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Abstract— This paper presents a method to identify an uncer-
tain linear time-invariant (LTI) prediction model for tube-based
Robust Model Predictive Control (RMPC). The uncertain model
is determined from a given state-input dataset by formulating
and solving a Semidefinite Programming problem (SDP), that
also determines a static linear feedback gain and corresponding
invariant sets satisfying the inclusions required to guarantee
recursive feasibility and stability of the RMPC scheme, while
minimizing an identification criterion. As demonstrated through
an example, the proposed concurrent approach provides less
conservative invariant sets than a sequential approach.

I. INTRODUCTION

The tube-based RMPC scheme of [1] is a popular method
to design robust feedback controllers using LTI plant models

x(t+ 1) = Ax(t) +Bu(t) + w(t), (1)

subject to state constraints x ∈ X ⊂ Rnx , input constraints
u ∈ U ⊂ Rnu , and additive unknown but bounded distur-
bances w ∈ W . Besides model (1), the RMPC scheme also
requires a feedback gain K, and a Robust Positive Invariant
(RPI) set [2] in which the state of the system x(t + 1) =
(A+BK)x(t)+w(t) can be enforced to persistently belong.

Given a model (A,B,W), the problem of computing con-
strained RPI sets has been well studied in the literature. We
focus on polytopic RPI sets for their reduced conservatism
[2]. Given K, methods to compute tight invariant approx-
imations of the minimal RPI (mRPI) sets were presented
in [3], [4], [5]. They characterize the uncertainty tube that
bounds the deviation of the actual state trajectory from a
central nominal one. Similarly, methods to compute maximal
PI (MPI) sets were presented in [6], [7]. They can be used as
terminal sets in RMPC to guarantee feasibility and stability.
It is known that improved RPI sets can be computed by also
optimizing over K. In [8], [9], methods to compute RPI sets
along with K were presented. Earlier approaches in [10],
[11] optimize over K and reduce conservativeness in RMPC.

In order to identify a model (A,B,W), physics-based,
regression approaches and/or set-membership approaches
[12], [13] can be used. Methods that take control design
into account while performing system identification were
presented in [14], [15]. It was demonstrated in [16] that if
system identification can be combined with RPI set compu-
tation, then conservativeness in the computed RPI sets can be
reduced. Motivated by this observation, we present a method
to concurrently select a model (A,B,W) and synthesize RPI
sets for RMPC. Alternative methods that directly compute
feedback controllers using an implicit plant description based
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on measured trajectories were presented in [17], [18], [19],
[20], [21]. However, these methods cannot be used directly
to select a model and RPI sets for RMPC synthesis. While
a similar trajectory-based method in [22] can be used to
synthesize RPI-inducing controllers in a given polyhedral set,
it cannot be used directly for RPI set synthesis.

Contribution: We consider a dataset of state-input mea-
surements from a plant, and present a method to identify
an LTI model (1), along with RPI sets suitable for RMPC
synthesis. To this end, we characterize a set of models
(A,B,W) that can describe the plant behavior, and use
nonlinear matrix inequality (NLMI)-based results from [9] on
RPI set computation to formulate a NonLinear Program with
Matrix Inequalities (NLPMI) that selects a model (1) along
with suitable RPI sets and a corresponding feedback matrix
K. We then present a method to solve the NLPMI based on
a Sequential Convex Programming (SCP) approach that we
tailor to preserve feasibility of the iterates and satisfy a cost
decrease condition. Finally, we demonstrate the efficacy of
the method using a simple numerical example.

Notation: P(A, b) := {x ∈ Rn : −b ≤ Ax ≤ b} is a
symmetric polytope, and E(Q, r) := {x ∈ Rn : x>Qx ≤ r}
is an ellipsoid. The set of m dimensional positive vectors is
denoted as Rm+ , positive definite m×m diagonal matrices is
denoted as Dm+ , positive definite m×m symmetric matrices
as Sm+ . The symbols 1, 0 and I denote all-ones, all-zeros,
and identity matrix, respectively. The set Inm := {m, · · · , n}
is the set of natural numbers between m and n. Ti and Tij
denote row i and element (i, j) of matrix T ∈ Rn×m, and
‖T‖∞ := maxi∈In1

∑m
j=1 |Tij | is the ∞-norm of the matrix.

We define ‖v‖2S := v>Sv, and use ∗ to represent symmet-
rically identifiable matrix entries. Given two compact sets
S1,S2 ⊂ Rn, the Minkowski sum is defined as S1 ⊕ S2 :=
{x + y : x ∈ S1, y ∈ S2}, and the Minkowski difference as
S1 	 S2 := {x : {x} ⊕ S2 ⊆ S1}. We write C1P(A1, b1)⊕
C2P(A2, b2) = [C1 C2]P(diag(A1, A2), [b>1 b

>
2 ]>), where

diag(A1, A2) :=

[
A1 0
0 A2

]
is a block-diagonal matrix.

