
A Robust, Multiple Control Barrier Function
Framework for Input Constrained Systems

Wenceslao Shaw Cortez, Xiao Tan, and Dimos V. Dimarogonas

Abstract— We propose a novel (Type-II) zeroing control
barrier function (ZCBF) for safety-critical control, which
generalizes the original ZCBF approach. Our method allows
for applications to a larger class of systems (e.g. passivity-
based) while still ensuring robustness, for which the con-
struction of conventional ZCBFs is difficult. We also pro-
pose a locally Lipschitz continuous control law that handles
multiple ZCBFs, while respecting input constraints, which
is not currently possible with existing ZCBF methods. We
apply the proposed concept for unicycle navigation in an
obstacle-rich environment.

I. INTRODUCTION

Recently, safety-critical control has been associated with
zeroing control barrier functions (ZCBFs) [1]. A safety-critical
controller renders a desired constraint set forward invariant
for a nonlinear system. Forward invariance of the superlevel
sets of a ZCBF is ensured if the derivative of the ZCBF
is non-negative on the constraint boundary. A minimum-
norm quadratic program (QP)-based control law was proposed
to enforce this non-negativity condition [1]. ZCBFs were
also associated with asymptotic stabilization to the (compact)
constraint set [2], which provides robustness to model per-
turbations/disturbances. Novel developments have addressed
input constraints [3], [4], multiple ZCBFs [5], sampled-data
control [6], [7], self-triggering [8], safety and stability [9],
input-to-state safety [10], adaptive/data-driven methods [11],
and high-order ZCBFs [12], [13].

However, there exist limitations in the ZCBF formulation.
The ZCBF definition is restrictive because it requires the
ZCBF to strictly decrease outside of the constraint set to ensure
robustness, however passivity-based methods tend to rely on
LaSalle’s principle which is associated with a non-increasing
barrier function. Furthermore, robustness results should be
applicable to non-compact sets (with compact boundary),
which occur in obstacle avoidance scenarios.

Also, the predominant ZCBF controller in the literature is
the minimum-norm QP control law. There exists no guarantee
that the minimum-norm QP for a single ZCBF with input
constraints is locally Lipschitz continuous [14], which means
that any guarantees of safety may be nullified. Furthermore,
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for multiple ZCBFs, the main approach has been to stack new
ZCBF constraints into the QP. However this poses a problem
since first, one must ensure that all the ZCBFs are non-
conflicting, and second, the aggregation of multiple ZCBF QP
constraints will eventually lead to an over-constrained QP. This
results in several issues. First, there is once again no guarantee
of Lipschitz continuity of such QP-based controllers and so
no guarantees of safety can be provided. This problem could
be overcome using sampled-data based ZCBF methods [6],
however the fact remains that as the number of ZCBFs grows,
the QP will become too large and inefficient for implemen-
tation. Finally, this issue becomes exacerbated by considering
input constraints and the multiple ZCBF constraints. There are
few methods in the literature that can handle multiple ZCBFs
and input constraints simultaneously. In both [4] and [5], the
authors admit that handling input constraints and multiple
ZCBFs simultaneously is a focus of future work. In [15],
multiple ZCBFs for input constrained systems are handled,
but significant knowledge of the model including Lipschitz
constants and bounds on the dynamics is required. Due to these
limitations, we seek a novel formulation that allows for a) a
more general ZCBF definition that can be applied to passivity-
based methods and robustness of non-compact constraint sets
b) facilitation of multiple ZCBF design, and c) incorporation
of input constraints in light of a) and b).

We propose a novel, robust ZCBF framework for multiple
ZCBFs that can handle input constraints. Our first main
contribution is the development of a robust “Type-II” ZCBF
that relaxes the requirements of the original ZCBF and can
be applied to more general systems. We propose a mixed-
initiative controller that ensures safety, while respecting in-
put constraints. Our second contribution is the extension to
multiple Type-II ZCBFs with non-intersecting set boundaries,
while still respecting input constraints. We apply the proposed
formulation to the unicycle system and present numerical
results to demonstrate the proposed approach.

