control frameworks with constraints, [11] investigated fuzzy

controllers for stochastic systems with actuator saturation.

Constrained control of nonlinear stochastic systems was inves-

tigated by [12] and [13], and moreover, [14] explored control

constraints in stochastic networked control systems.

The work [15] presented an impossibility result for con-

strained control of discrete-time stochastic systems. It was

shown there that if the control input of a strictly unsta-

ble discrete-time stochastic system is subject to hard norm-

constraints, then the second moment of the state always di-

verges under nonvanishing and unbounded additive stochastic
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process noise. A common approach to overcome the diffi-

culties in the stabilization of strictly unstable systems is to

consider probabilistic constraints instead of hard deterministic

constraints. However, it was shown in [16] that under certain

conditions, stabilization of a discrete-time linear stochastic

system is impossible even under probabilistic constraints.

The scope of the impossibility results provided in the above-

mentioned articles covers discrete-time stochastic systems with

additive noise. In this paper, we are motivated to expand this

scope by addressing two issues. First, we want to know if

similar impossibility results can be obtained for continuous-

time stochastic systems. Secondly, we want to investigate

the effects of both additive and multiplicative noise terms.

Handling multiplicative noise terms is important, since such

terms can characterize parametric uncertainties in the system

(see [17], [18]). As our main contribution, we identify the

scenarios where stabilization of a continuous-time stochastic

system (with both additive and multiplicative noise) is not

possible under probabilistically-constrained control policies.

Specifically, we consider control policies that have bounded

time-averaged second moments. This class of control policies

encapsulate many types of controllers with (probabilistic or

deterministic) control constraints. We obtain conditions on

the bounding value of the control constraint, under which

the second moment of the state diverges regardless of the

controller choice and regardless of the initial state value.

Our analysis for the continuous-time systems with additive

and multiplicative noise has a few key differences from that

for the discrete-time case with additive-only noise provided

in [15], [16]. First, in our case, we handle Ito-type stochastic

differential equations with state-dependent noise terms charac-

terizing multiplicative Wiener noise. In addition, we develop a

form of reverse Gronwall’s inequality to obtain lower bounds

on functions with superlinear growth. Through our analysis,

we observe that combination of additive and multiplicative

noise can make systems harder to stabilize. Even systems

that have Hurwitz-stable system matrices can be impossible

to stabilize with constrained controllers under the combination

of additive and multiplicative noise.

We organize the rest of the paper as follows. In Sec-

tion II, we describe the constrained control problem. Then

in Sections III and IV, we provide our impossibility results

for constrained control of continuous-time stochastic systems.

Finally, we present numerical examples in Section V and

conclude the paper in Section VI.
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Notation: We denote the Euclidean norm by ‖ · ‖, the

trace operator by tr(·), and the maximum eigenvalue of a

Hermitian matrix H ∈ Cn×n by λmax(H). We use H
1

2 to

represent the unique nonnegative-definite Hermitian square

root of a nonnegative-definite Hermitian matrix H ∈ Cn×n,

satisfying H
1

2H
1

2 = H and (H
1

2 )∗ = H
1

2 . The identity

matrix in Rn×n is denoted by In. The notations P[·] and

E[·] respectively denote the probability and expectation on a

probability space (Ω,F ,P) with sample space Ω and σ-algebra

F . We consider a continuous-time filtration {Ft}t≥0 with

Ft1 ⊆ Ft2 ⊆ F for t1 ≤ t2. Throughout the paper {W (t) =
[W1(t), . . . ,Wℓ(t)]

T ∈ Rℓ}t≥0 denotes the Wiener process.

Here, for every i ∈ {1, . . . , ℓ}, the process {Wi(t) ∈ R}t≥0 is

Ft-adapted; {Wi(t) ∈ R}t≥0, i ∈ {1, . . . , ℓ}, are independent

processes. Moreover, c denotes the complex conjugate of a

complex number c ∈ C, and Re(c) denotes its real part.

We use C∗ to denote the complex conjugate transpose of

a complex matrix C ∈ Cn×m, that is, (C∗)i,j = Cj,i,

i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}. Given a vector v ∈ Rn,

and indices i, j ∈ {1, . . . , n}, i ≤ j, we define vi:j ∈ Rj−i+1

as vi:j , [vi, . . . , vj ]
T.

II. CONSTRAINED CONTROL OF CONTINUOUS-TIME

LINEAR STOCHASTIC SYSTEMS

Consider the continuous-time linear stochastic system de-

scribed by the Ito-type stochastic differential equation

dx(t) = (Ax(t) +Bu(t))dt+ [Ψ(x(t)), D] dW (t), (1)

for t ≥ 0, where x(t) ∈ Rn is the state with deterministic

initial value x(0) = x0, u(t) ∈ Rm is the control input, and

moreover, {W (t) ∈ Rℓ}t≥0 is the Wiener process.

