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Abstract—Platooning has been exploited as a method
for vehicles to minimize energy consumption. In this article,
we present a constraint-driven optimal control framework
that yields emergent platooning behavior for connected
and automated vehicles operating in an open transporta-
tion system. Our approach combines recent insights in
constraint-driven optimal control with the physical aerody-
namic interactions between vehicles in a highway setting.
The result is a set of equations that describes when pla-
tooning is an appropriate strategy, as well as a descriptive
optimal control law that yields emergent platooning behav-
ior. Finally, we demonstrate these properties in simulation.

Index Terms— complex systems, intelligent vehicles,
multi-agent systems

[. INTRODUCTION

ULTI-AGENT systems have attracted considerable at-

tention in many applications due to their natural par-
allelization, general adaptability, and ability to self-organize
[1]. This has proven useful in many applications of complex
systems [2], such as emerging mobility systems [3], construc-
tion [4], and surveillance [S]. A recent push in constraint-
driven control has brought the idea of long-duration autonomy
to the forefront of multi-agent systems research [6]. For
long-duration autonomy tasks, robots are left to interact with
their environment on timescales significantly longer than what
can be achieved in a laboratory setting. These approaches
necessarily emphasize safe energy-minimizing control policies
for the agents, whose behaviors are driven by interactions
with the environment. Several applications of constraint-driven
multi-agent control have been explored recently [7]-[9].

In this article, we propose a constraint-driven approach to
generate emergent platooning behavior in a fleet of connected
and automated vehicles (CAVs) operating in highway condi-
tions. Platooning behavior has been of particular interest due to
the high potential for energy savings over long distances. Early
results by Athans [10] laid the groundwork for more recent
results for highway driving [11], cooperative adaptive cruise
control [12], and mixed-traffic platooning [13]. We believe that
platoon formation for long-distance highway travel is a natural
fit for constraint-driven control. There are several approaches
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to optimal platoon formation in the literature. In one example,
the authors sought to optimally position differential drive
robots in an echelon formation such that energy lost to drag
was minimized [14]. Reynolds’ flocking rules were applied
to highway vehicles in [15], which sought to minimize en-
ergy consumption while maintaining a desired speed. Energy-
efficient flocking was also proposed for a system of flying
robots in R? [16]. Previous approaches either construct a large
multi-objective optimization problem to determine the next
control action, or they apply sub-optimal consensus algorithms
to reach a drafting configuration. A recent review of these
techniques is presented in [17].

Our approach, in contrast to existing work, is constraint-
driven. In our framework, agents seek to expend as little energy
as possible subject to a set of task and safety constraints.
This set-theoretic approach to control is interpretable, i.e., the
cause of an agent’s action can be deduced by examining which
constraints become active during operation. By examining
the conditions that lead to an empty feasible space, our
framework also addresses when a vehicle should break away
to form a new platoon or overtake the preceding vehicle. Our
approach is totally decentralized, and thus it is well-suited to
“open systems,” where agents may suddenly enter or leave.
We allow vehicles to arbitrarily enter or exit the system as
long as their initial state is feasible and no other vehicles’
safety constraint is violated. This also allows vehicles to keep
their final destination and arrival time private, which has the
secondary benefit of guaranteeing privacy for all vehicles and
their passengers.

The remainder of the article is organized as follows. In
Section II, we formulate the platoon formation problem, and
in Section III, we present our decentralized constraint-driven
control algorithm. In Section IV, we validate our results by
simulating 60 vehicles, where vehicles randomly enter and
leave the road network while the total number of vehicles is
not known a priori. Finally, we draw conclusions and propose
some directions for future research in Section V.