II. PROBLEM FORMULATION

We briefly recall the tube-based RMPC scheme from [1].
Given system (1), consider the nominal model x̂(t + 1) =
Ax̂(t) + Bû(t), and parameterize the plant input as u(t) =
û(t) + K(x(t) − x̂(t)), where K is a static feedback gain.
Assuming that the feedback gain is stabilizing for (A,B),
the state error ∆x := x − x̂ with dynamics ∆x(t + 1) =
(A+BK)∆x(t) + w(t) belongs to the RPI set ∆X

if ∆x(0) ∈ ∆X , and (A+BK)∆X ⊕W ⊆ ∆X . (2)
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Hence, x always belongs to the uncertainty tube with cross-
section ∆X around x̂, i.e., x(t) ∈ x̂(t) ⊕ ∆X ,∀t ≥ 0.
The RMPC scheme then enforces x̂ ∈ X 	 ∆X and
û ∈ U 	 K∆X , and computes z := {x̂(t), . . . , x̂(t +
N), û(t), . . . , û(t+N − 1)} online given x(t) by solving

min
z

t+N−1∑
s=t

∥∥∥[x̂(s)> û(s)>
]>∥∥∥2

HQ

+ ‖x̂(t+N)‖2PQ

s.t. x̂(s+ 1) = Ax̂(s) +Bû(s), s ∈ It+N−1
t ,

x̂(s) ∈ X 	∆X , û(s) ∈ U 	K∆X , s ∈ It+N−1
t+1 ,

x(t) ∈ {x̂(t)} ⊕∆X , x̂(t+N) ∈ Xt, (3)

where Xt is the terminal set. We assume that the set ∆X is
small enough for feasibility of Problem (3), i.e.,

∆X ⊂ X , K∆X ⊂ U , (4)

and Xt is a PI set for x̂(t+1) = (A+BK)x̂(t) that satisfies

(A+BK)Xt ⊆ Xt ⊆ X 	∆X , KXt ⊆ U 	K∆X . (5)

Then ΩN := {x : (3) is feasible with x(t) = x} is such that
for each x(t) ∈ ΩN , there recursively exists an optimal solu-
tion z∗ := {x̂∗(t), . . . , x̂∗(t+N), û∗(t), . . . , û∗(t+N −1)}
[1, Proposition 2]. Then, the input u(t) := û∗(t)+K(x(t)−
x̂∗(t)) is applied to the plant. Moreover, if (HQ, PQ) are
such that PQ is the solution of the Discrete Algebraic Ric-
cati equation (DARE) formulated using HQ for the system
(A,B), and K is corresponding optimal feedback gain, ∆X
is exponentially stable from every x ∈ ΩN [1, Theorem 1].

Problem description: We consider a plant with dynamics
x(t + 1) = ftr(x(t), u(t), v(t)) that is subject to bounded
inputs u(t) and unknown but bounded disturbances v(t) ∈
Vtr ⊂ Rnv . Assuming that ftr and Vtr are unknown, we
collect a dataset D := {xD(t), uD(t), t ∈ IT1 } of state-
input measurements from the plant. Using D, we propose
a method to compute (A,B,W,K,∆X ,Xt) that satisfy
(1), (2), (4), (5) required for RMPC synthesis, while op-
timizing some criterion. In the sequel, we assume that
the set Φ∗ of all possible vectors [x> u>]> that can be
collected from the plant is a bounded. This is a natu-
ral consequence if ftr is open-loop stable. Then, ΦT :=
{[xD(t)> uD(t))>]>, t ∈ IT1 } ⊂ Φ∗. Then, we define

J∗ :=


 xu
x+

 :
x+ = ftr(x, u, v),

∀ [x> u>]> ∈ Φ∗, ∀v ∈ Vtr

 . Since Φ∗, Vtr

and u are bounded, J∗ is also a bounded set. Finally, we
denote the measured set JT := {[xD(t)> uD(t)> xD(t +
1)>]>, t ∈ IT−1

1 } ⊂ J∗.
Remark 1: Given (A,B,K), matrices (HQ, PQ) satisfy-

ing the DARE can be computed using the procedure in
[23]. Hence, our approach involves tuning the MPC scheme.
Combining our approach with other MPC tuning methods
such as [24] is a subject of future research. �

III. IDENTIFICATION BASED ON INVARIANT SETS

To compute (A,B,W,K,∆X ,Xt) using the dataset D
by optimization, we first characterize the set of models
(A,B,W) that are suitable to model the underlying plant.