The matrices A ∈ Rn×n and B ∈ Rn×m are called system

and input matrices, respectively. Moreover, Ψ(x(t)) ∈ Rn×ℓ1

and D ∈ Rn×ℓ2 (with ℓ1 + ℓ2 = ℓ) are noise matrices. The

matrix-valued function Ψ: Rn → Rn×ℓ1 characterizes the

effects of multiplicative noise and it is given by

Ψ(x) = [C1x,C2x, . . . , Cℓ1x], (2)

where Ci ∈ Rn×n, i ∈ {1, . . . , ℓ1}. The matrix D ∈ Rn×ℓ2

in (1) is used for characterizing the effects of additive noise.
Notice that W1:ℓ1(·) enters in the dynamics as multiplica-

tive noise and Wℓ1+1:ℓ(·) enters as additive noise, since

[Ψ(x(t)), D] dW (t) = Ψ(x(t))dW1:ℓ1 (t) +DdWℓ1+1:ℓ(t).
In this paper, we are interested in a stabilization problem.

Since the Wiener process Wℓ1+1:ℓ(·) enters in the dynamics

in an additive way, the state and its moments cannot converge

to 0 regardless of the control input, unless D = 0. For this

reason, asymptotic stabilization is not possible and a weaker

notion of stabilization is needed. In this paper, we consider

the bounded second-moment stabilization notion, where the

control goal is to achieve supt≥0 E[‖x(t)‖
2] <∞.

We consider a stochastic constraint such that the time-

averaged 2nd moment of u(t) is bounded by û ≥ 0, i.e.,

1

t

∫ t

0

E[‖u(τ)‖2]dτ ≤ û, t ≥ 0. (3)

This constraint is a relaxation of other types of control con-

straints, i.e., the satisfaction of (3) does not necessarily imply

satisfaction of other constraints. Note on the other hand that

norm-constraints (e.g., ‖u(t)‖ ≤ u or ‖u(t)‖∞ ≤ u), time-

averaged norm constraints (e.g., 1
t

∫ t

0 ‖u(τ)‖dτ ≤ u), as well

as first- and second-moment constraints (e.g., E[‖u(t)‖] ≤ u
or E[‖u(t)‖2] ≤ u) all satisfy (3) for certain values of û.

Remark 2.1: The structure of (3) is motivated by the net-

worked control problem of a plant with a remotely located con-

troller. In this problem, control commands uC(t) transmitted

from the controller are subject to packet losses, and the plant

sets its input u(t) to 0 if there is a packet loss (and to uC(t)
otherwise). The actuator at the plant side has a hard constraint

requiring ‖uC(t)‖2 ≤ uC for t ≥ 0. With randomness involved

in packet losses, the plant input u(t) actually satisfies (3) with

û < uC (see Section IV.D of [16] for the specific form of

û). Even though the actuator may be powerful (uC is large),

unstable noisy plants in certain scenarios cannot be stabilized

if there are very frequent packet losses, because in such cases

û is much smaller than uC, and the controller is unable to

provide inputs with sufficient average energy to the plant. ⊳
For given A,B,Ψ, D, our goal is to find a threshold for

û, below which stabilization of (1) becomes impossible and

the second moment E[‖x(t)‖2] diverges regardless of the

controller design.

The following lemmas are used in the derivation of our

main result in Section III. The first lemma is related to the

bounding value û of the control constraint (3). The second

lemma is an extension of Gronwall’s lemma (see, e.g., [19]),

where the key condition involves a linear term and the result

provides a lower bound instead of an upper bound.

Lemma 2.2: Let û ∈ [0,∞), κ ∈ (0,∞) be scalars that

satisfy û < κ. Then Q , {q > 1: û < κ/q} is non-empty.

Proof: Let q̃ , 2κ/(û + κ). Since û < κ, we have

2κ > û+ κ, which implies q̃ > 1. Moreover, since û < κ, we

have κ/q̃ = (û+κ)/2 > û. As both q̃ > 1 and û < κ/q̃ hold,

we have q̃ ∈ Q, implying that Q 6= ∅.

Lemma 2.3: Given scalars c0, c1 ∈ R and φ > 0, suppose

that h : [0,∞) → R is a continuous function that satisfies

h(t) ≥ c0 + c1t+ φ

∫ t

0

h(τ)dτ, t ≥ 0. (4)

Then we have

h(t) ≥ c0e
φt + (c1/φ)(e

φt − 1), t ≥ 0. (5)

Moreover, if (4) holds with equality, then (5) holds with

equality.

Proof: Let g(s) , c0 + c1s + φ
∫ s

0
h(τ)dτ for s ≥ 0.

Since h is a continuous function, by fundamental theorem of

calculus, we have
dg(s)
ds = c1 + φh(s). Note that (4) implies

h(s) ≥ g(s). Furthermore, since φ > 0,

d(g(s)e−φs)

ds
=

dg(s)

ds
e−φs − φe−φsg(s)

= c1e
−φs + φe−φs(h(s)− g(s)) ≥ c1e

−φs. (6)

By integrating both left- and far right-hand sides of the

inequality (6) over the interval [0, t], we get g(t)e−φt−g(0) ≥
c1
φ (1 − e−φt). By using this inequality and g(0) = c0, we

obtain g(t) ≥ c0e
φt + c1

φ (eφt − 1) for t ≥ 0, which implies



(5), since h(t) ≥ g(t). Finally, if (4) holds with equality, then

h(s) = g(s) for s ≥ 0, and thus, (6) holds with equality,

which implies that (5) holds with equality.