II. PROBLEM FORMULATION

We consider a set of CAVs traveling in a single-lane
roadway. In particular, we consider an open transportation
system that contains N(¢) € N CAVs indexed by the set
N(t) = {0,1,2,...,N(t) — 1}, where t € R is time and
vehicle ¢ € N(t) \ {0} is in the aerodynamic wake of
vehicle 4 — 1. We denote the state of each CAV i € N(¢)



by x;(t) = [pi(t),vi(t)]T, where p;(t),v;(t) € R are the
longitudinal position and speed of vehicle ¢ on its current path
respectively. Each vehicle obeys the second-order dynamics

pi(t) = vi(t),
0i(t) = ai(t) = ui(t) — F; (vi(t), pi(t)), (D

where a;(t) is acceleration, u;(t) is forward force imparted
through the tires, F;(v;(t),p;(t)) is the aerodynamic drag
force acting on the vehicle, and p; () is the relative position of
CAV 14, which we formally define later. The objective of each
vehicle is to minimize the effect of the external drag force,
ie.,

Tl p0) = SF (), m0). @
By minimizing the external drag force of each vehicle, we
have direct benefits in energy consumption. Each vehicle i is
subject to state and control constraints, i.e.,

0< VUmin S Uz(t) S Umax (3)
Amin S a; (t) S Gmax (4)

where (3) is the lower and upper speed limit and (4) is the
maximum safe deceleration and acceleration.

We index the vehicles in descending order, i.e., p;(t) <
p;(t) for all i > j, 4,5 € N(t). Note, when a vehicle enters
or exits the system, the CAVs can communicate to re-sequence
themselves. To simplify our notation, we introduce the relative
state coordinates.

Definition 1. For each vehicle i € N (t), the relative states
and control action are,

N 210)) if¢=0,
pi(t) = {pi(t) —pia(t) ifi>0, ©
N B ’Ui(t) if 1 = 0)
= {'Ui(t) —wi—i(t) if i >0, ©
L0 if 1 =0,
a;(t) = {i}i(t) —0;_1(t) ifi>0. @

Note that in this coordinate system p;(t) < 0 for i > 0.
While our approach does not impose a reference frame, it
may be practical for a physical vehicle to measure (5) - (6)
directly, i.e., by using a proximity sensor. In that case, it may
be advantageous for each vehicle to consider its current state
as the center of a moving reference frame.

To guarantee safety we impose the following safety con-
straint,

pi(t) +6 <0, ieN\{0}, ®)
where § € Ry is the minimum safe bumper-to-bumper
following distance. However, naively satisfying (8) may still
lead to unsafe scenarios and collisions. Consider the case when
0;(t) is very large and vehicle i — 1 applies a;—1(t) = amin-
To guarantee vehicle ¢ never ends up in an unsafe scenario,
we impose an augmented safety constraint that guarantees

sufficient stopping distance,

pi(t)+6 if 9;(t) <0,
63 (vi, P, 00) = § Bilt) + 3+ 0u(t) - (L) (o)
RS (1) > 0,

for i € N\ {0}. The case when ©;(¢t) > 0 in (9) is derived
for CAV ¢ by assuming ¢ — 1 applies the maximum braking
force until v;_1(t) = vUmin at some time ¢; and cruises with
a;—1(t) = 0, for ¢ > t;. Then, (9) allows CAV i sufficient
stopping distance to brake at a,,;,, and maintain p;(¢)+0 = 0.
Note that the quadratic ;(¢) term is zero when ¢;(¢) = 0 and
increases up to a maximum at 9;(t) = Umax — Umin. Thus,
satisfaction of (9) always implies (8). .

Finally, each vehicle i € N (t) has a terminal time tf , which
corresponds to the time that vehicle ¢ will exit the system, e.g.,
take an exit off the highway. The value of t{ is known only
to vehicle ¢ and is not shared with any other vehicle. This
also ensures the privacy of vehicle ¢’s destination. To ensure
vehicle 7 reaches its destination by time tlf , we impose an
arrival deadline constraint,

(i = pi(1) = (] =) wilt) <0,
where S; is the position that ¢ will exit the system, e.g., via
an off-ramp. The arrival deadline constraint (10) ensures that
vehicle ¢ can reach its final destination by cruising at a constant
speed.