1) Characterization of feasible models: We consider a
disturbance set parametrized as W := P(F, d), d ∈ Rmw+ .
We assume for simplicity that F is fixed a priori. Then,
system (1) with w ∈ P(F, d) is suitable for RMPC synthesis
if it can model all possible state transitions of the plant as

ftr(x, u, v) ∈ {Ax+Bu} ⊕ P(F, d),

∀ [x> u>]> ∈ Φ∗, ∀ v ∈ Vtr.
(6)

Defining the prediction error ζ(A,B, z) := x+ −Ax−Bu
with z := [x> u> x>+]>, (6) holds for a given (A,B) if and
only if ζ(A,B, z) ∈ P(F, d), ∀ z ∈ J∗ by definition of J∗.
Hence, Σ∗ := {(A,B, d) : ζ(A,B, z) ∈ P(F, d), ∀ z ∈ J∗}
characterizes the set of all models (A,B, d) satisfying (6).
However, constructing Σ∗ is not possible since we only have
access to the measured set JT . Hence, we characterize

ΣT (θT ) :=


A,B,
d

 :

ζ(A,B, z) ∈ P(F, d− κT (A,B)1)

κT (A,B) = ‖F [−A −B I]‖∞ θT ,

d > κT (A,B)1, ∀ z ∈ JT


using JT , where θT := d∞(J∗,JT ) is the Hausdorff
distance between the sets JT and J∗ in∞-norm, and is given
by d∞(J∗,JT ) := maxz∗∈J∗ minz∈JT ‖z − z∗‖∞ since the
inclusion JT ⊂ J∞ holds for every T > 0.

Assumption 1: (a) ΣT (θT ) 6= ∅; (b) ∀ θ ∈ R1
+,∃ T̃ <∞

such that d∞(J∗,JT̃ ) ≤ θ.
Assumption 1 implies that as T →∞, the set J∗ is densely
covered by JT : this is an assumption on the persistence
of excitation of inputs, and bound-exploring property of the
disturbances acting on the underlying plant [15, Section 3.2].

Theorem 1: If Assumption 1 holds, then (6) holds for all
models (A,B, d) ∈ ΣT (θT ). �

Proof: We show that ζ(A,B, z) ∈ P(F, d),∀z ∈
J∗,∀(A,B, d) ∈ ΣT (θT ). For any (A,B, d) ∈ ΣT (θT ),
clearly ζ(A,B, z) ∈ P(F, d− κT (A,B)1) ⊂ P(F, d),∀z ∈
JT . By definition of the Hausdorff distance, for every
remaining z̄ ∈ J∗ \ JT := {z̃ : z̃ ∈ J∗, z̃ /∈ JT }, ∃ z ∈ JT
such that ||z−z̄||∞ ≤ θT . Then, for any (A,B, d) ∈ ΣT (θT ),

Fζ(A,B, z̄) = F (ζ(A,B, z̄)− ζ(A,B, z) + ζ(A,B, z))

≤ F [−A −B I](z̄ − z) + d− κT (A,B)1

≤ ||F [−A −B I]||∞θT1 + d− κT (A,B)1 = d,

where the second step follows from definition of ΣT (θT ),
and third step from the definition of ∞-norm, the Cauchy-
Schwarz inequality and ||z̄ − z||∞ ≤ θT . Using similar
arguments, the condition −d ≤ Fζ(A,B, z̄) follows, thus
concluding that ζ(A,B, z̄) ∈ P(F, d),∀ z̄ ∈ J∗ \ JT .

Theorem 1 implies that every (A,B, d) ∈ ΣT (θT ) ⊂ Σ∗
is a feasible model for RMPC synthesis. However, ΣT (θT )
cannot be constructed from data since θT is unknown. To
tackle this issue, we follow the standard approach of inflating
the disturbance set using some parameter (e.g., [15]): we
propose to select some θ̂T > 0, and approximate ΣT (θT )
with Σ̂T := ΣT (θ̂T ) under the following assumption.

Assumption 2: θ̂T ≥ θT = d∞(J∗,JT ). �
Under Assumption 2, we have Σ̂T ⊆ ΣT (θT ). Hence, every
(A,B, d) ∈ Σ̂T is suitable for RMPC synthesis. In the



sequel, we assume that a θ̂T satisfying Assumption 2 is
selected. We then encode Σ̂T as the set of linear constraints

Σ̂T =


A,B,
d

 :

ζ(A,B, z) ∈ P(F, d− λθ̂T1), d > λθ̂T1,

−Z ≤ F [−A −B I] ≤ Z,Z ≥ 0,
Σ2nx+nu
j=1 Zij ≤ λ, ∀ i ∈ Imw1 ,∀ z ∈ JT


using the definition of ∞-norm for matrices, where Z ∈
Rmw×(2nx+nu)

+ is a slack variable matrix. We reiterate that
since Assumption 2 cannot be verified directly using data,
robustness guarantees with respect to the underlying plant
can only be provided in theory. However, if Assumption 1(b)
holds, the distance θT → 0 for large T . Hence, guessing
some θ̂T ≈ 0 can satisfy Assumption 2 for large datasets.
Moreover, the validity of a given θ̂T can be checked by
verifying the existence of a model (A,B, d) ∈ Σ̂T explaining
a validation dataset. On the other hand, computation of a
θ̂T satisfying Assumption 2 is a fundamental issue in data-
driven methods: while statistical techniques such as, e.g.,
bootstrapping can be used, the development of such methods
is a future research subject.