III. CONDITIONS FOR IMPOSSIBILITY OF STABILIZATION

In this section, we present our main result, which provides

conditions on the control constraint (3), under which the

stochastic system (1) is impossible to be stabilized.
Theorem 3.1: Consider the stochastic system (1). Assume

that there exist a nonnegative-definite Hermitian matrix R ∈
Cn×n \ {0} and a scalar φL > 0 such that

ATR+RA+

ℓ1∑

i=1

CT
i RCi ≥ φLR, (7)

tr
(
DTRD

)
> 0. (8)

If the control policy is Ft-adapted and satisfies (3) with

û <

{
φLtr

(
DTRD

)
/βU, if βU 6= 0,

∞, otherwise,
(9)

where βU , λmax(B
TRB), then the second moment of the

state diverges, that is,

lim
t→∞

E[‖x(t)‖2] = ∞, (10)

for any initial state x0 ∈ Rn.
Proof: Let V (x) , xTRx. As a first step, we will

show limt→∞ E [V (x(t))] = ∞. Let Λ , ATR + RA +∑ℓ1
i=1 C

T
i RCi. It follows from Ito formula (see Section 4.2

of [20]) that

dV (x(t)) = tr(DTRD)dt+ xT(t)Λx(t)dt

+ (xT(t)RBu(t) + uT(t)BTRx(t))dt

+

ℓ1∑

i=1

xT(t)(CT
i R +RCi)x(t)dWi(t)

+

ℓ2∑

i=1

(xT(t)Rdi + dTi Rx(t))dWi+ℓ1 (t), (11)

where di ∈ Rn, i ∈ {1, . . . , ℓ2}, denote the columns of

matrix D. Under an Ft-adapted control policy, {x(t)}t≥0

is Ft-adapted. Thus, by Theorem 3.2.1 of [20], we

have E[
∫ t

0 x
T(τ)(CT

i R + RCi)x(τ)dWi(τ)] = 0 and

E[
∫ t

0
(xT(τ)Rdi + dTi Rx(τ))dWi+ℓ1 (τ)] = 0. As a result, it

follows from (11) that

E[V (x(t))]

= E[V (x(0))] + tr(DTRD)t+ E

[∫ t

0

xT(τ)Λx(τ)dτ

]

+ E

[∫ t

0

(xT(τ)RBu(τ) + uT(τ)BTRx(τ))dτ

]
, (12)

for t ≥ 0. Next, we change the order of expectation and

integration in (12) by using Fubini’s theorem [21] and obtain

E[V (x(t))]

= E[V (x(0))] + tr(DTRD)t+

∫ t

0

E[xT(τ)Λx(τ)]dτ

+

∫ t

0

E[xT(τ)RBu(τ) + uT(τ)BTRx(τ)]dτ. (13)

In what follows, we use (13) to show limt→∞ E [V (x(t))] =
∞, separately for two cases: βU = 0 and βU > 0.

First, consider the case where βU = λmax(B
TRB) =

0. In this case, we have R
1

2B = 0, and hence

RB = 0. Furthermore, (7) implies E[xT(τ)Λx(τ)] ≥
φLE[x

T(τ)Rx(τ)] = φLE[V (x(τ))]. As a consequence,

we obtain from (13) that E[V (x(t))] ≥ E[V (x(0))] +
tr(DTRD)t + φL

∫ t

0 E[V (x(τ))]dτ for all t ≥ 0. Therefore,

we can use Lemma 2.3 with c0 = E[V (x(0))], c1 =
tr(DTRD), φ = φL, and h(t) = E[V (x(t))] to obtain

E[V (x(t))] ≥ E[V (x(0))]eφLt

+ (tr(DTRD)/φL)(e
φLt − 1). (14)

Notice that φL is positive, and hence, limt→∞ eφLt = ∞.

Moreover, tr(DTRD) is positive by the assumption (8). As a

result, (14) implies limt→∞ E [V (x(t))] = ∞.

Next, we will show that limt→∞ E [V (x(t))] = ∞
holds also for the case where βU > 0. For this case let

κ , φLtr
(
DTRD

)
/βU and Q , {q > 1: û < κ/q}. By

Lemma 2.2, we have Q 6= ∅.

