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Abstract— This work proposes a novel risk-perception-aware
(RPA) control design using non-rational perception of risks
associated with uncertain dynamic spatial costs. We use Cu-
mulative Prospect Theory (CPT) to model the risk perception
of a decision maker (DM) and use it to construct perceived
risk functions that transform the uncertain dynamic spatial
cost to deterministic perceived risks of a DM. These risks
are then used to build safety sets which can represent risk-
averse to risk-insensitive perception. We define a notions of
“inclusiveness” and “versatility” based on safety sets and use
it to compare with other models such as Conditional value at
Risk (CVaR) and Expected risk (ER). We theoretically prove
that CPT is the most “inclusive” and “versatile” model of the
lot in the context of risk-perception-aware controls. We further
use the perceived risk function along with ideas from control
barrier functions (CBF) to construct a class of perceived risk
CBFs. For a class of truncated-Gaussian costs, we find sufficient
geometric conditions for the validity of this class of CBFs, thus
guaranteeing safety. Then, we generate perceived-safety-critical
controls using a Quadratic program (QP) to guide an agent
safely according to a given perceived risk model. We present
simulations in a 2D environment to illustrate the performance
of the proposed controller.

I. INTRODUCTION

Motivation: Safety is a desirable and necessary design
constraint for any control system; specially when operated in
a shared environment with a decision maker (DM). Arguably,
most environments have associated spatial risks, whose
source can vary from hard constraints (e.g. moving obstacles)
to softer constraints (e.g. wind conditions). Different DMs
can perceive these risks differently, leading to notions of
perceived risks and perceived safety from these risks.

It is well known from psychophysics [1] and behavioral
economics [2] research that humans as DMs have funda-
mental non-linear perception leading to non-rational decision
making in risky situations. In such cases, existing methods
assuming perfect knowledge or rational and coherent treat-
ment (as in expected risk and Conditional Value at Risk
(CVaR)) of risks may not suffice, which can lead to loss
of trust or discomfort among DMs. This motivates the need
of richer and more inclusive modeling of risk perception
to capture a variety of DMs and use them for safe control
design. This work aims to bridge the gap between behavioral
decision making and safety using Cumulative Prospect The-
ory (CPT) as a risk perception model, and Control Barrier
Functions (CBFs) for safe control design.

Related Work: Safe control system design has been tack-
led using various frameworks such as artificial potential
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functions [3], barrier certificates [4] and, more recently,
control barrier functions (CBFs) [5]. CBFs have gained
popularity due to their Lyapunov-like properties, rigorous
safety guarantees and ease of application. They have been
successfully used in optimization [5], stabilization [6] and
data-driven control frameworks [7]. CBFs were traditionally
used in static scenarios, more recently, they have been used to
deal with moving obstacles [8] and multi-agent systems [9].

Uncertainty has been mainly handled using robustness
measures [10], stochastic control [11], or chance con-
straints [12]. Very few works have considered the notion of
risk perception explicitly in a control system [13], [14]. All
these works use CVaR to quantify risk perception, which
only captures linear and rational risk-averse behavior. CPT
on the other hand is a more expressive (see [15]), non-
linear and non-rational perception theory which is yet to
be applied in the context of safety for a control system.
Moreover, CPT has been successfully used in engineering
applications like path planning [15], traffic routing [16], and
network protection [17].

Contributions: We first adapt the notion of non-rational
risk perception to the context of safety for control systems.
With this, we capture a larger spectrum of DM’s risk
profile, extending the existing literature. We support this
claim theoretically by defining the notion of “inclusiveness”
and proving that CPT is the most inclusive risk perception
model out of the other popular models: CVaR and ER. We
then use the CPT value function to construct a class of
CBFs to guarantee safety according to a DM’s perceived risk
and define the notion of perceived safety. Additionally, we
find sufficient geometric conditions on the control input to
maintain the validity of our proposed RPA CBF and compare
them among the three risk perception models (RPMs). Then,
we design a QP-based RPA controller to guide an agent to a
desired goal safely w.r.t. perceived risks. Thus we extend the
literature with more inclusive safe control design. Practically,
we consider 2D simulations with moving obstacles and show
the effectiveness of the proposed RPA controller along with
the practical translation of the inclusiveness heirarchy.