Notation: The Lie derivatives of a function h(x) for the
system ẋ = f(x) + g(x)u are Lfh = ∂h

∂x f(x) and Lgh =
∂h
∂xg(x), resp. The interior and boundary of a set A are
Int(A ) and ∂A , resp. The distance from x to a set A ⊂ Rn is
‖x‖A := infw∈A ‖x −w‖. A uniformly continuous function
x : R≥0 → Rn asymptotically approaches a set X ⊂ Rn,
if as t → ∞, for each ε ∈ R>0, ∃T ∈ R>0, such that
‖x(t)‖X < ε ∀t ≥ T . A continuous function α : R → R
is an extended class K function if it is strictly increasing and
α(0) = 0. For a given set Ω and system ẋ = f(x), no solution
of the system can stay identically in Ω if for some τ1 ∈ R≥0
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for which x(τ1) ∈ Ω, there exists a τ2 ∈ R≥0, τ2 > τ1, such
that x(τ2) /∈ Ω.

II. BACKGROUND

A. Zeroing Control Barrier Functions

Consider the nonlinear affine system:

ẋ = f(x) + g(x)u, (1)

where f : X → Rn and g : X → Rn×m are locally
Lipschitz continuous functions on their domain X ⊆ Rn,
u : X → U ⊆ Rm is the control input, and x(t,x0) ∈X is
the state trajectory at t starting at x0 ∈X , which with abuse
of notation we denote x(t).

Let h(x) : X → R be a continuously differentiable
function, and let the associated constraint set be defined by:

C = {x ∈X : h(x) ≥ 0}. (2)

Definition 1. Consider the system (1) under a given control
law u and the maximal interval of existence I ⊆ R≥0 of the
solution x(t). The system (1) with respect to a given closed
set C ⊂X is safe if x(0) ∈ C , then x(t) ∈ C for all t ∈ I .

Constraint satisfaction is ensured by showing that the system
states are always directed into the constraint set. If there exists
a control input to satisfy this condition, then h is considered
a ZCBF:

Definition 2 ( [1]). : Let the set C ⊂ D ⊂ X be the
superlevel set of a continuously differentiable function h :
D → R. Then h is a zeroing control barrier function (ZCBF)
if there exists an extended class-K function α such that for
the control system (1):

sup
u∈U

[Lfh(x) + Lgh(x)u+ α(h(x))] ≥ 0,∀x ∈ D (3)

The advantage of checking (3) over all of D , for which h
may be negative, is to ensure asymptotic stability to the set
C , provided that C is compact [2]. One way to implement
(multiple) ZCBFs, assuming they are non-conflicting, is by
using the following QP-based controller:

u∗(x) = argmin
u∈U

‖u− unom(x, t)‖22 (4)

s.t. Lfhj(x) + Lghj(x)u ≥ −αj(hj(x)), j ∈ N

where N = {1, .., N} for N ∈ N and unom : Rn ×
R≥0 → Rm is any nominal Lipschitz continuous controller
that could be, e.g., a stabilizing controller or human input.
When considering (4), or similar controllers [14], with input
constraints, there is no guarantee that the control law is locally
Lipschitz continuous, even with only a single ZCBF [14].
Local Lipschitz continuity of the controller is required for
ensuring safety [1]. Thus since (4) fails to satisfy the safety
conditions, any guarantees of safety may be nullified.

III. TYPE-II ZCBFS

A. Safety and Robustness

We expand the concept of ZCBFs for more general applica-
tions wherein a function satisfying Definition 2 may not exist
or is difficult to construct. We propose an alternative ZCBF,
referred to as a Type-II ZCBF, that is less restrictive than that
of Definition 2. To begin, we define the following properties
to replace extended class-K functions:

Property 1. The function, α : R → R is continuous and the
restriction of α to R≥0 is of class-K.

Property 2. The function α : R → R satisfies: α(h) ≤
0,∀h < 0.

Next, we specify that we do not require the ZCBF condition
to hold in a superlevel set D containing all of C . Instead, we
only require a designer to check that the ZCBF condition holds
in a neighborhood around ∂C defined as follows:

A = {x ∈X : h(x) ∈ [−b, a]} (5)

for some a, b ∈ R>0.