Now let q̂ ∈ Q and define γ(q̂) , q̂/φL. The scalars γ1/2(q̂)
and γ−1/2(q̂) are well-defined since γ(q̂) > 0. Moreover,

since R is a nonnegative-definite Hermitian matrix, we have

0 ≤ zTRz for any z ∈ R
n. Using this inequality with

z = γ−1/2(q)x(τ) + γ1/2(q)Bu(τ), we get

0 ≤
(
γ−1/2(q)x(τ) + γ1/2(q)Bu(τ)

)T
R

·
(
γ−1/2(q)x(τ) + γ1/2(q)Bu(τ)

)

= γ−1(q̂)xT(τ)Rx(τ) + xT(τ)RBu(τ)

+ uT(τ)BTRx(τ) + γ(q̂)uT1 (τ)B
TRBu(τ),

which implies

xT(τ)RBu(τ) + uT(τ)BTRx(τ)

≥ −γ−1(q̂)xT(τ)Rx(τ) − γ(q̂)uT(τ)BTRBu(τ). (15)

It then follows from (13) together with E[xT(τ)Λx(τ)] ≥
φLE[V (x(τ))] and (15) that

E[V (x(t))] ≥ E[V (x(0))] + tr(DTRD)t

+ (φL − γ−1(q̂))

∫ t

0

E[V (x(τ))]dτ

− γ(q̂)

∫ t

0

E[uT(τ)BTRBu(τ)]dτ. (16)

Since γ(q̂) > 0, we have −γ(q̂) < 0. Thus, by using

uT(τ)BTRBu(τ) ≤ λmax(B
TRB)‖u(τ)‖2 = βU‖u(τ)‖2

with (16), we obtain

E[V (x(t))] ≥ E[V (x(0))] + tr(DTRD)t

+ (φL − γ−1(q̂))

∫ t

0

E[V (x(τ))]dτ

− γ(q̂)βU

∫ t

0

E[‖u(τ)‖2]dτ. (17)



Now, since the control policy satisfies (3), we have∫ t

0
E[‖u(τ)‖2]dτ ≤ ût, and hence, it follows from (17) that

E[V (x(t))] ≥ E[V (x(0))] + tr(DTRD)t

+ (φL − γ−1(q̂))

∫ t

0

E[V (x(τ))]dτ

− γ(q̂)βUût, t ≥ 0. (18)

Let c0 , E[V (x(0))], c1 , tr(DTRD)− γ(q̂)βUû, φ , φL −
γ−1(q̂), and h(t) , E[V (x(t))]. By definition of Q, we have

q̂ > 1, which implies 1 − 1/q̂ > 0. This inequality and φL >
0 imply φ = φL − γ−1(q̂) = φL(1 − 1/q̂) > 0. Thus, by

Lemma 2.3, we obtain

E[V (x(t))] ≥ c0e
φt + (c1/φ)(e

φt − 1). (19)

Since V is a nonnegative-definite function, we have c0 ≥
0. Next, we show c1 > 0. By definition of Q, we have

û < φLtr
(
DTRD

)
/(βUq̂). Noting that γ(q̂) = q̂/φL, this

inequality implies γ(q̂)βUû < tr
(
DTRD

)
. Thus, c1 =

tr(DTRD) − γ(q̂)βUû > 0. Now, since c0 ≥ 0, c1 > 0,

and φ > 0 hold, (19) implies limt→∞ E [V (x(t))] = ∞.

Finally, since R ∈ C
n×n \ {0} (i.e., R 6= 0), the

nonnegative-definite Hermitian matrix R has at least one

eigenvalue strictly larger than 0. Thus, λmax(R) > 0. Con-

sequently, V (x(t)) ≤ λmax(R)‖x(t)‖2 implies ‖x(t)‖2 ≥
(1/λmax(R)) V (x(t)) for t ≥ 0. Hence, (10) follows from

limt→∞ E [V (x(t))] = ∞.

Theorem 3.1 provides sufficient conditions under which

the system (1) is instabilizable and the second moment of

the state diverges regardless of the controller design and the

initial state value. Condition (7) in Theorem 3.1 quantifies

the instability of the uncontrolled (u(t) ≡ 0) system, and the

term tr
(
DTRD

)
in (8) represents the effect of additive noise

characterized with the matrix D. If there is no multiplicative

noise (i.e., Ci = 0 for i ∈ {1, . . . , ℓ1}), then (7) requires

A to be strictly unstable. On the other hand, when there is

multiplicative noise, (7) may hold even if A is Hurwitz-stable.

Notice also that R is a nonnegative-definite matrix and it may

have 0 as an eigenvalue. This property is essential in our

analysis, since it allows us to deal with the cases where some

of the states are diverging, while the others are stable.

Theorem 3.1 implies that if conditions (7), (8) hold, then it is

not possible to stabilize the system by using control inputs with

too small average second moments as in (3). The impossibility

threshold on the average second moment of control input

u(t) is characterized in (9). If λmax(B
TRB) = 0, then this

threshold value becomes infinity indicating that stabilization is

impossible regardless of the input constraint. We note that the

case λmax(B
TRB) = 0 represents the situation, where u(t)

does not have any effect on xT(t)Rx(t).

