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Abstract

The Merton problem is the well-known stochastic control problem of choos-
ing consumption over time, as well as an investment mix, to maximize expected
constant relative risk aversion (CRRA) utility of consumption. Merton formu-
lated the problem and provided an analytical solution in 1970; since then a
number of extensions of the original formulation have been solved. In this
note we identify a certainty equivalent problem, i.e., a deterministic optimal
control problem with the same optimal value function and optimal policy, for
the base Merton problem, as well as a number of extensions. When time is
discretized, the certainty equivalent problem becomes a second-order cone pro-
gram (SOCP), readily formulated and solved using domain specific languages
for convex optimization. This makes it a good starting point for model predic-
tive control, a policy that can handle extensions that are either too cumbersome
or impossible to handle exactly using standard dynamic programming methods.

1 Introduction

We revisit Merton’s seminal 1970 formulation (and solution) of the consumption and
investment decisions of an individual investor. We present a formulation of Mer-
ton’s problem as a deterministic convex optimal control problem, and in particular,
a second-order cone program (SOCP) when time is discretized. Even though the
Merton problem was first solved more than 50 years ago, its reformulation as a deter-
ministic convex optimization problem provides fresh insight into the solution of the
stochastic problem that may be useful for formulating other multiperiod investment
problems as convex optimization problems.

We also see two practical advantages to the certainty equivalent formulation. First,
for extensions of the Merton problem for which a solution is known, working out the
optimal policy can be complex and error prone. To handle these extensions with the
certainty equivalent form, we simply add the appropriate terms to the objective or
constraints, to obtain the optimal policy. The problem specification is straightforward
and transparent, especially when expressed in a domain specific language (DSL) for
convex optimization, such as cvxpy [DB16].
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The second and perhaps more significant advantage is that the certainty equiv-
alent problem can be used as a starting point for further extensions of the Merton
problem, for which no closed-form solutions are known. In this case, the certainty
equivalence property is lost, and solving the deterministic problem no longer solves
the corresponding stochastic problem exactly. We can, however, still use model pre-
dictive control (MPC), a method that involves online convex optimization, to develop
a policy that handles the extension. MPC policies are simple, easy to implement, fully
interpretable, and have excellent (if not always optimal) practical performance.

1.1 Previous work

Merton’s problem. Merton’s consumption–investment problem dates back to his
original 1970 paper [Mer70]. Many extensions to the basic Merton problem exist, some
of which were covered in Merton’s original paper. (These include deterministic income
and general HARA utility.) Most proposed extensions do not have a closed-form
solution, but some that do include uncertain mortality, life insurance, and annuities,
first adressed by [Ric75]. Some extensions for the specific case of quadratic utility
are handled in [BC10]. We note that many of these extensions individually lead to
complicated solutions, and deriving the optimal policy when several extensions are
combined may be very inconvenient for a practical implementation.

Certainty equivalence. Rarely, stochastic control problems have a certainty equiv-
alent formulation, i.e., a deterministic optimal control problem with the same optimal
policy. The most famous example is the linear quadratic regulator (LQR) problem, in
which the dynamics are affine, driven by additive noise, and the stage costs are con-
vex quadratic [BB18], [Ber17, §3.1], [KS72, §3]. In this case, the certainty equivalent
problem is obtained by simply ignoring the stochastic noise term. Many extensions
to linear quadratic control also have a certainty equivalent reformulation. Examples
include the linear quadratic Guassian problem, in which the state is imperfectly ob-
served [KS72, §5], and linear exponential quadratic regulator (LEQR) problem, which
uses a risk-sensitive cost function [Whi90]. Our certainty equivalent formulation is
similar to LEQR in that the uncertain quantity is adversarial [Whi90, §10.2]. (For
the Merton problem, the uncertain quantity is the investment returns.)