Definition 3 (Type-II ZCBF). Given the set C defined by (2)
for a continuously differentiable function h : X → R, the
function h is called a Type-II ZCBF with respect to the set C
defined in (2) if there exists a function α satisfying Property
1 and a set A defined in (5) such that the following holds:

sup
u∈U

[Lfh(x) + Lgh(x)u+ α(h(x))] ≥ 0,∀x ∈ A (6)

If h is a Type-II ZCBF, then set of control inputs satisfying
(6) is: S (x) = {u ∈ U : if x ∈ A , then (6) holds }.

Theorem 1. Consider the system (1) and the set C ⊂X from
(2) for the continuously differentiable function h : X → R.
Suppose h is a Type-II ZCBF for a given α and A defined by
(5), and ∇h(x) 6= 0 for all x ∈ ∂C .

(i) If there exists a locally Lipschitz continuous u : x ∈
X 7→ S (x), then the closed-loop system is safe with
respect to C .

(ii) In addition to (i), suppose A is compact, α satisfies
Property 2, x(t) ∈ X is bounded for all t ≥ 0, and
let D = C ∪ A be a connected set. If no solution
of the closed-loop system can stay identically in the
set Ω := {x ∈ D \ C : ḣ(x) = 0}, then C is an
asymptotically stable set.

Proof. (i) Since h is a Type-II ZCBF, there exists a control u ∈
U satisfying (6) and so S (x) is non-empty. The closed-loop
dynamics are locally Lipschitz on the open set C ∪ Int(A ),
such that the solution of the closed-loop system is uniquely
defined on I = [0, τ) for some τ ∈ R>0. Since h is a Type-II
ZCBF, ḣ ≥ 0 holds on the boundary of C , which is equivalent
to condition (1) of Brezis’ Theorem (Theorem 1 of [16]). Thus
Brezis’ Theorem ensures x(t) ∈ C for all t ∈ I and the
closed-loop system is safe with respect to C .

(ii) Since h is a Type-II ZCBF with an α satisfying Property
2, and u ∈ S (x), then ḣ ≥ −α(h) ≥ 0 for all for all x ∈ A .
Let a) V = −h if h < −1, b) V = h3 + 2h2 if h ∈ [−1, 0],



and c) V = 0 if h > 0. It is clear that V is continuously
differentiable. Furthermore, V̇ ≤ 0 for all x ∈ D since ḣ ≥ 0
in A and 3h2 + 4h <= 0 for h ∈ [−1, 0]. Also, Brezis’
Theorem ensures the closed-loop system is safe with respect
to D for all t ≥ 0 because the closed-loop system is locally
Lipschitz on X ⊃ D , ḣ ≥ 0 on the boundary of D , and x(t)
is defined for all t ≥ 0.

Since x(t) ∈ X and x(t) is bounded in X , Lemma 4.1
of [17] ensures that x(t) → L+ as t → ∞, where L+ is
the positive limit set of the closed-loop system. Furthermore,
since A is compact and V is continuous, V is lower bounded
on A by V (x) = 0. We see that V (x(t)) is a monotonically
decreasing function of t. We note that since A is compact,
if V (x(t)) reaches zero, it must reach zero in A . Let Ω̄ :=
{x ∈ D : V̇ (x) = 0} (note that V̇ = 0 is equivalent to ḣ = 0
in D \C ), for which L+ is a subset of the largest invariant set
in Ω̄. From the proof of Theorem 4.4 of [17], x(t) approaches
L+ ⊂ Ω̄ as t → ∞. Furthermore, since no solution can stay
identically in Ω, then L+ ∩ Ω = ∅ and so x(t) approaches
Ω̄ \ Ω ⊂ C . Thus C is an attractor [18].

Since A is compact, ‖x‖C , V (x) > 0 when x ∈ D \ C ,
and ‖x‖C , V (x) = 0 when x ∈ C we can always find class-K
functions α, β such that α(‖x‖C ) ≤ V (x) ≤ β(‖x‖C ) for all
x ∈ A . Since V̇ ≤ 0, C is uniformly stable (see e.g. Corollary
1.7.5 of [19]), which in addition to being an attractor implies
that C is asymptotically stable.