Remark 2: (a) In [15], an optimal LTI model set is first
computed, from which a model is selected and then feedback
controllers are synthesized. We combine all three phases in
the current work; (b) In [19], the closed-loop dynamics of an
unknown LTI plant with a known disturbance set is charac-
terized in terms of the measured dataset, and parametrized by
unknown but bounded disturbance sequences. Then, a con-
troller is synthesized for all feasible LTI models. We instead
use a model-dependent disturbance set. While the assumption
of a known disturbance set is as strict as Assumption 2,
comparison with [19] is a subject of future research. �

2) Robust PI set design: We will now compute a feedback
gain K and corresponding invariant sets ∆X and Xt for
some (A,B, d) ∈ Σ̂T . To this end, we parametrize the RPI
set as ∆X = P(

¯
P,

¯
b),

¯
b ∈ R¯

m
+ , the PI terminal set as Xt =

P(P̄, b̄), b̄ ∈ Rm̄+ , and assume that the constraint sets are X =
P(V x, vx), vx ∈ Rmx+ , and U = P(V u, vu), vu ∈ Rmu+ .
Then, for some (A,B, d) ∈ Σ̂T , if (K,

¯
P,

¯
b, P̄, b̄) satisfies

(A+BK)P(
¯
P,

¯
b)⊕ P(F, d) ⊆ P(

¯
P,

¯
b), (7a)

(A+BK)P(P̄, b̄) ⊆ P(P̄, b̄), (7b)
P(

¯
P,

¯
b)⊕ P(P̄, b̄) ⊆ X , (7c)

KP(
¯
P,

¯
b)⊕KP(P̄, b̄) ⊆ U , (7d)

it can be used to synthesize the RMPC scheme (since (7a)
implies (2), (7b) implies (5), (7c)-(7d) imply the constraint
inclusions in (4)-(5)). We encode (7a)-(7d) using Theorem 2.

Theorem 2: [9, Theorem 2] For some C ∈ Rn×nc , M c ∈
Rmc×n, bc ∈ Rmc+ , M0 ∈ Rm0×n, bo ∈ Rmo+ , the inclusion
CP(M c, bc) ⊆ P(M0, b0) holds if ∀ i ∈ Im0

1 ,∃Lc[i] ∈ Dmc+

such that

[
2b0i − bc

>
Lc[i]b

c M0
i C

∗ M c>Lc[i]M
c

]
� 0. �

Hence, (7a) ⇐= ∀i ∈ I¯
m
1 ,∃¯

D[i] ∈ D¯
m
+ ,W[i] ∈ Dmw+ s.t.2

¯
bi −¯

b>
¯
D[i]¯

b− d>W[i]d ¯
P i ¯

P i(A+BK)

∗ F>W[i]F 0

∗ ∗
¯
P>

¯
D[i]¯

P

 � 0, (8)

(7b) ⇐= ∀ i ∈ Im̄1 ,∃ D̄[i] ∈ Dm̄+ s.t.[
2b̄i − b̄

>
D̄[i]b̄ P̄ i(A+BK)

∗ P̄
>
D̄[i]P̄

]
� 0, (9)

(7c) ⇐= ∀ i ∈ Imx1 ,∃
¯
S[i] ∈ D¯

m
+ , S̄[i] ∈ Dm̄+ s.t.2vxi −¯

b>
¯
S[i]¯

b− b̄>S̄[i]b̄ V xi V xi

∗
¯
P>

¯
S[i]¯

P 0

∗ ∗ P̄
>
S̄[i]P̄

 � 0, (10)

(7d) ⇐= ∀ i ∈ Imu1 ,∃
¯
R[i] ∈ D¯

m
+ , R̄[i] ∈ Dm̄+ s.t.2vui −¯

b>
¯
R[i]¯

b− b̄>R̄[i]b̄ V ui K V ui K

∗
¯
P>

¯
R[i]¯

P 0

∗ ∗ P̄
>
R̄[i]P̄

 � 0. (11)

We now formulate a criterion to select the variables formu-
lating (8)-(11) along with (A,B, d) ∈ Σ̂T , leading to an
optimization problem. In this formulation, we assume that the
matrices (

¯
P, P̄, F ) are known a priori. While this assumption

increases conservativeness in our approach, it simplifies the
solution procedure. We note that a good set of hyperplanes
(
¯
P, P̄ ) can guessed for some initial (A,B, F, d) using [9],

and kept constant for our approach. Moreover, our approach
can be extended to optimize over (

¯
P, P̄ ) using the results in

[25]. We skip further details here due to space limitations.
Remark 3: The condition in Theorem 2 is necessary and

sufficient for the inclusion CP(M c, bc) ⊆ P(M0, b0) if a
non-strict inequality � is used. However, we only use the
sufficiency property given by � for numerical robustness. �

3) Identification criterion: For RMPC synthesis, it is
desirable to compute a small RPI set ∆X to reduce con-
straint tightening, and to regulate the system to a small
neighborhood of the origin [1]. Hence, we minimize ‖̄b‖1,
since it corresponds to the smallest (in an inclusion sense)
RPI set represented by fixed hyperplanes