Remark 3.2 (Instability conditions): The structure of con-

dition (7) is similar to those of stability/instability conditions

provided in [22] for stochastic systems with multiplicative

noise. In particular, when specialized to linear systems, Corol-

lary 4.7 of [22] yields an instability condition based on

existence of a positive-definite matrix P ∈ Rn×n and a scalar

ψ > 0 such that ATP + PA +
∑ℓ1

i=1 C
T
i PCi ≥ ψP . Notice

that for systems with only multiplicative noise, a positive-

definite matrix P is required to show global instability. In our

setting, a nonnegative-definite matrix R is sufficient, because

there is also additive noise and (8) guarantees that this noise

can make the projection of the state on unstable modes of the

uncontrolled system take a nonzero value even if the initial

state is zero. Moreover, under the condition (9), E[xT(t)Rx(t)]
diverges, which in turn implies divergence of the second

moment of the state, as shown in the proof of Theorem 3.1. ⊳
Remark 3.3 (Numerical approach): We note that linear ma-

trix inequalities can be used for checking the conditions of

Theorem 3.1. First of all, for a given φL, condition (7) is linear

in R. Similarly, (8) is a linear inequality of R. Note that (8)

also guarantees that R 6= 0. Moreover, the inequality (9) can

be transformed into βû < φLtr
(
DTRD

)
and BTRB ≤ βIm,

which are linear in R and β ≥ 0, for a given φL. If the

abovementioned inequalities are satisfied with R = R̃, then

R = cR̃ with any c > 0 also satisfies them. To restrict the

solutions, we can impose an additional constraint tr(R) = 1.

In our numerical method, we iterate over a set of candidate

values of φL and utilize linear matrix inequality solvers (for

each value of φL) to check the conditions of Theorem 3.1. ⊳
Remark 3.4 (Partial constraints): Theorem 3.1 can be ex-

tended to handle partial input constraints. Consider dx(t) =
(Ax(t)+Bu(t)+Fν(t))dt+[Ψ(x(t)), D] dW (t), where u(t)
is constrained as in (3) and ν(t) is unconstrained. If (7)–(9)

and RF = 0 hold, then it is impossible to achieve stabilization

of this modified system. The proof is similar to that of

Theorem 3.1, as RF = 0 implies that V (x(t)) = xT(t)Rx(t)
is not affected by ν(·), and hence (11) holds. ⊳

A. Tightness of the result for scalar systems

Theorem 3.1 provides a tight bound for û in (9) for scalar

systems with a scalar state and a scalar constrained input.

Consider (1) with scalars A,B,D and scalar-valued func-

tion Ψ(x) , C1x such that 2A+C2
1 > 0, B 6= 0, and D 6= 0.

In this case, conditions (7) and (8) hold with R = 1 and

φL = 2A+C2
1 . Thus, Theorem 3.1 implies that if the control

policy satisfies (3) with û < (2A + C2
1 )D

2/B2, then the

system is impossible to stabilize regardless of the initial state

x0. This bound is tight, because, as shown in the following

result, stability can be achieved when û = (2A+C2
1 )D

2/B2.

Proposition 3.5: Consider (1) with scalars A,B,D ∈ R

and scalar-valued function Ψ(x) , C1x. Suppose 2A+C2
1 >

0, B 6= 0, D 6= 0, and x0 = 0. Then feedback control

policy u(t) = Kx(t) with K = −(2A+ C2
1 )/B can achieve

stabilization (i.e., supt≥0 E[x
2(t)] <∞) and satisfies (3) with

û = (2A+ C2
1 )D

2/B2.

Proof: Let Λ , 2(A+BK)+C2
1 and φ(x, t) , e−Λtx2.

By Ito formula (Section 4.2 of [20]),

dφ(x(t), t) = 2e−ΛtC1x
2(t)dW1(t) + 2e−ΛtDx(t)dW2(t)

+ e−ΛtD2dt. (20)

Now, since {x(t)}t≥0 is an Ft-adapted process,

we obtain E[
∫ t

0 2e
−ΛτC1x

2(τ)dW1(τ)] = 0 and

E[
∫ t

0
2e−ΛτDx(τ)dW2(τ)] = 0, by using Theorem 3.2.1

of [20]. Thus, with x0 = 0, (20) implies E[φ(x(t), t)] =



E[φ(x(0), 0)] +
∫ t

0
e−ΛτD2dτ = −(D2/Λ)(e−Λt − 1).

Therefore, for all t ≥ 0, we have E[x2(t)] =
eΛtE[φ(x(t), t)] = −(D2/Λ)(1 − eΛt) ≤ −D2/Λ, where

the last inequality follows from Λ = −(2A + C2
1 ) < 0.

As a consequence, supt≥0 E[x
2(t)] ≤ −D2/Λ < ∞,

which implies that stability is achieved. Moreover, we have

E[u2(t)] = K2E[x2(t)] ≤ (2A + C2
1 )D

2/B2 for all t ≥ 0,

showing that control input constraint (3) is satisfied with

û = (2A+ C2
1 )D

2/B2.

Proposition 3.5 handles the case where 2A + C2
1 > 0.

With similar analysis, we can also show that if 2A + C2
1 <

0, then E[x2(t)] stays bounded even without control (i.e.,

u(t) ≡ 0). Furthermore, if 2A + C2
1 = 0, B 6= 0, then a

state-feedback control policy u(t) = Kx(t) with BK < 0
achieves stabilization, and moreover, for x0 = 0, it guarantees

the bound E[u2(t)] ≤ −(1/2)D2K/B for all t ≥ 0. This

bound can be made arbitrarily small by choosing small |K|.
If 2A+C2

1 = 0, B = 0, then the system is uncontrollable and

E[x2(t)] grows unboundedly unless D = 0.