Corollary 1. Suppose the conditions of Theorem 1 hold up to
and including (i), α satisfies Property 2, and let D = C ∪A
be a compact, connected set. If no solution of the closed-loop
system can stay identically in the set Ω := {x ∈ D \ C :
ḣ(x) = 0}, then C is an asymptotically stable set.

Proof. Similar to Theorem 1 and omitted for brevity.

The results of Theorem 1 and Corollary 1 generalize the
ZCBF results of [1], and ZCBFs are in fact a subset of Type-
II ZCBFs. The Type-II ZCBF condition (6) is only required
in a neighborhood around ∂C , which allows for a new control
design for handling multiple ZCBFs under input constraints as
will be shown in the following section. Regarding robustness,
the original ZCBFs require h to strictly decrease outside of C
for set asymptotic stability. The Type-II ZCBFs only require h
to be non-increasing outside of C because LaSalle’s principle
is exploited to facilitate the ZCBF design. The condition that
no solution can stay identically in Ω is similar to zero-state
observability [17] and is trivially satisfied if h is a ZCBF from
Definition 2. The proposed method can be applied to passive
systems (see Example 1 and Section IV), for which our results
can be extended to non-compact A and C [18], [20].

Example 1. Consider the mechanical system: q̇ = v, v̇ =
M−1(q)

(
−C(q,v)v − g(q)− Fv + u

)
, where M : M →

Rn×n is the positive-definite inertia matrix, C : M × Rn →
Rn×n is the Coriolis and centrifugal term, g : M → Rn is the
gravity torque, and F ∈ Rn×n is a positive-definite damping
matrix. The state is x(t) = (q(t),v(t)) ∈ R2n. For u = g+µ,
the system is passive with respect to µ and output y = v with
storage function S(x) = 1

2v
TM(q)v such that Ṡ ≤ µTy.

Consider the constraint set Q = {q ∈ M : c(q) ≥ 0} for

the continuously differentiable function c : M → R≥0. We
define the Type-II ZCBF candidate as h(x) = khc(q)−S(x),
wherein ḣ = kh∇cTv − Ṡ ≥ kh∇cTv − µTy ≥ 0 on
any A from (5) with us = g + kh∇c, (µ = kh∇c).
Thus h is a Type-II ZCBF with α(h) = ᾱ(h) if h ≥ 0,
and α(h) = 0 if h < 0, for any class-K function ᾱ. We
satisfy input constraints, assuming g(q) ∈ Int(U ), by defining
kh ≤ maxk∈R>0 k s.t. g(q) + k∇c(q) ∈ U ∀x ∈ A . Such
a k always exists if U is closed and A is compact since
∇c is a continuous function. In [21], we required g 6= u in
D \ C , which is equivalent to ensuring no solution can stay
identically in Ω from Theorem 1 and Corollary 1. In [21]
we provided guarantees of set attractiveness for C , whereas
here we extend those results to asymptotic stability of the safe
set for (non-)compact sets. The approach presented here, i.e.,
using the storage function for constructing a Type-II ZCBF,
can be applied to other systems, including, e.g., the double
integrator.

B. Mixed-Initiative ZCBF Controller

Here we present a control law to implement the Type-
II ZCBFs. We introduce the mixed-intiative controller for a
given nominal control unom : X → U and locally Lipschitz
continuous safety controller us : x ∈X 7→ S (x) ⊂ U as:

u∗ =
(
1− φa(h(x)

)
us + φa(h)unom, (7)

where φa : R→ [0, 1] is defined by:

φa(h) =


1, if h > a

κ(h), if h ∈ [0, a]

0, if h < 0

(8)

where κ : R → [0, 1] is any locally Lipschitz continuous
function that satisfies κ(0) = 0 and κ(a) = 1, for a from (5).
The choice of κ dictates how aggressive the controller is as
the system approaches ∂C . We also see the effect of a, b in (7)
and (6). Ideally, a should be small to reduce the interference
of unom, but if a is too small, the controller may be sensitive
to measurement noise. The larger b is (and hence larger A ),
the larger the region of attraction for C is to handle larger
disturbances. However, a larger A may require more control
authority. Also, (7) is a point-wise convex combination of us
and unom such that if U is convex, then u∗ ∈ U , and thus
input constraints are satisfied in a straightforward fashion, as
shown in the following theorem:

Theorem 2. Consider the system (1) and the set C ⊂ X
from (2) for the continuously differentiable function h : X →
R. If h is a Type-II ZCBF, U is convex, and us : X →
S (x) and unom : X → U are locally Lipschitz continuous,
then u∗(x) ∈ U for all x ∈ X and u∗ is locally Lipschitz
continuous. Furthermore, u∗ in closed-loop with (1) renders
the system safe with respect to C .

Proof. Local Lipschitz continuity of u∗ follows directly from
(7). It is clear that for every x ∈ X , u∗ is a convex
combination of us and unom, which are both elements of
the convex set U . Thus u∗ ∈ U . By construction of u∗,



u∗ = us on the boundary ∂C , and since h is a Type-II ZCBF
then from Theorem 1 the system (1) is safe.

Remark 1. One can construct us for a given Type-II ZCBF
h as: a) if x ∈ A , us = minu∈Rm‖u‖22 s.t. Lfh+ Lghu ≥
−α(h) and b) if x /∈ A , us = 0. If Lgh 6= 0 on A and
∇h(x) and α(h) are locally Lipschitz, then it is clear from
[22] that us is locally Lipschitz on Int(A ) and that when
implemented in u∗ from (7), u∗ is also locally Lipschitz since
whenever x /∈ Int(A ), then u∗ = unom. Furthermore, for
U = {u ∈ Rm : ‖u‖2≤ θ}, θ ∈ R≥0, since Definition 3
ensures there exists a u ∈ U to satisfy (6) and us is the
minimum-norm control to enforce (6), then us ∈ U and the
results from Theorem 2 hold. We note that one must check Ω
to ensure robustness if α is not an extended class-K function.
Alternatively, the approach presented in Example 1 provides
another means of constructing us.

C. Multiple Type-II ZCBFs
Here we address N Type-II ZCBFs, while respecting input

constraints. Consider hi : X → R for i ∈ N := {1, , , , .N}
for ai, bi from (5), αi from (6), and let φai denote (8) for
constraint i. We emphasize that each ai, bi, αi need not be
the same for all i ∈ N and so each Type-II ZCBF hi can
be designed independently. We define the associated sets for
each Type-II ZCBF as follows, for i ∈ N :

C i = {x ∈X : hi(x) ≥ 0}, (9)

A i = {x ∈X : hi(x) ∈ [−bi, ai]}, (10)

sup
u∈U

[Lfhi(x) + Lghi(x)u+ αi(hi(x))] ≥ 0,∀x ∈ A i,

(11)

and S i(x) = {u ∈ U : if x ∈ A i, then (11) holds for hi}.
For multiple Type-II ZCBFs, if A i for each i ∈ N do

not overlap, then whenever the state enters any A i, we can
implement (7) for the associated hi and render C i forward in-
variant. This provides a straightforward way of independently
addressing multiple ZCBFs. In this letter we consider non-
overlapping Type-II ZCBFs, and will address the over-lapping
case in future work. We define the input constraint satisfying,
multiple ZCBF controller as:

u∗(x) =
(
1− φ̄(x)

)
ūs(x) + φ̄(x)unom(x) (12)

where φ̄(x) = φai(hi(x)) if x ∈ A i, i ∈ N and φ̄(x) = 1
otherwise, ūs(x) = usi(x) if x ∈ A i, i ∈ N and ūs(x) = 0
otherwise.

Theorem 3. Given N continuously differentiable functions
hi : X → R, i ∈ N for the system (1), suppose that
unom : X → U is locally Lipschitz continuous. If each hi is
a Type-II ZCBF with associated usi : x ∈X 7→ S i(x), and
if for any j, k ∈ N , j 6= k, A j ∩ A k = ∅, then u∗ defined
by (12) implemented in closed-loop with (1) ensures that:

(i) If x(0) ∈
⋂
i∈N C i, then the system (1) is safe with

respect to each C i, i ∈ N .
(ii) If U is convex, then u∗(x) ∈ U for all x ∈X .