¯
P [4, Corollary

1]. Moreover, we know from [1, Proposition 2] that a large
terminal set Xt maximizes the region of attraction ΩN .
Hence, we maximize the size of Xt by minimizing a distance
metric between Xt and the state constraint set X as follows:
let B(ε̄) := P(Ē, ε̄) ⊂ Rnx with ε̄ ∈ Rmε+ and Ē fixed
a priori; then, we minimize ‖ε̄‖1 subject to the inclusion
X ⊆ P(P̄, b̄)⊕B(ε̄). Assuming to know the vertices {x[i], i ∈
Im

v
x

1 } of X , (b̄, ε̄) ∈ S̄ implies X ⊆ P(P̄, b̄) ⊕ B(ε̄) where
S̄ := {(b̄, ε̄) : x[i] ∈ P(P̄, b̄)⊕ P(Ē, ε̄),∀ i ∈ Im

v
x

1 }.
Finally, since the performance matrices (HQ, PQ) formu-

lating the RMPC controller in (3) are fixed by (A,B,K) as
noted in Remark 1, we introduce a way to tune the closed-
loop performance: We evaluate the performance using the
system x̂(t+ 1) = Ax̂(t) +Bû(t) inside the terminal set as

x̂(0) ∈ Xt, û(t) = Kx̂(t),
∞∑
t=0

‖x̂(t)‖2Q̃ + ‖û(t)‖2R̃ ≤ r̃, (12)

where Q̃ ∈ Snx+ and R̃ ∈ Snu+ are user-defined performance
matrices, and we minimize r̃. Then, if Θ̃ ∈ Snx+ satisfies

(A+BK)>Θ̃(A+BK)− Θ̃ + Q̃+K>R̃K ≺ 0, (13)



the left-hand-side of the inequality in (12) is upper bounded
by ‖x̂(0)‖2Θ̃ [10]. Hence, (12) is satisfied if the inclusion
P(P̄, b̄) ⊆ E(Θ̃, r̃) holds, thus imposing an upper bound on
the size of the terminal set. Following the S-procedure [26,
Section 2.6.3], the inclusion P(P̄, b̄) ⊆ E(Θ̃, r̃) holds if

∃M̃ ∈ Dm̄+ s.t. P̄
>
M̃P̄ − Θ̃ � 0, r̃ − b̄>M̃ b̄ > 0. (14)

Based on these considerations, we formulate the identifica-
tion problem as the following NLPMI

min
ZNL

α‖̄b‖1 + β‖ε̄‖1 + γr̃ (15)

s.t. (A,B, d) ∈ Σ̂T , (b̄, ε̄) ∈ S̄, (8)− (11), (13)− (14)

where α, β, γ ≥ 0 are user-defined weights, and

ZNL :=

 A,B, d,Z, λ,K,
¯
b, b̄, Θ̃, r̃, M̃, ε̄,

{
¯
D[i],W[i], i ∈ I¯

m
1 }, {D̄[i], i ∈ Im̄1 },

{
¯
S[i], S̄[i], i ∈ Imx1 }, {¯R[i], R̄[i], i ∈ Imu1 }

.
4) Feasible SCP for Problem (15): In order to solve

Problem (15), a standard SCP approach can be adopted, in
which a sequence of SDPs approximating (15) are solved.
However, to guarantee feasibility of the iterates, we adopt the
following SCP procedure. Starting from an initial feasible
iterate ZNL, we solve a sequence of SDPs formulated using
sufficient LMI conditions for the constraints of Problem (15),
such that the method produces feasible iterates. The sufficient
LMI conditions are formulated using convex underestimates
[27] of the NLMI constraints at the current iterate. Moreover,
the objective value of (15) is non-increasing over the iterates,
such that globalization is unnecessary and we terminate when
the objective value does not reduce further.

(a) Convex SDP approximation: Given a feasible iterate
ZNL for Problem (15), we formulate sufficient LMI condi-
tions for (8)-(11), (13), (14) using the following result.

Proposition 1: [9, Lemma 2.1] Let matrices L, L ∈
Rm×n and D, D ∈ Sm+ , and define the matrix functions
LL,DL,D := L>D−1L + L>D−1L − L>D−1DD−1L, and
NL,D := L>D−1L. Then, NL,D � LL,DL,D and NL,D =

LL,DL,D. Hence, if ∃(L,D) such that NL,D � 0, then ∃(L,D)

such that NL,D � LL,DL,D � 0. �
This result implies that ifNL,D � 0, then the LMI LL,DL,D � 0
is a convex underestimate and a sufficient condition for
NL,D � 0. We will now use this property to formulate
sufficient LMIs for (8)-(11), (13), (14). The claimed SCP
feasibility and cost decrease are then obtained as a corollary.