This work provides a framework to incorporate and com-
pare a wide range of RPMs to generate a variety of RPA
controls. We would also like to clarify that the validation of
CPT models using user studies for typical control scenarios
is beyond the scope of this work.
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II. RISK PERCEPTION FORMALISM AND PROBLEM SETUP

Here, we introduce some notation1 and a formal notion of
risk perception, starting with a concise description of CPT
and CVaR (see [18] and [19] for more details). Later, we
describe our problem statement.

Risk Perception: By risk perception, we refer to the notion
of attaching a value (risk) to a random cost output. Formally,
let S be a discrete sample space endowed with a probability
distribution P. We model environmental cost via a real-
valued, discrete random variable c : S → R≥0, taking M
possible values, ci ∈ R≥0, i ∈ {1, . . . ,M}, and such that
pi = P(c = ci), with ∑

M
i pi = 1. We Let C be the set of such

random cost variables and R : C → R≥0 a value function
which associates a value (risk) to a random cost variable.

A value function R can be defined in many ways, resulting
in different risk perceptions. Here, an RPM is characterized
as a parameterized family M , {RΘ|Θ ∈ Rl} of value
functions. In what follows, we consider three popular RPMs:
Expected Risk (ER) Conditional Value at Risk2 (CVaR) [19]
and Cumulative Prospect Theory (CPT) [2].

CPT captures non-rational decision making, and was in-
troduced in [18], [20]. In CPT, outcomes are first weighed
using a non-linear utility function v : R≥0 → R≥0, with
v(c) = λcγ , modeling a DM’s perceived cost. The parameters
λ ∈ [1,∞),γ ∈ [0,1] represent “risk aversion” and “risk
sensitivity”, respectively. In addition, a non-linear probabil-
ity weighing function w : [0,1]→ [0,1], given by w(p) =
e−β (− log p)α

and w(0) = 0, is used to model uncertainty
perception. Here, uncertainty sensitivity is tuned via the
parameters α,β ∈R>0. CPT also suggests that probabilities
are perceived via decision weights Πi ∈ [0,1], which are
calculated in a cumulative fashion. Defining a partial sum
function as Si(M), ∑

M
j=i p j, ∀ j ∈ {1, ...,M} and S0(M), 0,

we have Π j = w◦S j(M)−w◦S j−1(M).
With this, assigning the parameter q for CVaR and θ =

{α,β ,γ,λ} for CPT, the value functions of ER (RER), CVaR
(RCV) and CPT (Rcpt) of a DM are defined as:

RER(c), E(c) =
M

∑
i=1

ci pi, (1a)

RCV
q (c), E [c|c≥min{d : P(c≤ d)≥ q}] , (1b)

Rcpt
θ
(c),

M

∑
j=1

(v◦ c j)Π j. (1c)

In CPT, θ can be varied to generate different value functions
pertaining to various risk profiles of DMs (from risk-taker
to risk-averse). We refer to [15], [18] for more details on
the parameter choices in CPT. Risky Environment: Consider
a compact state space X ⊂ Rn containing dynamic spatial
sources of risk at y ∈X and an agent or robot at a state

1The Euclidean norm in Rn is denoted by ‖.‖. We use E as the expectation
operator on a random variable. The set Br(y) , {x ∈X |‖x− y‖ ≤ r} is a
ball of radius r centered at y.