B. Existence of instability-inducing noise matrices

The following proposition complements Theorem 3.1. It

shows that if A,C1, . . . , Cℓ1 satisfy (7), then for any B and

û, there exists a noise matrix D that satisfies both (8) and (9).

Thus, by Theorem 3.1, the system with that noise matrix is

impossible to be stabilized under constraint (3).

Proposition 3.6: Assume that there exist a nonnegative-

definite Hermitian matrix R ∈ Cn×n\{0} and a scalar φL > 0
that satisfy (7). Then for any B ∈ Rn×m and û ∈ [0,∞), there

exists D ∈ Rn×ℓ2 such that both (8) and (9) hold.

Proof: By the spectral theorem for Hermitian matrices

(see Theorem 2.5.6 of [23]), the nonnegative-definite Hermi-

tian matrix R can be written as R = Ξdiag(µ1, . . . , µn)Ξ
∗,

where µ1, . . . , µn ≥ 0 are the eigenvalues of R and Ξ ∈
Cn×n \ {0} is a unitary matrix. Let ξ1, . . . , ξn ∈ Cn \ {0}
denote the columns of Ξ. We have R =

∑
i µiξiξ

∗
i . Since

R 6= 0, at least one eigenvalue of R is strictly larger than 0. Let

ĩ , min{i ∈ {1, . . . , n} : µi > 0}. Now, let ξĩ,j ∈ C denote

the jth entry of vector ξĩ. Since ξĩ 6= 0, at least one entry of

ξĩ is nonzero. We define j̃ , min{j ∈ {1, . . . , n} : ξĩ,j 6= 0}.

Now let α > 0 and D , [d1, . . . , dℓ2 ], where di ∈ Rn,

i ∈ {1, . . . , ℓ2}, are columns of D. We let di = 0 for i 6= 1,

and set the entries of d1 ∈ Rn as

d1,j =






(α+(ûβU/φL))
1/2

µ
1/2

ĩ
|ξĩ,j̃ |

, if j = j̃,

0, otherwise,
(21)

where βU = λmax(B
TRB). Since di = 0 for i 6= 1, we have

tr(DTRD) = tr

(
n∑

i=1

µiD
Tξiξ

∗
iD

)

=

n∑

i=1

µitr(D
Tξiξ

∗
iD) =

n∑

i=1

µi

ℓ2∑

j=1

(
dTj ξiξ

∗
i dj
)

=

n∑

i=1

µid
T
1 ξiξ

∗
i d1 = dT1

(
n∑

i=1

µiξiξ
∗
i

)
d1. (22)

Moreover, since
∑n

i=1 µiξiξ
∗
i ≥ µĩξĩξ

∗
ĩ

, it follows from (22)

that tr(DTRD) ≥ µĩd
T
1 ξĩξ

∗
ĩ
d1. By using this inequality and

noting that µĩ > 0, we obtain from (21) that

tr(DTRD) ≥ µĩ




n∑

j=1

d1,jξĩ,j̃








n∑

j=1

ξ ĩ,j̃d1,j





= µĩξĩ,j̃ξ ĩ,j̃d
2
1,j̃

= µĩ|ξĩ,j̃ |
2α+ (ûβU/φL)

µĩ|ξĩ,j̃ |
2

= α+ (ûβU/φL), (23)

which implies (8), as α > 0, û ≥ 0, βU ≥ 0, and φL > 0.

If βU = 0, then the inequality (9) holds directly, as û < ∞.

If βU 6= 0, then the inequality (23) implies tr(DTRD) >
ûβU/φL, which in turn implies (9).

IV. SPECIAL SETTING WITH ONLY ADDITIVE NOISE

In this section, we are interested in a special setting, where

Ψ(x(t)) = 0 in (1). In this setting, the system does not face

multiplicative noise and it is only subject to additive noise.

We first present an improvement of the numerical approach

presented in Remark 3.3. Then we show that eigenstructure

of A can be used to obtain new instability conditions that are

easier to check compared to Theorem 3.1. The eigenstructure-

based analysis was previously considered only for discrete-

time systems in [16]. Here, we show that continuous-time

systems also allow a similar approach.

A. Candidate values of φL in instability analysis

Remark 3.3 provides a numerical approach for checking

instability conditions of Theorem 3.1. This approach is based

on iterating over a set of candidate values of φL and checking

the feasibility of certain linear matrix inequalities. In the

general case with both additive and multiplicative noise, we

do not have prespecified bounds for the candidate value set.

However, in the case of only additive noise (Ψ(x(t)) = 0,

i.e., Ci = 0 in (2)), the candidate values of φL can be

restricted to belong to the set (0, 2ϑmax(A)], where we define

ϑmax : C
n×n → R as

ϑmax(A) , max{Re(λ) : λ ∈ spec(A)} (24)

with spec(A) ⊂ C denoting the set of eigenvalues of A.

It is sufficient to choose the values of φL from the set

(0, 2ϑmax(A)], as it is not possible to satisfy (7) with φL >
2ϑmax(A) and R 6= 0, as shown in the following proposition.