Theorem 3: Suppose that ZNL is feasible for (15). Then:
(i) RPI condition (8): For each i ∈ I¯

m
1 , there exists

(A,B,d,K,
¯
b, ˆ

¯
D[i], Ŵ[i]) satisfying the LMI

I 0 0 −B>
¯
P>i 0 K

∗ ˆ
¯
D[i] 0

¯
b 0 0

∗ ∗ Ŵ[i] d 0 0

∗ ∗ ∗ 2
¯
bi + LB

>
¯
P>i ,I

B>
¯
P>i ,I ¯

Pi
¯
PiA

∗ ∗ ∗ ∗ L
F,W−1

[i]

F,Ŵ[i]
0

∗ ∗ ∗ ∗ ∗ L¯
P,

¯
D−1

[i]

¯
P ˆ

¯
D

[i]

+ LK,IK,I


� 0, (16)

and (A,B,d,K,
¯
b, ˆ

¯
D−1

[i] , Ŵ
−1
[i] ) satisfies (8).

(ii) PI condition (9): For each i ∈ Im̄1 , there exists
(A,B,K, b̄, ˆ̄D[i]) satisfying the LMI

I 0 −B>P̄>i K

∗ ˆ̄D[i] b̄ 0

∗ ∗ 2b̄i + LB
>P̄>i ,I

B>P̄>i ,I
P̄iA

∗ ∗ ∗ L
P̄,D̄−1

[i]

P̄, ˆ̄D[i]

+ LK,IK,I

 � 0, (17)

and (A,B,K, b̄, ˆ̄D−1
[i] ) satisfies (9).

(iii) Constraint inclusions (10), (11): For each i ∈ Imx1 ,
there exists (

¯
b, b̄, ˆ

¯
S[i],

ˆ̄S[i]), and for each i ∈ Imu1 , there

exists (K,
¯
b, b̄, ˆ

¯
R[i],

ˆ̄R[i]) satisfying the LMIs

ˆ
¯
S[i] 0

¯
b 0 0

∗ ˆ̄S[i] b̄ 0 0
∗ ∗ 2vxi V xi V xi

∗ ∗ ∗ L¯
P,

¯
S−1

[i]

¯
P,ˆ

¯
S

[i]

0

∗ ∗ ∗ ∗ L
P̄ ,S̄−1

[i]

P̄ , ˆ̄S[i]


� 0, (18)



ˆ
¯
R[i] 0

¯
b 0 0

∗ ˆ̄R[i] b̄ 0 0
∗ ∗ 2vui V ui K V ui K

∗ ∗ ∗ L¯
P,

¯
R−1

[i]

¯
P, ˆ

¯
R

[i]

0

∗ ∗ ∗ ∗ L
P̄ ,R̄−1

[i]

P̄ , ˆ̄R[i]


� 0, (19)

and (
¯
b, b̄, ˆ

¯
S−1

[i] ,
ˆ̄S−1

[i] ) , (K,
¯
b, b̄, ˆ

¯
R−1

[i] ,
ˆ̄R−1

[i] ) satisfy (10), (11).
(iv) Dissipativity condition (13): There exists

(A,B,K, Θ̃) satisfying the LMI
I 0 0 −B> K

∗ Q̃−1 0 0 I

∗ ∗ R̃−1 0 K

∗ ∗ ∗ LI,Θ̃

I,Θ̃
+ LB

>,I
B>,I

A

∗ ∗ ∗ ∗ Θ̃ + LK,IK,I

 � 0, (20)

and (A,B,K, Θ̃) satisfies (13).
(v) Performance ellipsoid inclusion condition (14): There

exists (b̄, Θ̃, r̃, ˆ̃M) satisfying the LMI

LP̄,M̃
−1

P̄, ˆ̃M
− Θ̃ � 0,

[
ˆ̃M b̄
∗ r̃

]
� 0, (21)

and (b̄, Θ̃, r̃, ˆ̃M−1) satisfies (14).
Proof: The proof follows by using the Schur comple-

ment and Proposition 1 on (8)-(11). We detail the proof of
Part (i), since Parts (ii)-(v) follow with similar arguments.
Part (i) : As (A,B,K,

¯
b, d,

¯
D[i],W[i]) in ZNL satisfy (8), we

take a Schur complement of the (1, 1) block to obtain
¯
D−1

[i] 0
¯
b 0 0

∗ W−1
[i] d 0 0

∗ ∗ 2
¯
bi

¯
Pi

¯
PiA+

¯
PiBK

∗ ∗ ∗ F>W[i]F 0
∗ ∗ ∗ ∗

¯
P>

¯
D[i]¯

P

 � 0. (22)

Defining Ŵ[i] := W−1
[i] and ˆ

¯
D[i] :=

¯
D−1

[i] , Eq. (22) is
nonlinear in variables (B,K, ˆ

¯
D[i], Ŵ[i]) in the blocks (4, 4),



(5, 5), (3, 5) and (5, 3). Then, we write (22) as
ˆ
¯
D[i] 0

¯
b 0 0

∗ Ŵ[i] d 0 0
∗ ∗ N̄i,33

¯
Pi

¯
PiA

∗ ∗ ∗ NF,Ŵ[i]
0

∗ ∗ ∗ ∗ N̄i,55

− K̄>i K̄i � 0, (23)

where N̄i,33 := 2
¯
bi + NB>

¯
P>i ,I

, N̄i,55 := N
¯
P, ˆ

¯
D

[i]
+ NK,I,

and K̄i := [0 0 − B>
¯
P>i 0 K] (with the function N.,.