2The CVaR model uses a class of value functions parameterized by q ∈
[0,1] to represent expectation over a fraction (q) of the worst-case outcomes.
Thus the CVaR value with q = 1 is the worst-case outcome of c, cM . While,
with q = 0 CVaR value equals ER (RCV

0 = Re).

x ∈ X . The relative state space is Z , {ξ = y− x|x ∈
X , y ∈ X }. Our starting point is an uncertain cost field
c : Z →R≥0, that aims to quantify objectively the (negative)
consequences of being at x ∈X relative to a known risk
source at y∈X . More precisely, c(ξ ) is a discrete RV which
can take M possible values, ci(ξ ) ∈R≥0, for i ∈ {1, . . . ,M}.
We assume that c has associated mean and standard deviation
functions cµ : Z → R≥0 and cσ : Z → R≥0, respectively.
We assume that cµ ,cσ are continuously differentiable in their
domains. Given c, an associated spatial-risk function is given
by Rc : Z →R≥0, Rc(ξ )≡ R(c(ξ )), where R belongs to any
of the previous RPMs defined in (1) above. When clear from
the context, we will identify Rc ≡ R ∈M . The larger Rc is
at ξ , the higher the perceived risk of being at x ∈X

Dynamic systems: We aim to control an agent modeled as
a control-affine dynamic system:

ẋ = fx(x,u) = f (x)+G(x)u, (2)

where u ∈ Rm, G : X → Rn×m, f : X → Rn and f and G
are locally Lipschitz. We also consider a dynamic risk

ẏ = fy(y), y ∈X , fy : X → Rn, (3)

with a locally Lipschitz fy. We focus on moving obstacles
as the source of risk, but the approach can be extended to
other scenarios. We also assume that a asymptotically stable
controller k : X →Rm has been designed to guide the agent
to a goal state x∗ ∈X in the absence of risk sources. We
wish to drive the agent to a goal x∗ ∈ X safely, while
avoiding risky areas. Formally, we define safety considering
a perceived spatial risk function Rc as follows:

Definition 1: (Perceived Safety) An agent moving un-
der (2), and subject to an uncertain cost source c with
dynamics (3), is said to be safe w.r.t. the perceived risk Rc
iff Rc(ξ (t))≤ ρ , ∀ t ≥ 0, for some tolerance ρ ∈ R>0.
We now state the problems we address in this work:

Problem 1: (RPA safe sets) Given a risky environment
X , endowed with an uncertain cost c, design perceived
safety sets considering RPMs from (1). Characterize and
constrast the properties of these sets among the three RPMs.

Problem 2: (RPA safe controls) Under previous condi-
tions, design a controller u, nominally deviating from a stable
state feedback controller k, such that the agent reaches the
goal x∗ safely (Definition 1) and examine feasibility of u.

III. PERCEIVED SAFETY USING VARIOUS RPMS

This section compares various RPMs, solving Problem 1.
Given an uncertain field cost c, we apply the different risk
perception models (see Section II) to obtain the correspond-
ing fields, Rc. With this, let us define the following sets:

Xsafe(Rc;y) ={x ∈X |Rc(y− x)≤ ρ}, (4a)
Xrisky(Rc;y) ={x ∈X |Rc(y− x)> ρ}. (4b)

In particular, these sets depend on the choice of Rc from
(1). Given M , we define the range set RM (c) ⊂ R≥0
associated with M wrt c as the set RM (c) , {r ∈ R|r =



RΘ(c),∀RΘ ∈M }3. Fix a model M and a risk source at
y ∈X . The total safe set of M wrt y is given as YM (y,c),⋃

Rc∈M Xsafe(Rc;y) (resp. the total risky set of M wrt y∈X
is YM (y,c),

⋃
Rc∈M Xrisky(Rc;y)). Thus, given y ∈X , the

set YM (y,c) (resp. YM (y,c)) covers all the states in X that
safe (resp. unsafe) according to a RPM M .

Definition 2: (Inclusiveness and Strict Inclusiveness).
Consider two RPMs M1 and M2, a threshold ρ ∈ R>0,
and a risk source at y ∈X . Let the sets Y1(y,c), Y 1(y,c)
and Y2(y,c), Y 2(y,c) be the total safe and risky sets of
M1 and M2 wrt y and a spatial cost c, respectively. We
say that M1 is more inclusive than M2 (M1 B M2) if
either Y 2(y,c) ⊆ Y 1(y,c) and Y2(y,c) ( Y1(y,c) holds,
or Y 2(y,c) ( Y 1(y,c) and Y2(y,c) ⊆ Y1(y,c) holds, for
all y ∈X and costs c : Z → R≥0. If Y 2(y,c) ( Y 1(y,c)
and Y2(y,c) ( Y1(y,c) both hold, then M1 is strictly more
inclusive than M2 (M1 I M2).
In particular, if M1 .M2, then M1 results into a wider range
of safety and risky sets for a given environment than M2.