Here, we note that with Ci = 0, i ∈ {1, . . . , ℓ1}, the inequality

(7) reduces to ATR+RA ≥ φLR.

Proposition 4.1: Let A ∈ Cn×n. For every nonnegative-

definite Hermitian matrix R ∈ Cn×n \ {0}, there exists

y ∈ Cn \ {0} such that R
1

2 y 6= 0 and y∗(A∗R + RA)y ≤
2ϑmax(A)y

∗Ry, where ϑmax(A) is defined in (24).

Proof: It follows from Lemma A.1 of [16] that R
1

2Aν̂ =
λ̂R

1

2 ν̂, where λ̂ ∈ C is an eigenvalue of A and ν̂ ∈ Cn \ {0}
is a generalized eigenvector of A that satisfies R

1

2 ν̂ 6= 0. Let

y , ν̂. We have R
1

2 y 6= 0. Moreover, y∗(A∗R + RA)y =

λ̂y∗Ry + λ̂y∗Ry = 2Re(λ̂)y∗Ry. Therefore, y∗(A∗R +
RA)y ≤ 2ϑmax(A)y

∗Ry, since Re(λ̂) ≤ ϑmax(A).



B. Instability conditions based on the eigenstructure of A

Even with the improvement discussed in the previous sub-

section, checking feasibility of the linear matrix inequalities

mentioned in Remark 3.3 can be computationally costly. In

this subsection, we show that the eigenstructure of the system

matrix A can be used to derive instability conditions that can

be checked numerically efficiently.
Let r ∈ {1, . . . , n} denote the number of distinct eigenval-

ues of A and let λ1, λ2, . . . , λr ∈ C with λi 6= λj denote

those eigenvalues. Moreover, for every i ∈ {1, . . . , r}, let

ni ∈ {1, . . . , n} represent the geometric multiplicity of the

eigenvalue λi. Eigenvalues of A are also the eigenvalues of

AT with the same multiplicities. Thus, for every λi, there

exists ni number of vectors vi,j ∈ Cn such that

ATvi,j = λivi,j , j ∈ {1, . . . , ni}. (25)

These vectors vi,1, . . . , vi,ni are called the left-eigenvectors of

A associated with the eigenvalue λi. We remark that if λi is a

complex eigenvalue (i.e., λi /∈ R), then the complex conjugate

λi is also an eigenvalue of A, and moreover,

v∗i,jA = λiv
∗
i,j , j ∈ {1, . . . , ni}, (26)

where v∗i,j is the complex conjugate transpose of vi,j ∈ C
n. In

the instability conditions presented below, we use the eigenval-

ues λi, and the left-eigenvectors vi,j ∈ Cn, j ∈ {1, . . . , ni},

i ∈ {1, . . . , r}. Furthermore, we define

I , {(i, j) : Re(λi) > 0, v∗i,jDD
Tvi,j > 0,

j ∈ {1, . . . , ni}, i ∈ {1, . . . , r}}.

Corollary 4.2: Consider the linear stochastic system (1)

where Ψ(x) = 0. Suppose I 6= ∅. If the control policy is

Ft-adapted and satisfies (3) with

û < max
(i,j)∈I

ϕi,j , (27)

where

ϕi,j ,

{
2Re(λi)v

∗
i,jDD

Tvi,j/β
i,j
U , if βi,j

U 6= 0,

∞, otherwise,

and βi,j
U , λmax(B

Tvi,jv
∗
i,jB), (i, j) ∈ I, then the second

moment of the state diverges (i.e., (10) holds) for any initial

state x0 ∈ Rn.
Proof: By (25) and (26), for each (i, j) ∈ I, we

obtain ATvi,jv
∗
i,j + vi,jv

∗
i,jA = λivi,jv

∗
i,j + λivi,jv

∗
i,j =

2Re(λi)vi,jv
∗
i,j . Since vi,jv

∗
i,j ∈ Cn×n is a nonnegative-

definite Hermitian matrix, we have (7) with R = vi,jv
∗
i,j and

φL = Re(λi). Moreover, by the definition of I, we have

tr(DTvi,jv
∗
i,jD) = v∗i,jDD

Tvi,j > 0 for (i, j) ∈ I. Thus,

(8) holds with R = vi,jv
∗
i,j . Now, since (7) and (8) both

hold for each (i, j) ∈ I, it follows from Theorem 3.1 by

setting βU = βi,j
U that under control policies satisfying (3) with

û < ϕi,j , the second moment of the state diverges. Finally,

(27) implies that there exists (̃i, j̃) ∈ I such that û < ϕĩ,j̃ ,

implying divergence.

V. NUMERICAL EXAMPLES

In this section, we illustrate our results on two example

continuous-time stochastic systems.

Setting # a c1 c2 d Applied Result Range of û

1 −0.5 2 2 1 Theorem 3.1 [0, 7.4)

2 1.5 2 2 1 Theorem 3.1 [0, 10.8)

3 1.5 2 0 1 Theorem 3.1 [0, 8.4)

4 1.5 0 2 1 Theorem 3.1 [0, 4.5)

5 1.5 0 0 1
Theorem 3.1 [0, 1)

Corollary 4.2 [0, 0.75)

6 1.5 0 0 2
Theorem 3.1 [0, 4.1)

Corollary 4.2 [0, 3)

TABLE I

RANGES OF û FOR WHICH STABILIZATION IS IMPOSSIBLE.