Model predictive control. In model predictive control, unknown values of future
parameters are replaced with estimates or forecasts over a planning horizon extending
from the current time to some time in the future, resulting in a deterministic optimal
control problem. This problem is solved, with the result intrepretable as a plan
of action over the planning horizon. The MPC policy simply uses the current or
first value in the plan of action. This planning is repeated when updated forecasts
are available, using the updated forecasts and current state. When applied in the
context of stochastic control, MPC policies are not optimal in general, but often
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exhibit excellent practical performance, and are widely used in several application
areas. MPC is discussed in detail in [BBM17; KH06]. In [Boy+14], the authors use a
computational bound to show that MPC is nearly optimal for some stochastic control
problems in finance.

As discussed above, ignoring uncertainty is in fact optimal for linear quadratic
control, and MPC leads to an optimal policy when applied to LQR. In this sense, MPC
can be interpreted as applying certainty-equivalence beyond where it is theoretically
justified in order to obtain a good heuristic control policy [Ber17, §4.3]. For the
Merton problem, we also propose to use a certainty equivalent problem as the basis
of an MPC control policy, even when certain extensions to the base problem ruin
exact certainty equivalence.

While MPC has been used in practical applications for decades, recent advances
make it very attractive, and easy, to develop and deploy. First, DSLs for convex
optimization allow the control policy to be expressed in a few lines of very simple
and clear code, that express the dynamics, objective, and constraints, which makes
it easier to develop, debug, and maintain (for example by adding or updating a
constraint). Code generation systems such as cvxgen [MB12] can be used to generate
low-level code for that solves the problem specified, which is suitable for use in high
speed embedded applications [WB09]. In the context of the present paper, this means
that the MPC policy we propose in §6 can be very conveniently implemented.

Multi-period portfolio optimization. It is instructive to compare our certainty
equivalent problem to popular formulations of multi-period portfolio allocation (See
[Boy+17] and references therein). There are two features present in our certainty
equivalent problem that we do not see in practical multiperiod portfolio construction
problems in the literature:

1. The risk term (which is quadratic in the dollar-valued asset allocation vector
xt), is normalized by the total wealth wt, which is also is a decision variable.
This risk term is jointly convex in xt and wt (and is in fact SOCP representable).
With this normalization, risk preferences are consistent even as the wealth wt

changes over the investment horizon.

2. The risk term is included as a penalty in the dynamics, i.e., by taking more risk
now, one should expected to have lower wealth in the future. This contrasts
with the tradition of penalizing risk in the objective function.

We believe these to be valuable improvements to standard multi-period portfolio
construction formulations, especially in cases when the control or optimization is
over a very long time period.
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1.2 Outline

In §2, we give the base Merton problem and review its solution, for future reference. In
§3, we give a certainty equivalent problem and prove equivalence. In §4, discuss several
extensions to the Merton problem, and show how each one changes the certainty
equivalent formulation. In §6, we discuss how to use the certainty equivalent problem
for model predictive control.

2 Merton problem

In this section we discuss the Merton problem and its solution. To keep the proofs
concise, we consider the most basic form of this problem; extensions are considered in
§4. Our formulation is in continuous time and relies on stochastic calculus. However,
to maintain both brevity and accessibility, we are cavalier about the technical details,
with the assumption that a sophisticated reader can fill in the gaps, or consult other
references.

Dynamics. An investor must choose how to invest and consume over a lifetime
of T years. The investor has wealth wt > 0 at time t, and consumes wealth at rate
ct > 0, for t ∈ [0, T ], with the remaining wealth invested in a portfolio with mean rate
of return µt and volatility σt. The wealth dynamics are a geometric random walk,

dwt = (µtwt − ct) dt+ σtwt dzt,

where zt is a Brownian motion. The initial condition is w0 = winit > 0.

Investment portfolio. The portfolio consists of n assets, with an investment mix
given by the fractional allocation θt, with 1T θt = 1 (where 1 is the vector with all
entries one). Thus we invest (wtθt)i dollars in asset i, with a negative value denoting
a short position. The portfolio return rate and volatility are given by

µt = µT θt, σt = (θTt Σθt)
1/2,

where µ ∈ Rn is the mean of the return process, and Σ is the symmetric positive def-
inite covariance. (Note that we use the time-varying scalar µt to denote the portfolio
return as a function of time, and the vector µ to denote the constant expected return
rates of the n assets.)