Now we compare the inclusiveness of CPT, CVaR and ER
via their respective value functions. We start by comparing
the range space of these RPMs.

Lemma 1: Consider a threshold ρ ∈R≥0, a risk source at
ȳ ∈X , and two RPMs M1, M2 with range spaces R1, R2,
respectively. If R2(c)⊆R1(c), and if there exists an R1,c ∈
M1 such that R1,c >R2,c or R1,c <R2,c for any R2,c ∈M2, and
any c, then M1 BM2. In addition, if there are Ra

1,c,R
b
1,c ∈M1

such that Ra
1,c > Ra

2,c and Rb
1,c < Rb

2,c, ∀Ra
2,c,R

b
2,c ∈M2, and

any c, then M1 I M2.
Proof: Fix c. Since R2 ⊆ R1, ∀R2 ∈ M2, there

is R1 ∈ M1 s.t. R1(c(ȳ − x)) = R2(c(ȳ − x)), ∀x ∈ X .
Thus, Y2(ȳ,c) ⊆ Y1(ȳ,c) and Y 2(ȳ,c) ⊆ Y 1(ȳ,c). Assume
∃R1, R̃1 ∈M1 s.t. R1(c(ȳ− x)) > R2(c(ȳ− x)) or R̃1(c(ȳ−
x))< R2(c(ȳ−x)) hold for all R2 ∈M2. This implies either
Y 2(ȳ,c) ( Y 1(ȳ,c) or Y2(ȳ,c) ( Y1(ȳ,c). Inclusiveness
follows from Definition 2. In parallel, M1 I M2.

Lemma 2: Consider the CPT, CVaR and ER risk models,
with associated range sets RCPT(c), RCVaR(c) , and RER(c).
Then, it holds that RCPT(c)) RCVaR(c)⊇RER(c), ∀c.

Proof: Fix c. Note that RER(c) = {cµ}. By choosing
Rcpt

θ
∈ CPT with θ = {1,1,1,1} and RCV

0 ∈ CVaR we have
RCV

0 (c) = RER(c) = Rcpt
θ
(c), ∀c. Note that only if cσ = 0 then

RCV
q (c) = cµ =RER(c) for all q. When cσ 6= 0, with any other

valid choice of parameters q in CVaR we obtain RCV
q (c) /∈

RER(c). We can find θ 6= θ such that Rcpt
θ
(c) /∈RER(c), ∀c.

Hence, RER(c)⊆RCVaR(c) and RCPT(c)) RER(c).
For CVaR, RCV

0 = {cµ} and RCV
1 = {b}, where b ∈ R

is the worst-case outcome of c. Since RCV
q increases in q,

RCVaR ⊆ [cµ ,b]. Choosing θ1 = {1,1,1,λ}, for λ ≥ 1, leads
to Rcpt

θ1
(c) = λ ∑i ci pi = λcµ . Taking λ ∈ [1, b̄], with b̄ > b

cµ
,

we get RCPT(c)⊃ [cµ ,b]; hence, RCPT(c)) RCVaR(c).
The previous results now lead to the following.
Theorem 1: Let c be a discrete random field cost. Con-

sider the ER, CVaR and CPT risk perception models with

3When clear from the context, we will just denote RM (c)≡R.

risk value functions RER, RCV
q , and Rcpt

θ
, respectively. For

any threshold ρ ∈R≥0 and risk source ȳ∈X , CPT B CVaR
and CPT B ER holds. If the cost outcomes are strictly lower-
bounded by 1, then CPT I CVaR and CPT I ER. If in fact
cσ (ȳ− x)> 0,∀x ∈X , then CPT I CVaR B ER.