Our objective in this article is the formation of platoons for
long-duration autonomy, e.g., long-distance highway condi-
tions. Therefore, once vehicle ¢ joins a platoon, i.e., ©; = 0 and
pi + 9 = 0, other techniques, such as control barrier functions
[18] and consensus approaches [19], can be used to maintain
the platoon. To minimize (2) for our long-duration autonomy
task, we impose the following assumptions.

(10)

Assumption 1. We neglect the effects of wind, and assume the
air has constant properties. For vehicle i € N\ {0} the drag
force is zero at F; (0, p;(t)), increasing in v;(t), and decreasing
in p; (t). For vehicle i = 0 the drag force is zero at F; (0, p;(t)),
increasing in v;(t), and constant in p;(t).

Assumption 1 is the crux of our analysis, as it determines the
signs of the derivatives of the cost function. This assumption
is not restrictive, and it can be relaxed if the partial derivatives
of F; can be calculated or measured. Different forms of
F; will result in different vehicle behavior, and this can be
interpreted as a data-driven forcing function. For physical
systems containing wind, eddies, and other turbulent effects,
F; may be thought of as an average or filtered drag force;
sensing the average aerodynamic forces between vehicles in
real time is an active area of ongoing research [20].

Assumption 2. The drag acting on vehicle ¢ is only a function
of the states of vehicles ¢ and i — 1 for ¢ € A"\ {0}, and there
are no external noise or disturbances.

Assumption 3. Communication between CAVs occurs instan-
taneously and noiselessly.

Assumptions 2 and 3 idealize the environment in which the
vehicles are operating to simplify the analysis. Assumption 2



may be relaxed by expanding the drag model to include a time-
varying component and additional interaction forces. Likewise,
Assumption 3 can be relaxed by including delays, noise, and
packet loss in a communication model. If the disturbances
and delays are bounded, then Assumption 3 can be relaxed by
shrinking the set of feasible actions using standard techniques,
e.g., control barrier functions and differential inclusions [21].
However, we believe this adds significant analytical complex-
ity without changing the fundamental results of our analysis.

Assumption 4. Each vehicle i € N(t) is equipped with a low-
level controller that can track the desired acceleration, a;(t),
by controlling the forward force applied to the CAV through

Assumption 4 allows us to derive the kinematic motion
of each CAV without directly considering the applied drag
force. This enables us to generate an analytic closed-form
optimal trajectory for each vehicle without the numerical
challenges associated with boundary-layer fluid dynamics.
This assumption can be relaxed by considering robust tracking,
e.g., control barrier functions, or online learning to estimate
and compensate for the aerodynamic interactions.

II1. OPTIMAL CONTROL WITH GRADIENT FLOW

We employ gradient flow to generate the control input for
each vehicle. This a gradient-based optimization technique,
wherein each vehicle’s control action is a gradient descent step.
This technique has been used successfully to control multi-
agent constraint-driven systems [22], [23]. Our motivation for
gradient flow is twofold: first, planning a trajectory through a
fluid boundary layer in real time requires significantly more
computational power than what is available to a CAV. Second,
the exit time of the preceding vehicle is an unknown quantity,
and so each vehicle cannot quantify the trade-off between
accelerating to draft the preceding vehicle versus the energy
savings of drafting. Thus, we take a conservative approach
where no vehicle will increase its energy consumption while
traveling on the highway. This approach yields conditions for
when platooning is an appropriate strategy in addition to how
the platoon should be formed.

As a first step, we define the set of safe control inputs
and show that it satisfies recursive feasibility [24]. For the
remainder of the analysis, we omit the explicit dependence of
state variables on ¢ when no ambiguity arises.