The investment allocation decision θt satisfies 1
T θt = 1, as well as other investment

constraints, which we summarize as θt ∈ Θ, where Θ is a convex set. These could
include risk limits, sector exposure limits, or concentration limits. (See [Boy+17,
§4.4] for an overview of convex investment constraints.) For notational convenience,
we assume every θt ∈ Θ satisfies 1T θt = 1.

With the portfolio return and volatility we obtain the wealth dynamics

dwt = (µT θtwt − ct) dt+
(
θTt Σtθt

)1/2
wt dzt. (1)
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Utility. The investor has lifetime consumption utility
∫ T

0
cγt /γ dt and bequest utility

wγ
T/γ. The risk aversion parameter γ satisfies γ < 1 and γ 6= 0. The investor’s total

expected utility is

U = E

(
β

γ
wγ

T +

∫ T

0

1

γ
cγt dt

)

. (2)

The parameter β > 0 trades off consumption and bequest utility.

Stochastic control problem. At each time t, the investor chooses the consump-
tion ct and the investment allocation θt. A policy maps the time t and the current
wealth wt to the consumption ct and the allocation θt, which we write as

(ct, θt) = πt(wt), (3)

where for each t ∈ [0, T ], πt : R++ → R++×Θ. (Here R++ denotes the set of positive
real numbers.) The Merton problem is to choose a policy πt, t ∈ [0, T ], to maximize
U .

2.1 Solution via dynamic programming

We review here the solution of the Merton problem via dynamic programming, for
completeness and also for future reference.

Value function. The value function Vt : R++ → R, for t ∈ [0, T ], is defined as

Vt(w) = E

(
β

γ
wγ

T +

∫ T

t

1

γ
cγτ dτ

)

,

with cτ and θτ following an optimal policy for τ ∈ [t, T ], and initial condition wt = w.
We define VT (w) = (B/γ)wγ for w > 0.

If the value function is sufficiently smooth, it satisfies the Hamilton-Jacobi-Bellman
PDE

−V̇t(w) = sup
c,θ∈Θ

(
1

γ
cγ + V ′

t (w)(µ
Tθw − c) +

1

2
V ′′
t (w)(θ

TΣθ)w2

)

(4)

for w > 0. Conversely, any function satisfying (4) and the terminal condition VT = 0
is the value function. Here V̇t denotes the partial derivative of V with respect to
time, and V ′

t and V ′′
t denote the first and second partial derivatives with respect to

the wealth.
It is well known that the value function for the Merton problem is

Vt(w) = at
wγ

γ
, (5)
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where at is a function of time. To obtain at, we first solve a Markowitz portfolio
allocation problem,

maximize µT θ +
γ − 1

2
θTΣθ

subject to θ ∈ Θ,
(6)

with variable θ. (Since γ − 1 < 0, the second term is a concave risk adjustment.) We
let rce denote the optimal value, and we denote the solution as θce. We then have, for
t ∈ [0, T ],

at =

(
1− γ

γrce

(

1− C exp
( γrce
1− γ

(T − t)
)))1−γ

, (7)

where C = 1− γrceβ
1/(1−γ)/(1− γ).

Optimal policy. The optimal policy can be expressed in terms of the value function
as

π⋆
t (w) = (ct, θt) = argmax

c,θ∈Θ

(
1

γ
cγ + V ′

t (w)(µ
Tθw − c) +

1

2
V ′′
t (w)(θ

TΣθ)w2

)

.

With the value function (5), we obtain the following optimal policy. The consumption
has the simple form

ct = a
1/(γ−1)
t wt,

and the optimal investment mix is constant over time,

θt = θce.

(In extensions of the Merton problem, described below, the optimal investment mix
is not constant over time.)