Proof: From Lemma 2, RER(c) ( RCPT(c) and
RCVaR(c)⊆RCPT(c). As in Lemma 2, take Rcpt

θ1
= λcµ , for

some θ1. Choosing λ = b̄, with b̄ > b
cµ

, we get Rcpt
θ1

> RCV
q ,

for any q ∈ [0,1], and Rcpt
θ1

> RER. Thus, from Lemma 1, we
have CPT B CVaR and CPT B ER. Now assume ci > 1 for
all i ∈ {1, . . . ,M}. Taking θ1 = {1,1,1,λ}, with λ > 1, we
get Rcpt

θ1
> RCV

q for any q ∈ [0,1] and Rcpt
θ1

> RER. Now, take
θ2 = {1,1,γ,1}, with 0 < γ < 1, we have Rcpt

θ2
(c) = ∑i cγ

i pi.
Since ci, pi > 0, ∀i, then Rcpt

θ2
(c)<∑i ci pi, implying Rcpt

θ2
(c)<

cµ ando Rcpt
θ2
(c) < RCV

q (c), ∀q ∈ [0,1]. From Lemma 1, we
get CPT I CVaR and CPT I ER.

Finally, assume cσ > 0. There is q ∈ (0,1) such that
RCV

q (c)>RER. Since the lower bound of RCV
q (c) is cµ =RER,

there is no q s.t. RCV
q (c) < RER. Hence from Lemma 1 and

the first part of this result, we get CPT I CVaR B ER.
The above arguments show CPT can produce a larger variety
of safe and risky sets leading to richer risk perception. This
is illustrated via simulations in Section V.

Additional properties of RPMs: In addition to the notion
of inclusiveness, we now characterize the versatility of a
RPM in the context of perceived safety.

Definition 3: (Versatility of a RPM). Consider a compact
space X , a risk source ȳ ∈ X , and a discrete random
field cost c, with range in [cmin,cmax] ⊆ R≥0. Let I be a
compact interval. An RPM M is said to be I−versatile if
{x ∈ X |c(ȳ− x) ≤ c`} ⊆ YM for any c` ∈ I for a given
ρ > 0. If I ⊇ [cmin,cmax], then M is most versatile in X .
The above definition implies that an RPM is I−versatile, if it
has a risk-perception functionthat perceives any states having
costs less than c` as safe, ∀c`. Further, M is most versatile
when it contains risk-perception functions that capture a
range of perceptions from most risk averse (only states
having costs c ≤ cmin are safe) to the least risk-sensitive
(every state including states having the highest cost cmax as
safe). With this, we will look at versatility of the three RPMs.

Lemma 3: Consider a compact space X , with a risk
source ȳ ∈ X , and associated discrete random field cost
c. Then, CPT can capture the most risk averse perception,
i.e. the set {x ∈X |c(ȳ− x)≤ cmin} is considered safe.

Proof: Choosing θ as in Lemma 2 and λ = ρ

cmin
, the

result follows from (4a) and Definition 3.
Proposition 1: Under the setting of Lemma 3, CPT can

capture the least risk sensitive perception (the set {x ∈
X |c(ȳ−x)≤ cmax} is considered safe), if cmin≥ 1, for ρ ≥ 1,
and ∀ i over X . Consequently, CPT is most versatile in X .

Proof: For θ2 = {1,1,γ,1}, with 0 ≤ γ ≤ 1 we have
Rcpt

θ2
(c) = ∑i cγ

i pi. Now, choosing γ < logρ

logcmax
, since ci ≥

1, pi ≥ 0, ∀i, and ρ ≥ 1, we get Rcpt
θ1
≤ ρ . Thus, from

(4a) and Definition 3, the first result follows. Take now
θ1 = {1,1,1,λ} and θ2. Observe that Rcpt

θ1
is continuous in

λ and Rcpt
θ2

is continuous in γ . By the intermediate value



theorem ∃λ s.t. Rcpt
θ1
∈ [cµ ,cmax], and a γ s.t. Rcpt

θ2
∈ [cmin,cµ ].