Definition 2. For each vehicle ¢ € A\ {0}, the set of safe
control inputs is

Af(vhﬁh@i) = {CL eR : Amin S a S Amax;

Vi = Umax = a <0
Vi = Umin = a >0
Zgl <0}, (D
where g; is the rear-end safety constraint (9), and %gf <0
can be achieved through the control action, a;(t). The safe set
ensures the state, control, and safety constraints of vehicle @
are always satisfied.

9i=0=

Theorem 1. (Recursive Feasibility) For any vehicle ¢ € A\
{0}, if the variables p;(t), 0;(t),v;(t) satisfy (3) and (9) at
time ¢; € R, then the set A} is non-empty for all ¢ > ¢;.

Proof. To prove Theorem 1, we show that a feasible control
input always exists in the worst case scenario for vehicle 3.
Let 9;(to) > 0 and a;_1(t) = amin for t € [to, 1) such that
0;—1(t1) = Umin and a;—1(t) = 0 for t > t;. We take the time
derivative of (9), which yields

i(t) + 0i(t) - (-

amn+®@@ggﬁ@)

Gmin Amin
i (t) a;(t
+(7() U). (12)
Gmin

Over the interval [tg, 1), v;(t) > Umin, and thus a;(t) = amin

is a feasible control action. This implies that a;(t) = 0, and
evaluating (12) implies

Bi(t) +ot)(—1) =0, (13)

i.e., (12) is identically zero, which implies that (9) is constant.
Next, consider the interval [tq,t2) such that a;(t) = amin for
t € [t1,t2) and v;(t) = Vpmin for t > to. Thus, a;(t) = amin is
a feasible control action, and evaluating (12) implies

03 (t) — 0i(t) + vmin — vi(t) + 0i(t) = 20;(¢) — 204(¢)

=0, (14)

which is identically zero over the entire interval. This implies
that (9) is constant. Finally, for ¢ > t5, a;(t) = 0 is a feasible
control action, which implies that d,(t) = 0, 9;(¢) = 0, and
(9) is constant. Therefore, (9) is constant for all £ > t; in the
worst-case scenario and A$ # @ for all t > ¢;. O

Next, before deriving our energy-minimizing constraint, we
present the unique equilibrium point that minimizes the energy
consumption of each CAV ¢ € N (¢). For the lead vehicle, i.e.,
i = 0, the drag force is minimized at vy = 0 and increasing
in vg by Assumption 1. It is trivial to show that the lead
vehicle’s energy consumption is minimized at vo(t) = Upin-
For a following vehicle, i.e., ¢ > 0, the Karush-Kuhn-Tucker
(KKT) conditions yield

L= F2 + HU(Umin - Ui) + ,Up(ﬁi + 5)7 (15)
L
OL _opp, — o —o, (16)
8117;
oL
=2FF;+uP? =0 17
By pT s (17)
L
%:vmin_vizoa (]8)
oL
S pi46=0, 19
our P + (19)

where the subscripts v, p refer to the partial derivative of F'
with respect to v;(t) and p;(t), respectively, and p;(t)+6 =0
is implied by (9) when v;(t) = vpin. Given Assumption 1,
we can determine the signs of the partial derivatives, which
implies

Vi = Umin, ﬁz = _57 (20)
oF oF

Y o N S § S} 1)
ov; Op;



Thus, CAV ¢ > 0 minimizes its energy consumption by
following CAV i—1 at speed v, and distance p;(t) = J. Note
that, as Fj is strictly increasing in v; and strictly decreasing
in p;, thus the platooning formation corresponds to the unique
minimum-energy configuration of the N CAVs.