defined in Proposition 1). Taking Schur complement of (23),

I 0 0 −B>
¯
P>i 0 K

∗ ˆ
¯
D[i] 0

¯
b 0 0

∗ ∗ Ŵ[i] d 0 0
∗ ∗ ∗ 2

¯
bi +NB>

¯
P>i ,I ¯

Pi
¯
PiA

∗ ∗ ∗ ∗ NF,Ŵ[i]
0

∗ ∗ ∗ ∗ ∗ N
¯
P, ˆ

¯
D

[i]
+NK,I


� 0 (24)

results, with all nonlinear components collected in the diag-
onal blocks. Using Proposition 1 on these components, we
conclude that (16) is a sufficient LMI condition for (24).

Corollary 1: Suppose that ZNL is feasible for Problem
(15). Then, the solution of the SDP

minZ α ‖
¯
b‖1 + β ‖ε̄‖1 + γr̃

s.t. (A,B,d) ∈ Σ̂T , (b̄, ε̄) ∈ S̄, (16)− (21),
(25)

Z :=

 A,B,d,Z,λ,K,
¯
b, b̄, Θ̃, r̃, ˆ̃M , ε̄,

{ ˆ
¯
D[i], Ŵ [i], i ∈ I¯

m
1 }, { ˆ̄D[i], i ∈ Im̄1 },

{ˆ
¯
S[i],

ˆ̄S[i], i ∈ Imx1 }, { ˆ
¯
R[i],

ˆ̄R[i], i ∈ Imu1 }

,
is feasible for Problem (15), and satisfies the cost decrease
condition α ‖

¯
b‖1 + β ‖ε̄‖1 + γr̃ ≤ α ‖̄b‖1 + β ‖ε̄‖1 + γr̃. �

Proof: The feasibility of Z for Problem (15) follows
from Theorem 3, and the cost decrease condition holds since
ZNL is feasible for Problem (25).

We propose the following procedure to solve Problem (15).

Algorithm 1 : Update solution of Problem (15)
1. Obtain an initial feasible solution ZNL for Problem (15).
2. Solve the SDP in (25) for the updated variables Z;

Recover feasible values ZNL from the solution.
3. Evaluate the objective value α ‖̄b‖1 + β ‖ε̄‖1 + γr̃;
4. If there is a reduction from previous iteration, repeat

Step 2 using ZNL for linearization. Else, terminate. �

We note that the results in [27, Chapter 4] can be used to
study the convergence of Algorithm 1. Further analysis is
beyond the scope of the current work.

(b) Initialization procedure: We propose the following
procedure to compute an initial feasible solution ZNL.
(i) Select some θ̂T > 0 through a guess to characterize Σ̂T .
(ii) Solve the LP arg minA,B,d{‖d‖1 s.t. (A,B, d) ∈ Σ̂T }
for an initial feasible model (A,B, d).
(iii) Use the method in [9] to compute an initial RPI set
∆X = P(

¯
P,

¯
b) satisfying (7a) along with a feedback gain

K, while enforcing P(
¯
P,

¯
b) ⊂ X and KP(

¯
P,

¯
b) ⊂ U .

(iv) Compute the tightened constraint set O0 := {x : x ∈
X	∆X ,Kx ∈ U	K∆X}, and then compute a PI set Xt =
P(P̄, b̄) using the method in [9] for x(t+1) = (A+BK)x(t).

ẋ

x

ẋ

x

‖̄b‖1 ‖ε̄‖1 r̃
Initial 10 6.847 6
Adapt 5.564 4.005 20.613

Fix 6.557 4.513 14.865

Fig. 1: Results of Algorithm 1. Gray sets-X , Green sets-
Initialization, Blue sets-(A,B, d) as optimization variables,
Red sets - Fix (A,B, d) to initial values.

(v) Compute the remaining variables formulating Problem
(15) by solving minZI{r̃ : (8)–(11), (13)–(14)}, where

ZI :=

(
{

¯
D[i],W[i], i ∈ I¯

m
1 }, {D̄[i], i ∈ Im̄1 }, {¯S[i], S̄[i], i ∈ Imx1 },

{
¯
R[i], R̄[i], i ∈ Imu1 }, Θ̃, r̃, M̃

)
.