Hence, from Lemma 3, CPT is most versatile in X .
Lemma 4: Under the assumptions of Lemma 3, with I1 =

[cµ ,cmax] and I2 = {cµ}, CVaR is I1−versatile and ER is
I2−versatile. Hence neither are most versatile RPMs.

Proof: This result trivially follows from the range
spaces RCVaR(c) and RER(c) in the proof of Lemma 2.

IV. CONTROL DESIGN WITH
RISK-PERCEPTION-AWARE-CBFS

Here, we address Problem 2 and design controls u for an
agent subject to (2), to ensure perceived safety (Definition 1).
To do this, we formally adapt CBFs (see [5]) to our setting.

Definition 4 (RPA-CBF): Consider an agent subject to (2),
a dynamic source of risk (3), and a perceived risk Rc model.
A C 1 function hR , h◦Rc : Z →R is an RPA-CBF for this
system, if there is an extended class K∞ function η1 such
that the control set KR defined as

KR(Rc) = {u ∈U |ḣR(ξ )≥−η1(hR(ξ )))}, (5)

is non-empty for all ξ ∈Z .
The existence of hR according to Definition 4 implies that
the superlevel set {x ∈X |hR(ξ ) > 0} is forward invariant
under (2). We specify hR = h◦Rc via h given as

h(ξ ), η2(ρ−Rc(ξ )), (6)

where η2 :R→R is a C 1 extended class K∞ function. Since
η2 is non-decreasing, h(Rc(ξ )) ≥ 0 implies Rc(ξ ) ≤ ρ and
from (4a), Xsafe(Rc;y) = {x ∈X |h(Rc(y− x)) ≥ 0}. Thus,
h(Rc(ξ ))> 0 indicates that x is perceived as safe w.r.t. Rc.

The RPA control input u can be now computed via:
u(x) = argmin

u
‖u− k(x)‖2 (7a)

s.t.
dη2

dRc

(
∂Rc

∂ξ
(ξ )

)
·
(

fy(y)− fx(x)
)
≥−η1(hR(ξ )). (7b)

The above problem captures the notion of minimally modi-
fying a stable controller to ensure safety of the system. Next
we will analyze the feasibility conditions for the proposed
controller u and compare it across the proposed models.

Feasibility analysis and comparison: We first describe a
construction of finite outcomes of c from cµ and cσ called
“truncated-Gaussian cost” which will be used for analysis.
Assume that c(ξ ) is distributed as a truncated Gaussian4

NT (cµ(ξ ),cσ (ξ )
2). Then, given M ∈ N, we approximate

c by means of M discrete values ci, i ∈ {1, . . . ,M}, with
probability calculated from the CDF F of c at each ci. That
is, p1 = F(c1), and pi = F(ci)−F(ci−1), for i ∈ {2, . . . ,M}.
Now, we show conditions on u for the set KCBF to be non-
empty for a given risk function Rc. We first define a few
constants and variables to help us compare the feasibility
conditions of the three RPMs. Let φξ ∈ [−π,π] be the
relative angle5 between ∂Rc

∂ξ
and ξ̇ (u;x,y), and c′µ =

dcµ

dξ
and

c′σ = dcσ

dξ
. Now define ke(ξ ) = (η1 ◦RER(ξ ))/ dη2

dRER , kv
q(ξ ) =

4This truncation reassigns the probability mass s.t. c(ξ ) ∈ [cµ (ξ )−
3cσ (ξ ),cµ (ξ )+3cσ (ξ )] using an appropriate re-normalization constant.

5recall angle between two vectors a,b∈Rn is given by φ = cos−1 ( a·b
‖a‖‖b‖

)

(η1 ◦ RCV
q (ξ ))/ dη2

dRCV
q

and kv
σ = P(F−1(q))

q . Also we define

constants kc
θ
(ξ ) = (η1 ◦Rcpt

θ
(ξ ))/ dη2

dRcpt
θ

, kc
µ = λγ ∑

M
i=1 cγ−1

i Πi

and kc
σ = λγ ∑

M
i=1
(
3− 6i

M

)
(ci)

γ−1
Πi. Consider ηe = ke(ξ )

‖c′µ‖ ,

ηv =
kv

q(ξ )

‖c′µ+kv
σ c′σ‖ and ηc =

kc
θ
(ξ )

‖kc
µ c′µ+kc

σ c′σ‖ . The following holds.