Proof of optimality. Here we show that the function (5) satisfies the Hamilton-
Jacobi-Bellman PDE. To do this, first we substitute V̇ , V ′

t and V ′′
t into (4) to obtain

−

V̇ (w)
︷ ︸︸ ︷

ȧt
wγ

γ
= sup

c,θ∈Θ

(
1

γ
cγ +

V ′(w)
︷ ︸︸ ︷

atw
γ−1(µT θw − c) +

1

2

V ′′(w)
︷ ︸︸ ︷

at(γ − 1)wγ−2(θTΣθ)w2

)

.

By pulling out wγ−1 from the last two terms and simplifying, we obtain

−ȧt
wγ

γ
= sup

c,θ∈Θ

(
1

γ
cγ + atw

γ−1

((

µT θ +
γ − 1

2
θTΣθ

)

w − c

))

. (8)
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The maximizing θ is the solution θce to problem (6). The quantity in the inner
parantheses of (8) is the optimal value rce of this problem, which can be intrepreted
as the certainty equivalent return. We now have

−ȧt
wγ

γ
= sup

c

(
1

γ
cγ + βtw

γ−1 (rcew − c)

)

.

The supremum over c is obtained for c = a
1/(γ−1)
t w. Substituting in this value and

simplifying, we obtain

−ȧt = (1− γ)a
γ/(γ−1)
t + γatrce.

It can be verified that the definition of at in (7) is indeed a solution to this differential
equation with terminal condition aT = β.

3 Certainty equivalent problem

In this section we present a deterministic convex optimal control problem that is
equivalent to the Merton problem in the sense that it has the same value function
and same optimal policy.

This certainty equivalent problem is

maximize
β

γ
wγ

T +

∫ T

0

1

γ
cγt dt

subject to ẇt ≤ µTxt − ct +
(γ − 1)

2

xT
t Σxt

wt

, t ∈ [0, T ]

xt/wt ∈ Θ, t ∈ [0, T ]

w0 = winit.

(9)

The variables are the consumption ct : [0, T ] → R++, wealth wt : [0, T ] → R++, and
xt : [0, T ] → Rn, which is the dollar-valued allocation of wealth to each asset. (In
the notation of §2, we have xt = wtθt, and θt = xt/wt.) Note that the constraint
xt/wt ∈ Θ implies 1Txt = wt, i.e., the total wealth is the sum of the dollar-valued
asset allocations.

The objective is the lifetime utility, but without expectation since this problem
is deterministic. The first constraint resembles the dynamics of the stochastic pro-
cess (1), and we call this the dynamics constraint. We will see that for any solution
to (9), this inequality constraint holds with equality, in which case the dynamics
constraint becomes a (deterministic) ODE.

Interpretation. The problem can be interpreted in the following way. We plan for
a single outcome of the stochastic process (1). In particular, the dynamics constraint
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restricts the growth rate of the wealth to be no greater than the µTxt − ct (the
mean growth rate in the stochastic process (1)), but reduced by the additional term
(1/2)(γ − 1)xT

t Σxt/wt. Because γ < 1, this term is negative. With the change of
variables θt = xt/wt, we have

xT
t Σxt

wt

= wtθ
T
t Σθt,

i.e., this adjustment term is proportional to the variance of the portfolio growth
rate with investment allocation θt = xt/wt. In other words, we are pessimistically
planning for bad investment returns, with the degree of pessimism depending on the
risk aversion parameter γ and the risk of our portfolio.

In fact, in problem (9), we plan for the returns

rt = µ+
γ − 1

2wt

Σxt = µ+
γ − 1

2
Σθt.

The coefficients in front of Σxt and Σθt are negative, and the entries of Σxt and Σθt
are typically positive. The vector Σθt can be interpreted as the risk allocation to the
individual assets in the portfolio, since

θTt Σθt =
n∑

i=1

(θt)i (Σθt)i .

In other words, the planned asset returns are the mean returns, reduced in proportion
to the marginal contribution of each asset to the portfolio variance. This is related
to the concept of risk parity [BST16].