Example 1 : Consider the continuous-time stochastic system
described by (1) and (2) with

A =

[

0 1

−1 a

]

, B =

[

0

1

]

, D = d

[

1

1

]

, (28)

ℓ1 = 2, C1 =

[

0 0

c1 0

]

, C2 =

[

0 0

0 c2

]

, (29)

where a, c1, c2, d ∈ R are scalar coefficients. The case with

a ≥ 0 corresponds to the linearized dynamics of the forced

Van der Pol oscillator (see Section 5.3.1 of [24]).

In each row of Table I, we consider a different setting for

a, c1, c2, d ∈ R. Our goal is to obtain ranges of û such that the

system cannot be stabilized with constrained control policies

satisfying (3) with û chosen in the given range. To obtain the

range for each parameter setting, we apply Theorem 3.1. In

addition, when there is no multiplicative noise (i.e., c1 = c2 =
0), we also apply Corollary 4.2.

Setting 1 in Table I represents the case where A is a

Hurwitz-stable matrix. Notice that when A is Hurwitz-stable,

without multiplicative noise, the second moment of the state of

the uncontrolled system would remain bounded. However, as

Table I indicates, under multiplicative noise (with parameters

c1 = c2 = 2), the system is unstable under any constrained

control that satisfies (3) with û ∈ [0, 7.4).
Settings 2–6 in Table I represent different scenarios where

A is strictly unstable. In each of those settings, different

noise parameters are considered. The main observation is that

systems with increased noise levels are harder to stabilize with

constrained controllers.

Settings 5 and 6 in Table I correspond to the cases where

there is no multiplicative noise. In those cases Corollary 4.2

can be applied. Notice that Corollary 4.2 provides smaller

ranges for û compared to Theorem 3.1. This shows that

Corollary 4.2 is conservative. We note that the main advantage

of Corollary 4.2 is that its conditions can be checked faster

than those of Theorem 3.1.

For checking conditions of Corollary 4.2, we can speedily

compute max(i,j)∈I ϕi,j in (27). In particular, the computation

yields the analytical expression

max
(i,j)∈I

ϕi,j =

{
d2(2− a)a, a ∈ [0, 2),

4d2(12a− 1), a ≥ 2,
(30)

which is also shown in Fig. 1. Given a and d, if û <
max(i,j)∈I ϕi,j (i.e., the value is below the surface in Fig. 1),

then Corollary 4.2 implies that stabilization of (1) is impossi-

ble with a control policy that satisfies (3) with that particular
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Fig. 1. The value of max(i,j)∈I ϕi,j in (27). If (3) holds with û <

max(i,j)∈I ϕi,j , then stabilization is impossible.

û. Notice that max(i,j)∈I ϕi,j is a quadratic function of d,

and thus, for larger values of d, the value of max(i,j)∈I ϕi,j

becomes larger. This result is intuitive in the sense that

stabilization becomes harder under stronger noise. On the

other hand, max(i,j)∈I ϕi,j depends on a in a nonlinear

nonmonotonic way. It follows from (30) that for a ∈ [0, 2),
the maximum of max(i,j)∈I ϕi,j is achieved when a = 1. For

a ≥ 2, max(i,j)∈I ϕi,j increases as a increases.

Example 2 : Consider (1) and (2) with

A =




0 1 0 0
3ζ2 0 0 2ζ
0 0 0 1
0 −2ζ 0 0


 , B = D =




0 0
1 0
0 0
0 1


 ,

ℓ1 = 1, C1 = I4.

This system is a noisy version of the uncoupled, linearized,

and normalized dynamics that describes a satellite’s motion

in the equatorial plane, as provided in [25]. The scalar ζ is

the angular velocity of the equatorial orbit along which the

system is linearized and the control input u(t) ∈ R2 is the

vector of thrusts applied to the satellite in the equatorial plane.

We consider the control input constraint (3) with the average

second moment bound û.

We check feasibility of the linear matrix inequalities dis-

cussed in Remark 3.3 to assess the conditions of Theorem 3.1

for different values of ζ and û. When ζ = 0.1, the conditions

of Theorem 3.1 hold for û ∈ [0, 1.7). Thus the system is

instabilizable under the control constraint (3) with those values

of û. On the other hand, with ζ = 1, the corresponding

instabilizability range is obtained as û ∈ [0, 1.1).

VI. CONCLUSION

We have investigated the constrained control problem for

linear stochastic systems with additive and multiplicative noise

terms. We have shown that in certain scenarios, stabilization is

impossible to achieve with control policies that have bounded

time-averaged second moments. In particular, we have ob-

tained conditions, under which the second moment of the

system state diverges regardless of the controller design and

regardless of the initial state. Moreover, we have showed the

tightness of our results for scalar systems and provided exten-

sions for partially-constrained control policies and additive-

only noise settings.
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