Finally, to minimize the drag force imposed on each vehicle,
we implement gradient flow by requiring the time derivative
of the cost functional (2) to be negative semidefinite for each
vehicle i € N (t). For vehicle ¢ = 0 this implies

_ OF (vi(t), pi(t))

J; = For (5 a;(t) <0, (22)
which, by Assumption 1, implies that
a;(t) <0 fori=0. (23)
For vehicle ¢ > 0, Assumption 1 implies
.
Expanding (24) yields
FF,a;(t)+ F F;0;(t) <0, (25)

which can be solved for a;(t) using the signs of the partial
derivatives imposed by Assumption 1,

a; (t) S Ej@z(t)

v

(26)

Thus, in order for CAV ¢ to form a platoon with ¢ — 1, we
must have 0;(¢) > 0. Intuitively this makes sense, if ;(t) < 0
then p;(t) is decreasing (increasing the drag force) and ¢ must
decelerate to achieve an equivalent decrease in the drag force.
Likewise, 0;(¢) > 0 implies that p;(¢) is increasing (decreasing
the drag force) and ¢ may accelerate without increasing the
overall drag force.

Note that, consistent with multi-agent control barrier func-
tions [23], it is possible that imposing (26) and the set of safe
control inputs (Definition 2) on each vehicle admits no feasible
solutions. In particular, this occurs when

|

7, (27)

Vi (t) = VUmin and

(vmin - ’Uifl(t)) <0,
Jo

az(t) § |F,7p‘r[}z(t) < Omin- (28)
Similar conditions arise when imposing the deadline constraint
on CAV 1. Taking the time derivative of (10) yields,

— U; (t) + v; (t) — a; (t) < 0, (29)

which implies ¢ must apply a;(t) > 0 when (10) is active. It
is possible that vehicle 7 cannot jointly satisfy the deadline,
safety, and drag force constraints. In particular, if either of

S; — pi(t) — (t{ — t) Ui(t> =0 and Ej@l(t) <0, 30)

Si = pi(t) = (¢ —t)vi(t) = 0 and g} = 0,8;(t) >0, (31)

is satisfied, then no control action can guarantee drag mini-
mization, safety, and arrival time simultaneously. Thus, if CAV
i > 0 satisfies (27) - (30), it must fall back and become the
lead CAV of its own platoon. CAV ¢ will re-initialize itself as

index 0 of a new platoon, and all following CAVs j > ¢ will be
re-initialized as j — 7. This platoon will operate independently
as long as any of (27) - (30) are satisfied for the vehicle
physically ahead of this CAV on the road. The same test may
be applied to determine when two platoons ought to merge
into a single platoon. Similarly, if (31) is satisfied, then CAV
1 is unable to achieve its deadline without violating rear-end
safety. This affords at least 2 possibilities for CAV ¢, 1) move
into a passing lane to overtake the preceding vehicle, or 2)
relax the deadline constraint until ¢ becomes the lead CAV of
a platoon. Resolving this conflict depends on the geometry of
the roadway and application of interest and is beyond the scope
of this paper. Thus, (27) - (31) determine whether platooning
is an appropriate strategy for CAV 1.

In addition to the above challenges that arise from the task
constraint, selecting an energy-minimizing control law that
satisfies (11) and (26) is, in general, insufficient to generate
emergent platooning behavior. This fact is demonstrated in
[25], which shows that only minimizing energy consumption is
not a stable configuration for selfish energy-minimizing agents.
As an illustrative example, consider the case where the initial
states of the vehicles are randomly selected from the set of
feasible states such that each CAV i € N'\ {0} is in the wake
of vehicle ¢ — 1. This implies a transient period for i, where
v;—1(t) > Umin. To generate a platoon, we would like to have
CAV i achieve and maintain 9;(t) > 0. We can consider two
cases, for the first case let ¥; (t?) > 0, then ¢ can maximize
its energy savings by selecting a;(t) = amin. However, this
may lead to a situation where 9;(¢) = 0 and p;(¢t) + 6 < 0,
i.e., the vehicles do not form a platoon. Thus, vehicle ¢ ought
to apply a small, feasible deceleration such that 0;(¢) > 0 is
maintained. In the second case let f)i(t?) < 0, then i ought
to decelerate as little as possible, i.e., (26) should be a strict
equality. Then, if CAV ¢ — 1 applies a large deceleration, it
is possible that ©;(t) > 0 in the future, and ¢ will be able to
join the platoon. The solution of the following optimization
problem can accomplish this behavior.