Convexity. Convexity of (9) follows from the fact that the risk penalty term
xT
t Σxt/wt is a quadratic-over-linear function, with is jointly convex in xt and wt

[BV04, §3.1.5]. Also, the set

{(xt, wt) ∈ Rn ×R++ | xt/wt ∈ Θ}

is the perspective of Θ, which is convex when Θ is [BV04, §2.3.3]. In fact, in most
practical portfolio construction problems, Θ can described by a collection of linear and
quadratic constraints [Boy+17, §4.4]. In this case, when problem (9) is discretized,
it becomes an SOCP, which we describe in §7.

Equivalence to Merton problem. The Merton problem and problem (9) are
equivalent in the sense that they have the same value function and optimal policy.

To see this, we first consider a modified version of (9) in which we convert the
dynamics to an equality constraint using a slack variable ut ≥ 0:

ẇt = µTxt − ct +
(γ − 1)

2

xT
t Σxt

wt
+ ut.
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The new control input ut can be interpreted as the rate at which we discard wealth.
(We will see that at optimality ut = 0.) For this modified problem, the Hamilton-
Jacobi-Bellman equation is

−V̇ (w) = sup
c,x∈wΘ,u≥0

1

γ
cγ + V ′

t (w)

((

µTx+
γ − 1

2w
xTΣx

)

w − c− u

)

.

First note that with our value function candidate (5), we have V ′(w) > 0, and there-
fore u = 0, as expected. Now, by using the change of variables x = θw and plugging
in our value function candidate, this equation becomes (8). From this point on,
the proof that this candidate value function satisfies the Hamilton-Jacobi-Bellman
equation proceeds exactly as for the (stochastic) Merton problem.

4 Exact extensions

Here we consider several extensions to the Merton problem, all of which are known
in the literature and have closed-form solutions. For each one, we describe how to
modify problem (9) to maintain the certainty-equivalence property.

Time-varying parameters. The Merton problem can be solved when µ, Σ, and
Θ change over time. To handle this in the certainty equivalent problem, we simply
replace these parameters by µt, Σt, and Θt. (Here µt denotes the time-varying vector
of asset expected returns, a notation clash with our previous use of µt as the scalar
portfolio expected return.) Similarly, if we discount the consumption utility of the
Merton problem:

U = E

(
β

γ
wγ

T +

∫ T

0

αt

γ
cγt dt

)

.

where αt > 0 is the discount of the consumption utility at time t, then the objective
of the certainty equivalent problem will match U (but without the expectation).

Uncertain mortality and bequest. Here the terminal time tf ∈ [0, T ] is random
with probability density pt and survival function

st = Prob(tf > t) =

∫ T

t

pt dt.

In this case, the investor’s utility is

U = E

(
B

γ
wγ

tf
+

∫ tf

0

1

γ
cγt dt

)

.

Here the expectation is taken over tf as well as the paths of the stochastic process (1).
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With this modification, the objective of the certainty equivalent problem changes
to ∫ T

0

(
ptβ

γ
wγ

t +
st
γ
cγt

)

dt.

We weight the consumption utility by the probability the investor is still alive, i.e.,
we treat the survival function as a discount factor. We also get utility for the bequest
continuously over the interval [0, T ], weighted by the density function pt.

Annuities and life insurance. This extension is due to [Ric75]. Continuing with
the previous extension, we allow the investor to purchase life insurance. The premium
is lt, which the investor can choose, and the payout of the plan is λtlt, where λt ≥ 0 is
the payout-to-premium ratio at time t. When lt < 0, we interpret this as an annuity.
In particular, at time t, the investor has −lt in the annuity account, which is lost on
death, in return for an additional return of −λtlt. The actuarially fair value of λt

is pt/st, which is called the force of mortality. (If λt > pt/st, then life insurance is
favorable and annuities are unfavorable; if λt < pt/st, the reverse is true.)

With this modification, the objective of the certainty-equivalant problem changes
to

U =

∫ T

0

(
ptβ

γ
(wt + λtlt)

γ +
st
γ
cγt

)

dt,

i.e., we add the insurance payout to the wealth in the bequest utility. The dynamics
change to

ẇt ≤ µTxt − ct − lt +
(γ − 1)

2

xT
t Σxt

wt

.