Proof. For any x ∈ X , since for any j, k ∈ N , j 6= k,
A j ∩ A k = ∅ either a) there exists a unique i for which
x ∈ A i or b) x /∈ A i for any i ∈ N . Furthermore, since
each φai(hi) = 1, for hi ≥ ai, φ̄ is well-defined and locally
Lipschitz continuous for all x ∈X . Similarly since each usi
is well-defined on A i, for i ∈ N , ūs(x) is well-defined. Now,
ūs(x) is locally Lipschitz continuous for x ∈ A i, but may
switch when x leaves A i. We note however that whenever
x /∈ A i for any i ∈ N , φ̄ = 0 such that u∗ = unom.
Thus u∗ is well-defined and locally Lipschitz continuous for
all x ∈ X and the proof follows from Theorem 2 for each
i ∈ N .

The proposed control (12) has several advantages over the
QP formulation (4). First, (12) is guaranteed to be a locally
Lipschitz continuous controller that can satisfy multiple Type-
II ZCBFs and input constraints, which to date is not possible
with (4) or similar controllers [14]. Second, since (12) only
implements usi near ∂C i, we know that u = unom when x /∈
∪i∈N A i. Thus we know a priori where the nominal control
will be implemented which is advantageous for completing
tasks, e.g., stabilization. This is not possible with (4), for which
the ZCBF constraint may be active anywhere in C . Third, as
the number of constraints and states grows, the QP (4) be-
comes excessively large and inefficient to implement, whereas
(12) scales well. Finally, (12) can still be implemented with
QP-based controllers (see Remark 1), if optimality is desired,
while retaining all the previously mentioned advantages over
(4).

IV. APPLICATION TO UNICYCLE DYNAMICS

Consider the unicycle dynamics defined by:

ẋ1 = up cos(x3), ẋ2 = up sin(x3), ẋ3 = ud (13)

where z = (x1, x2) ∈ R2 is the position on the plane, up,
ud ∈ R are the speed and rate of rotation, respectively, x3 ∈
S1 is the heading angle, x = (x1, x2, x3), X = R×R× S1,
and u = (up, ud) is the control input.

Consider the following ellipsoid constraints:

ci(x) = γi(∆
2
i −

1

2
‖ei‖2Pi

) (14)

for some γi ∈ {−1, 1}, ∆i ∈ R≥0, a symmetric, positive-
definite Pi ∈ R2×2, ei = z − zri for the ellipsoid center
zri ∈ R2, and i ∈ N . The sets that can be defined by
(14) include ellipsoidal obstacles to be avoided as well as
ellipsoidal regions the unicycle must stay inside. We propose
the following Type-II ZCBFs:

hi(x) = ci(x), i ∈ N (15)

with safe sets (9) for i ∈ N . We note that for γ = −1, C i is
non-compact with compact A i. Let usi = (uspi , usdi ) for:

uspi =

−kpiγicie
T
i Pi

[
cos(x3) sin(x3)

]T
, if ci ≥ 0

kpiγicie
T
i Pi

[
cos(x3) sin(x3)

]T
, if ci < 0

(16a)

usdi = −kdieTi Pi
[
− sin(x3) cos(x3)

]T
(16b)



where kpi , kdi ∈ R>0 for i ∈ N . We note that (16) was
motivated by the passivity-based control from [20]. Let:

U = {u ∈ R2 : |up|≤ ūp, |ud|≤ ūd} (17)

for ūp, ūd ∈ R>0.

Proposition 1. Consider the system (13) and the constraint
sets C i from (9) with hi from (15) and ci(x) from (14) for i ∈
N . Suppose that for each given A i from (10), A i ∩A j = ∅
for all j ∈ N \ {i}. Suppose unom : X → U is locally
Lipschitz continuous. Consider the system in closed-loop with
the control law (12), (16). Then:

(i) If x(0) ∈ ∩i∈N C i, then the closed-loop system is safe
with respect to each C i.

(ii) If each A i excludes the point z = zri for i ∈ N and
either a) there exists an i ∈ N for which γi = 1, or
b) unom is such that x(t) is bounded and well-defined
for all t ≥ 0, then each C i is asymptotically stable for
i ∈ N .