Problem 1. For each CAV i € N '\ {0}, such that (27) and
(28) are not satisfied, generate the control action that solves

1
g 2"

subject to:

(Si —pilt)) —wi(t) (] —t) =0 = a;(t) > 0.

Note that each vehicle must solve Problem 1 to determine
its control input at each time step. In this case, the feasible
region is compact, and the solution can be derived offline
by determining the upper and lower bound on the feasible
space of Problem 1. The optimal solution is the feasible value
closest to 0. Next, we present our main results that characterize
sufficient conditions for platoon formation.

Lemma 1. For any vehicle ¢ € NV/(¢) at any time ¢ € R, the
control action that solves Problem 1 is upper bounded by 0.



Proof. For vehicle i = 0, (23) implies a;(t) < 0.

For vehicle ¢ > 0, let a; = sup Af} let ap = %ﬁi(t),
and let & = min{ay, s}, i.e., « is the smallest upper bound
of Problem 1’s feasible space. For the case when o < 0, the
solution of Problem 1 is upper bounded by 0. For the case
when « > 0 the lower bound of Problem 1 is

Gmin if U; t Umin
5{0 (t) #

if V; (t) = Umins
thus 3 < 0 < . This implies that any control action a;(t) > 0
incurs a higher cost than a;(¢) = 0, which is a feasible action
in this case. Thus, the solution of Problem 1 is always upper
bounded by zero. O

(32)

Theorem 2. For two CAVs i,i—1 € N (¢) the initial condition
v;i(t?) > v;_1(¢?) guarantees that i and i — 1 will form a
platoon as long as ¢; and t{_l are sufficiently large and the
deadline constraint for ¢ does not become active.

Proof. First, consider the case when the rear-end safety con-
straint does not become active. Assume ¥;(f1) < 0 at some
t; > tY. Continuity of ©;(t) implies that there is at least
one non-zero interval of time [to, 1] such that a;(¢) < 0 and
0;(t) > 0 for ¢ € [tg,t1]. Over any such interval, ;(t) > 0
implies that a;(t) = 0 is a feasible control action. Furthermore,
Lemma 1 implies a;_1(¢) < 0, which implies that d;(t) > 0.
This contradicts d;(t) < 0, therefore no such interval can exist
and ©;(t) > 0 for all t > t9 as long as the safety constraint
does not become active.

Next, consider the case when only the rear-end safety
constraint is active, i.e., (9) is strictly equal to zero. In this
case, solving (9) for 9;(¢) yields

ﬁl(t) = U; (t) — Umin — |:(’Ul(t) — Umin)2

S

o+ 2l uminl (5:(1) +6) |,

where p;(t) + ¢ < 0, and thus (33) implies 9;(t) > 0 when
pi(t) +d < 0. Thus, 0;(¢) is positive and decreasing and
only reaches zero when p;(t) + 6 = 0, i.e., platoon formation
occurs. O]

(33)

Theorem 2 is a sufficient condition for platooning, and
can be recursively applied at any time ¢y to guarantee the
convergence of any sequence of vehicles satisfying v;(tg) <
vir1(to) < -+ < vix(to) for & € N. We also note that
platooning may occur when v;(tg) > v;+1(to), in particular
if vehicle 7 decelerates sufficiently fast such that v;(t1) <
v;4+1(t1) for some t; > to. In this case, Theorem 1 can be
applied at ¢t = ¢; to guarantee platoon formation.