Here we subtract the insurance premium from the growth rate of the wealth.

Income. We can add a deterministic income stream, with income rate yt at time t.
The stochastic dynamics are modified be the addition of yt to the drift term of the
wealth process, i.e.,

µt = µTθtwt + yt − ct.

In this case, we also assume one of the assets is risk free with return µrf and volatility
0, and that

Θ = {θ | 1T θ = 1}. (10)

These assumptions allow the investor to counteract the income stream by shorting
the risk-free asset and investing the proceeds in a preferred portfolio of other assets.
The fair value of the income stream is its net present value over [t, T ] at the risk-free
rate:

vt =

∫ T

t

e−µrfyt dt,

which can be interpreted as the remaining human capital of the investor.
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For this extension, the dynamics in (9) are replaced by

ẇt ≤ µT
t xt + yt − ct +

(γ − 1)

2

xT
t Σxt

wt + vt
.

Note the addition of the income term yt and the normalization of risk by the total
wealth plus the remaining human capital. In this case, the wealth wt need not be
positive but instead satisfies wt+vt > 0. Because of this, we also replace the constraint
xt/wt ∈ Θ (which is not defined for wt = 0) with 1Txt = wt.

Epstein–Zin preferences. One interesting feature of the certainty equivalent prob-
lem (9) is that the risk aversion parameter γ appears separately in the objective and
dynamics constraint. It is reasonable to ask whether, by modifying the consumption
utility to be

β

ρ
wρ

T +

∫ T

0

1

ρ
cρt dt

for some ρ 6= γ with ρ < 1 and ρ 6= 0, but keeping γ in the dynamics constraint,
problem (9) is equivalent to some variant of the Merton problem. This is indeed the
case, but with the expected utility U replaced by Epstein–Zin preferences, where 1/ρ
is the elasticity of intertemporal substitution and γ is the risk aversion. For details,
see [DE92].

5 Inexact extensions

Here we discuss several extensions of problem (9) that (to our knowledge) do not
exactly solve a version of the Merton problem. Some of these build on the exact
extensions of §4.

Modified utility. We can change the objective of (9) to use any increasing, concave
utility function for either consumption or bequest. These utility functions need not
be additive over time: For example, we can maximize the minimum consumption over
the interval [0, T ],

As a special case, we can add a minimum consumption constraint

ct ≥ cmin
t ,

where cmin
t is the minimum allowable consumption amount as a function of age. Sim-

ilarly, we can enforce a minimum bequest over some time window (say, to care for
underage dependents until they come of age).

11



Spending limit. We can limit consumption as a fraction of income with the con-
straint

ct ≤ ηyt

for some parameter η > 0. For example, when η = 0.7, this constraint means that
we can’t consume more than 70% of our income, i.e., we must have a savings rate of
30%.

This constraint can be adjusted to account for investment income. To see this,
take d ∈ Rn to be the vector of dividend yields for each asset, which is constant and
known in advance. The modified constraint becomes

ct ≤ ηyt + dTxt.

When this constraint is tight, i.e., when we desire to consume more than η times our
income, there is added incentive to invest in assets with high dividend yield.

Minimum cash balance. We can include a constraint that the amount invested
in cash be above a certain level, i.e.,

(xt)i ≥ (xmin
t )i,

where i is the index of the cash asset. This is similar to an emergency fund constraint
that we must keep six months worth of consumption in cash, which is expressed as

(xt)i ≥ 0.5ct.

6 Application to model predictive control

Model predictive control is a technique for stochastic control problems that lever-
ages a deterministic approximation of the stochastic problem. To evaluate an MPC
policy, we first solve this determistic problem to obtain a planned trajectory for the
state and control input over the planning horizon. We then implement only the first
control input in this plan, and rest of the planned trajectory is discarded. To obtain
future control inputs, the policy is evaluated again, which requires solving a new
deterministic problem.