Remark 4: In Steps (ii),(iii), the methods in [9] guarantee
the feasibility of the SDP in Step (v), since they are also
formulated using Theorem 2. Other methods, e.g. [5], [6],
can also be used if the feasibility of Step (v) is ensured. �

IV. NUMERICAL EXAMPLE

We consider a nonlinear mass-spring-damper system with
dynamics F = mẍ + (Kx + KNLx2) + (cẋ + cNLẋ2) + Fδ ,
where u = F, x = [x ẋ]>, and constraints X = {x : ||x||∞ ≤
0.8}, U = {u : ||u||∞ ≤ 2.5}. We simulate the plant using
ode45 integration to build the dataset D with T = 1000 at a
0.1s time interval. We set KNL, cNL = 0.12, and uniformly
sample the parameters m,K, c in (0.44, 0.56) and Fδ in
(−0.12, 0.12) at every timestep 0.1s. We then use Algorithm
1 to synthesize a model and RPI sets required for RMPC
synthesis. To this end, we follow the initialization procedure
described in Section III-4(b) to obtain an initial feasible ZNL

for Problem (15). We first parametrize the disturbance set
W with mw = 10 hyperplanes. Then, following Step (i),
we characterize the set Σ̂T with θ̂T = 1 · 10−3. Then,
we compute the initial model A =

[
0.9967 0.0951
−0.0637 0.9036

]
,

B =

[
0.0098
0.1914

]
and ‖d‖1 = 0.5816 following Step (ii). We

initialize the feedback gain as K = [−0.4140 − 2.3734]
which is the optimal LQR gain corresponding to matrices
Q̃ = diag(1, 15) and R̃ = 1. Then, we compute an RPI set
∆X = (

¯
P,

¯
b) following Step (iii) with

¯
m = 10 hyperplanes

using [5]. Similarly, we compute the PI terminal set Xt =
P(P̄, b̄) following Step (iv) with m̄ = 15 hyperplanes
using [6]. Finally, with Step (v) we compute the remaining
variables formulating ZNL. We parameterize B(ε̄) with mε =
10 for terminal set maximization. The results obtained with
Algorithm 1 with weights α = 1, β = 1, γ = 0.1 using
the MOSEK SDP solver [28] in MATLAB are shown in



Figure 1. For the purpose of comparison, we also plot the
results when the model (A,B, d) is fixed to the initial value.
We observe that by allowing Algorithm 1 to adapt the system
model using Σ̂T , we obtain a lower objective value with a
larger terminal set Xt and a smaller RPI set ∆X . The model

at termination is A =

[
0.9967 0.0951
−0.0625 0.8990

]
, B =

[
0.0098
0.1958

]
,

and ‖d‖1 = 0.5833, and the computed feedback gain is
K = [−1.7062 − 2.6306]: the model consists of a larger
disturbance set than the initialized value, with (A,B, d)
optimizing (15) instead of best fitting the data. In case the
model is fixed to the initial value, the feedback gain at
termination is K = [−1.0033 − 3.0882]. In order to study
the effect of the parameter θ̂T characterizing Σ̂T , we run
Algorithm 1 for increasing values of θ̂T . The objective values
at termination are 11.631 for θ̂T = 1 · 10−3, 11.659 for
θ̂T = 1.2 · 10−3, 11.668 for θ̂T = 1.3 · 10−3, 13.4376 for
θ̂T = 1.5 · 10−3: we observe that conservatism increases
with θ̂T , while increasing robustness with respect to the
underlying plant. Note that this trend is not guaranteed since
Problem (15) is an NLPMI.

Computational Complexity: The SDP in (25) consists of
an LMI constraint with

¯
m(2nx + mw + nu +

¯
m + 1) +

m̄(nx + nu + m̄ + 1) + (mx + mu)(2nx +
¯
m + m̄ + 1) +

(3nx + 2nu) + (nx + m̄+ 1) + nx = 1086 rows, nxmv
x = 8

linear equality constraints, and 2mwT + 2mw(2nx + nu) +
(2nx+nu)+mw+2mv

x(m̄+mε) = 20275 linear inequality
constraints over 2(n2

x + nxnu + nxm
v
x + 1) + mw(2nx +

nu + 1) +
¯
m(

¯
m+mw + 1 +mx +mu) + m̄(m̄+ 2 +mx +

mu) +mε = 638 variables. Over multiple runs, the average
solving time for the SDP in (25) on a laptop with an Intel i7-
7500U processor and 16GB of RAM running Ubuntu 16.04
is approximately 1.57s when the model is allowed to adapt,
and 0.78s when the model is fixed. We note that the number
of LMI constraints and variables scale quadratically in m̄ and

¯
m. Hence, the approach can be computationally expensive
if a large number of hyperplanes are required for RPI set
representation. Comparing our approach to [16] using data
from a real-world system is a subject of future work.

V. CONCLUSIONS

This paper has presented a data-driven method based on
RPI sets to synthesize RMPC controllers. To this end, a set of
LTI models that can describe the underlying plant behavior
is characterized using an input-state dataset. Then, a suitable
model along with RPI sets are concurrently computed for
RMPC synthesis. This procedure is demonstrated to compute
RPI sets with reduced conservativeness when compared to
a sequential procedure. Future research will be devoted
to estimation techniques for θ̂T , reducing conservativeness
in Theorem 1, using input-output datasets, multiplicative
uncertainty models, and combining our approach with [19].
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