Finally, the behavior of the front CAV ¢ = 0 depends on the
context of the platooning problem. The lead CAV may select
any trajectory satisfying a;(¢) < 0 and v;(t) > vpin under our
framework. For example, following u;(t) = 0 could minimize
transient energy operation while the drag force slows the
vehicle down to the minimum speed. Alternatively, to facilitate
platoon formation, it may be practical to select a;(t) = amin
to reach the minimum speed as fast as possible. We apply the
latter approach in the next sections to demonstrate emergent
platoon formation in a simulated and physical experiment.

[V. SIMULATION RESULTS

To validate our proposed control approach, we simulated
a road 1750 m long with 3 on and off ramps. The on-ramps
were located at 100, 600, and 1100 m, and the off-ramps were
at 500, 1000, and 1500 m. We simulated the flow of traffic
over 140 seconds, and we introduced vehicles to the system
with a random delay T' ~ U (0.5, 1.5) seconds. For each CAV
i, we selected its initial and exit positions from a uniform
distribution over the four possible locations, i.e., the three on-
ramps and an initial position of of p;(t) = 0. Similarly, i
may exit the highway at a distance of p; (t{ ) = 1750 or at any
off-ramp beyond p; (t?). After selecting its initial position, we
discarded any CAV that could not simultaneously satisty (3),
(4), and (9) for itself and the vehicle behind it. This approach
resulted in NV = 136 vehicles entering the highway over 140
seconds, yielding an average inflow of 3500 vehicles per hour.

We selected the arrival time for each vehicle after deter-
mining its feasible initial state. For each CAV i, we drew the
arrival time t{ from the uniform distribution,

o Nu(Si —pit) S —pi(t?)>’
' vi(t7)
which guaranteed satisfaction of the deadline constraint (10)
at t9. In the case that CAV i later was unable to achieve
its deadline, i.e., (30) or (31) became active, we relaxed the
deadline constraint. In particular, when ¢ satisfied (30) or (31)
we removed the deadline constraint from Problem 1 for . If
1 later became the leader of a platoon, we relaxed the drag
minimization constraint (26) and required ¢ to accelerate until
the deadline constraint (10) was satisfied. This achieved a bal-
ance between energy-minimization and deadline satisfaction
while guaranteeing safety, and it circumvented the additional
challenges of overtaking in a multi-lane highway environment.
The vehicle trajectories are presented in Figs. 1 and 2,
which show the dynamic formation and break-up of platoons
as vehicles enter and exit the system over two 60 second
windows of the simulation. Figs. 3 show a zoomed in region
of Fig. 1 where vehicles entering at the 100 m on-ramp form
a platoon at approximately 175 m. For further supplemental
diagrams, videos of an experimental demonstration, and an
in-depth discussion of the simulation see: https://sites.google.
com/view/ud-ids-lab/cdp.

(34)

Umin

V. CONCLUSION

In this article, we derived rigorously a decentralized control
law to generate emergent platooning behavior in an open trans-
portation network. We derived the conditions that determine
when platooning is an appropriate strategy, and proved that
our proposed control law satisfies recursive feasibility. We
presented a sufficient condition that guarantees platooning,
and demonstrated the performance of our descriptive control
law in a simulation of an open transportation network, i.e.,
where vehicles can freely enter and exit. Future work includes
extending our analysis to RZ?, with applications to bicycle-
riding agents, off-road vehicles, and multi-lane overtaking.
Finally, extensive simulations on larger-scale systems would be
of value, in addition to experiments that capture the magnitude
of noise and disturbances.
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Fig. 1.
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Position vs time plot for the N = 136 CAVs over a 60 second

window of steady operation. Squares correspond to vehicles entering
and exiting the roadway; dash-dot lines correspond to on-ramps and
dotted lines correspond to off-ramps.
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Fig. 2. Position vs time plot for the N = 136 CAVs over the initial 60
second transient. Squares correspond to vehicles entering and exiting
the roadway; dash-dot lines correspond to on-ramps and dotted lines
correspond to off-ramps.
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