(iii) If U is defined by (17) and kpi , kdi satisfy:

kpi ≤
ūp

ηi max{ai, bi}
, kdi ≤

ūd
ηi
,∀i ∈ N (18)

where ηi := maxx∈A i‖Piei‖, then u∗ ∈ U for all x ∈
∩i∈N (A i ∪ C i).

Proof. (i) First, for all x ∈ C i, ci ≥ 0. We
differentiate hi for ci ≥ 0 and hi ∈ [0, a]:
ḣi = − 1

2γie
T
i Pi

[
cos(x3) sin(x3)

]T
uspi =

1
2kpiγ

2
i ci

(
eTi Pi

[
cos(x3) sin(x3)

]T)2

≥ 0. We then
differentiate hi for hi ∈ [−b, 0] for which ci ≤ 0, which

yields ḣi = −kγ2
i ci

(
eTPi

[
cos(x3) sin(x3)

]T)2

≥ 0.

Since ḣi ≥ 0 on A i, we choose α(h) = ᾱ(h) if h ≥
0, α(h) = 0 if h < 0, for any class-K function ᾱ, such that
Properties 1 and 2 are satisfied and ḣi ≥ −α(hi) in A . Thus
it is clear that (6) holds, each hi is a Type-II ZCBF, and usi
is locally Lipschitz continuous. Since each A i has an empty
intersection with A j for all j ∈ N \ {i} and Pi is positive
definite such that ∇hi 6= 0 when hi = 0, safety of each C i

follows from Theorem 3.
(ii) If a) holds, then there is a C i, i ∈ N that is a compact

forward invariant set such that x(t) ∈ C i is bounded for all
t ≥ 0. If b) holds, x(t) is bounded for all t ≥ 0 as stated.
Thus for either case a) or b), x(t) is bounded and every A i

is compact for i ∈ N because each Pi is positive-definite.
Note that this holds regardless if γi is 1 or −1. Let D i =
C i ∪ A i, which is a connected (possibly non-compact) set,
for each i ∈ N . Now we investigate the case when ḣi = 0.
Let Ωi := {x ∈ D i \ C i : ḣi(x) = 0}, and ḣi = 0 when 1)
ci = 0, 2) ei = 0 or 3) eTi Pi

[
cos(x3) sin(x3)

]T
= 0. In

case 1), ci = 0 only occurs when x ∈ C i and so x /∈ Ωi. In
case 2), ei = 0 does not occur in A i by assumption and so
the associated x for which ei = 0 is not in Ωi.

In case 3) we can exclude the case when ei = 0 since this is
considered in case 2). Let ζi = Piei, for which ζi = (ζi1 , ζi2).
We re-write case 3) as ζi1 cos(x3) + ζi2 sin(x3) = 0. First,
we claim that ẋ1 = ẋ2 = 0 and ẋ3 6= 0 in Ωi. Since

ζi1 cos(x3) + ζi2 sin(x3) = 0, it is clear from (13), (16) that
ẋ1 = ẋ2 = 0. Now substitute ẋ3 = 0 into (13), which yields:
usdi = −kdi(−ζii sin(x3) + ζi2 cos(x3)) = 0. For ẋ3 = 0,
we need −ζii sin(x3) + ζi2 cos(x3) = 0. However apart from
the case when ei = 0, both ζi1 cos(x3) + ζi2 sin(x3) = 0 and
−ζii sin(x3) + ζi2 cos(x3) = 0 cannot simultaneously be true
for any x3 ∈ S1 (proof by contradiction and noting that 6∃ x3

s.t. sin(x3) = cos(x3) = 0). Thus ẋ3 6= 0 in Ωi. Suppose
that a solution can stay identically in Ωi, i.e., if x(τ1) ∈ Ωi

for some τ1 ∈ R≥0, then x(t) ∈ Ωi for all t ≥ τ1. For
x to stay identically in Ωi, we require that ḣ = 0 for all
t ≥ τ1. Since ẋ 6= 0 in Ωi, the only way ḣ = 0 holds
for all t ≥ τ1 is if d