In the context of the Merton problem, the certainty equivalent problem is used
as a basis for a simple model predictive control policy, which we denote πmpc

t . We
first define this policy when t = 0, with initial wealth w0. We start by solving the
deterministic control problem (9) to obtain the optimal trajectories ct and θt. The
MPC policy then takes πmpc

0 (w0) = (c0, θ0). To define the MPC policy for t ∈ (0, T ),
we first form a new instance of problem (9), which is defined over the interval [t, T ]
and has initial wealth wt. Once again we solve the deterministic optimal control
problem (9), to obtain optimal cτ and θτ over the interval τ ∈ [t, T ]. We then take

12



πmpc
t (wt) = (ct, θt). Evaluating the MPC policy therefore always requires solving a

deterministic optimal control problem of the form (9).
MPC is a convenient way to implement the optimal policy for the basic problem

or any of the extensions of §4. In those cases, the MPC policy is optimal. When MPC
is applied with constraints and an objective that do not correspond to any version
of Merton problem, the MPC policy is a sophisticated heuristic, and very useful in
practice.

To use MPC in practice requires discretizing problem (9), which we discuss in the
next section.

7 Discretized problem

Here we show how to discretize problem (9). We do this for the basic problem only,
but note that the extensions can be handled similarly.

We let xk denote the value of xt in (9) at time t = hk, k = 0, . . . , K, where
h = T/K is the discretization interval. (We use the same notation, but index x
with the subscript k to denote the discretized variable, and index with t to denote
the continuous variable.) We similarly define the discretized variables ck and wk.
Replacing the time derivative ẇt with the forward Euler approximation (wk+1−wk)/h,
and replacing the integral in the objective with a Riemann sum approximation, we
obtain the discretized problem

maximize
β

γ
wγ

T +

K−1∑

k=0

h

γ
cγk

subject to
wk+1 − wk

h
≤ µTxk − ck +

(γ − 1)

2

xT
kΣxk

wk

, k = 0, . . . , K − 1

xk/wk ∈ Θ, k = 0, . . . , K

w0 = winit.

(11)

The variables are xk ∈ Rn and wk ∈ R++ for k = 0, . . . , K and ck ∈ R++ for
k = 0, . . . , K − 1. All of the extensions (exact and inexact) discussed above can be
discretized as well, but we do not give the details here.

The discretized certainty equivalent problem (11) is a (finite-dimensional) convex
optimization problem, and can therefore be easily expressed in a domain-specific
language for convex optimization, such as cvxpy. As an example, we give a cvxpy

implementation of (11) in listing 1 when Θ is given by (10).
For most practical portfolio construction problems, Θ is SOCP representable,

which means that problem (11) is an SOCP [Lob+98]. To see this, note that the power
utility cγk and the quadratic-over-linear functions are SOCP representable; see [AG03,
§2.2.f] and [Lob+98, §2.4], respectively. The perspective of Θ can be represented
using the same cones used to represent Θ [MB15, §2].
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w = Variable(K+1)

x = Variable(n, K+1)

c = Variable(K)

Sigma_half = numpy.linalg.cholesky(Sigma)

U = beta/gamma * power(w[K], gamma) + h/gamma * sum(power(c,

gamma))

constr = [w == sum(x, axis=0), w[0] == w_init]

for k in range(K):

constr += [diff(w[k+1] - w[k])/h <= mu @ x[:, k] - c[k] +

(gamma - 1)/2 * quad_over_lin(Sigma_half @ x[:, k], w[k

])]

]

problem = Problem(Maximize (U), constr)

problem.solve()

Listing 1: An implementation of the discretized certainty equivalent problem (11)
using cvxpy.

To give some idea of the speed at which current solvers can solve the discretized
problem (11) (and its extensions), consider a problem with n = 500 assets, K = 50
periods, and covariance matrix Σ given as a typical factor model, with 25 factors. This
problem has more than 100000 optimization variables. With just a small modification
of the code given in listing 1 to exploit the low rank plus diagonal structure of the
covariance matrix, the open-source solver ECOS [DCB13] solve the problem in around
two seconds, on a single thread.
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