dt [ζi1 cos(x3) + ζi2 sin(x3)] = 0 for
all t ≥ τ1. Taking the derivative of ζi1 cos(x3) + ζi2 sin(x3)
and substituting ζ̇i1 = ζ̇i2 = ẋ1 = ẋ2 = 0, yields:
(−ζi1 sin(x3) + ζi2 cos(x3))ẋ3 = 0. Since ẋ3 6= 0 and there
exists no x3 ∈ S1 such that −ζi1 sin(x3)+ζi2 cos(x3) = 0 and
ζi1 cos(x3) + ζi2 sin(x3) = 0 hold simultaneously, there must
exist some τ2 > τ1 such that x(τ2) /∈ Ω. Thus no solution can
stay identically in Ωi, and asymptotic stability of each C i for
i ∈ N follows from Theorem 1.

(iii) Since A i is compact, ηi is well defined, and |ci|≤
max{ai, bi} for all x ∈ A i, i ∈ N . It is clear that if (18)
holds, then usi ∈ U for all x ∈ A i, for all i ∈ N . Since U
is convex, then the proof follows from Theorem 3.

We have presented several Type-II ZCBFs from Example 1
and Proposition 1, which ensure safety and asymptotic stability
to the safe set, but are not ZCBFs as per Definition 2. The
proposed formulation generalizes the concept of ZCBFs, while
retaining the desired properties of safety and robustness, yet
also is able to handle multiple (Type-II) ZCBFs and input
constraints simultaneously.

V. NUMERICAL RESULTS

Here the goal is for a unicycle to navigate an obstacle-rich
environment to reach x = 0. There are 12 obstacles plus a
workspace boundary yielding N = 13 ellipsoidal constraints
from (14) (see Figure 1). We define each Type-II ZCBF as
(15) with C i and A i defined respectively by (9) and (10). The
nominal controller is the stabilizing controller [23], unom =
(unomp , unomd

), unomp = −krr cos(α),unomd
= −kaα −

kr sin(α) cos(α)(α−θ)
α where r =

√
x2

1 + x2
2, θ = arctan(x2

x1
),

α = x3 − θ, and kr, ka ∈ R>0. To ensure unom ∈ U (U
defined by (17)) with ūp = ūd = 2.0, kr, ka are chosen such
that kr ≤ ūp

r(0) , ka ≤ ūd−kr1.5π
2π . For each C i, usi is defined

by (16) with gains satisfying (18) such that usi ∈ U and
κ(hi) = − 2

a3i
h3
i + 3

a2i
h2
i .

Figure 1 shows the implementation of both the proposed
control and the nominal control for various initial conditions.
As expected, the trajectories associated with the proposed
control (blue curves) avoid all obstacle regions, while con-
verging to the origin. On the other hand, for the same initial
conditions, the nominal control alone runs the unicycle through
obstacle regions. To demonstrate the asymptotic stability, ini-
tial conditions were placed inside an obstacle region (zoomed
part of Figure 1). For this case, we implemented the safety
controller alone (unom = 0), for which the unicycle is pushed



Fig. 1: Simulation results for the proposed (blue solid curves)
and nominal (red dashed curves) control. ∂C i, ∂A i (w.r.t hi =
ai), and ∂A i (w.r.t hi = −bi) are depicted by solid black,
dashed green, and dash-dotted orange curves, resp. The initial
and final configurations are depicted by black and sky-blue
arrows, resp.

Fig. 2: Input trajectory of proposed control. The blue solid
curves, green dashed curves, and solid black lines depict up(t),
ud(t), and the boundaries of U , resp.

(backwards) outside the obstacle region. Figure 2 shows the
control input trajectories for the proposed control, which
satisfy the desired input constraint as dictated by Theorem
3.

VI. CONCLUSION

We proposed a Type-II ZCBF for ensuring forward invari-
ance and robustness of a constraint set, which is more general
than the original ZCBF formulation. We also proposed a new
control design that accommodates multiple Type-II ZCBFs
with non-intersecting constraint set boundaries, while respect-
ing input constraints. The proposed approach was applied to
the classical unicycle system. Future work will address non-
intersecting constraint set boundaries.
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