Proposition 2: Let an agent and risk source be subject
to (2) and (3), respectively. Consider cost c build from a
truncated Gaussian field. If there is a u s.t.:

‖ξ̇ (u;x,y)‖cos(φξ )≥−

 η1(hR(ξ ))

dη2
dR

∥∥∥ ∂Rc
∂ξ

(ξ )
∥∥∥
 , (8)

then hR defined according to (6) is a valid RPA-CBF
for any η2 and (7) is feasible. Specifically, with ξ̃ =
‖ξ̇ (u;x,y)‖cos(φξ ), the RHS of the above inequality reduces
to −ηe, −ηv, and −ηc for ER, CVaR and CPT, respectively.

Proof: For first part, rearranging terms in (8) we get:

κ

∥∥∥∥∂R
∂ξ

(ξ )

∥∥∥∥ ·∥∥ fy(y)− fx(x,u)
∥∥cos(φξ )≥−η1(h(ξ )), (9)

where κ = dη1
dR . For the RPA-CBF to be valid, the set KCBF

needs to be non-empty. Due to the dynamics of the agent
and obstacle, cµ and cσ have dynamics:

ċµ =
∂cµ

∂ξ
( fy(y)− fx(x,u)), ċσ =

∂cσ

∂ξ
( fy(y)− fx(x,u)).

(10)
Using the chain rule, we get the time derivative of hR(ξ ):

ḣR(x,y,ξ ,u) =
dη

dRs
Ṙs(ξ ), (11a)

=
dη

dRs

[
∂Rs
∂cµ

(ξ )
∂Rs
∂cσ

(ξ )

]> [
ċµ(x,y,ξ ,u)
ċσ (x,y,ξ ,u)

]
, (11b)

=κ

(
∂Rs

∂ξ
(ξ )

)
· ( fy(y)− fx(x,u)) , (11c)

=κ

∥∥∥∥∂Rs

∂ξ
(ξ )

∥∥∥∥ ·∥∥ fy(y)− fx(x,u)
∥∥cos(φξ )

(11d)

For the last part, the expressions are obtained by substi-
tuting the respective risk functions and evaluating the partial
derivatives ∂R

∂cµ
and ∂R

∂cσ
(part of ∂R

∂ξ
). Thus we need to show

the following hold true:

ξ̃ ≥−

(
ke(ξ )∥∥c′µ

∥∥
)
, for ER, (12a)

ξ̃ ≥−

(
kv

q(ξ )∥∥c′µ + kv
σ c′σ

∥∥
)
, for CVaR, (12b)

ξ̃ ≥−

(
kc

θ
(ξ )∥∥kc

µ c′µ + kc
σ c′µ
∥∥
)
, for CPT. (12c)

For ER we get ∂R
∂cµ

= 1 and ∂R
∂cσ

= 0. For CVaR, since c
is assumed to belong to a truncated Gaussian distribution,



we can use the closed form expression of CVaR (13) for a
Gaussian distribution to calculate the partials ∂Rv

∂cµ
and ∂Rv

∂cσ
.

Rv
q = cµ + cσ

(P(F−1(q))
q

)
. (13)

From (13), it is easy to see that CVaR is linear in cµ and
cσ . With this, we get ∂R

∂cµ
= 1 and ∂R

∂cσ
= P(F−1(q))

q .
Substituting these derivatives in (11) correspondingly for

ER and CVaR, and using (10) we obtain the results.
For CPT, the expression is obtained by substituting the

CPT risk function Rcpt
θ

and evaluating the partial derivatives
∂Rcpt

θ

∂cµ
and ∂Rcpt

θ

∂cσ
. Constructing truncated Gaussian costs c from

cµ and cσ , we get outcomes {c1, . . . ,cM} and corresponding
probabilities {p1, . . . , pM} resulting in constant Π through-
out. In this way, from (1c), the CPT value of a random cost
c with mean cµ and cσ is given by:

Rcpt(cµ ,cσ ) =
M

∑
i=1

λ

(
cµ + cσ

(
3− 6i

M

))γ

Πi. (14)

With this expression, we can proceed to calculate the partial

derivatives ∂Rcpt
θ

∂ µ
and ∂Rcpt

θ

∂σ
. From (14), we get

∂Rcpt

∂cµ

(cµ ,cσ ) =λγ

M

∑
i=1

(
cµ + cσ

(
3− 6i

M

))γ−1
Πi, (15a)

∂Rcpt

∂cσ

(cµ ,cσ ) =λγ

M

∑
i=1

(
3− 6i

M

)(
cµ + cσ

(
3− 6i

M

))γ−1
Πi.

(15b)

We have ∂Rcpt

∂cµ
(cµ ,cσ ) = kc

µ and ∂Rcpt

∂cσ
(cµ ,cσ ) = kc

σ . Substi-
tuting kc

θ
, kc

µ and kc
σ in (8), we obtain (12c).

From (8), observe that the RHS is independent of u and
the LHS is independent of Rc and the RPM. This separation
makes it easier to compare various RPMs and their associated
feasibility conditions.

Next, we remark on the uncertainty perception of each
RPM, which will be used in the subsequent proposition to
compare the size of control sets KCBF respectively generated
by each of the RPMs.

Remark 1 (Uncertainty perception among RPMs): The
ER model is insensitive to uncertainty as ∂RER

∂σ
= 0. In this

way, CVaR is averse to uncertainty as
∂RCV

q
∂σ
≥ 0 for all q.

With CPT, θ can be tuned to get both uncertainty insensitive
and uncertainty averse behavior, additionally, it can also

produce uncertainty liking behavior (when ∂Rcpt
θ

∂σ
≤ 0). 6.

We finally compare the the flexibility provided by each model
via the corresponding control sets K.

6The first two properties follow by choosing θ as in Theorem 1. The latter
property can be obtained by tuning the uncertainty perception parameters
α and β . Since the chosen distribution is symmetric, we can examine the
relation between Πi and ΠM−i for i ∈

(
0, M

2

)
. If we have Πi < ΠM−i (for

example when w is concave) or Πi >ΠM−i (when w is convex), then we have
∂Rcpt

∂cσ
> 0, or ∂Rcpt

∂cσ
< 0, respectively. A concave w (α = 1,β < 1) implies

that unlikely outcomes are viewed to be more probable compared with the
more certain outcomes. This results into an “uncertainty averse behavior”,
which is reflected in the positive sign of ∂Rcpt

∂cσ
. Conversely, a convex w

(α = 1,β > 1) leads to an “uncertainty liking behavior” with ∂Rcpt

∂cσ
< 0.

Proposition 3: Assume the conditions of Proposition 2
hold. Then, the feasibility sets defined according to (5) for
the three RPMs satisfy KER ⊆ KCPT and KCVaR ⊆ KCPT.

Proof: In order to compare the feasibility of the sets
KCBF from (5) for the three RPMs, we can compare their
respective feasibility conditions (8). Consider ηe = ke(ξ )∥∥∥ dcµ

dξ

∥∥∥ ,

ηv =
kv

q(ξ )∥∥∥ dcµ

dξ
+kv

σ
dcσ

dξ

∥∥∥ and ηc =
kc

θ
(ξ )∥∥∥kc

µ

dcµ

dξ
+kc

σ
dcσ

dξ

∥∥∥ . Since the LHS

in (8) remains the same for any RPM and its parameter
choice, to prove the proposition, it is sufficient to show that
ηe ≤ ηc and ηv ≤ ηc. These inequalities follow from the
choice of θ = θ1 in Theorem 1 and CPT’s more adaptable
uncertainty perception from Remark 1.
It is interesting to note that although CVaR is more inclusive
than ER as proved in Theorem 1, it does not immediately
translate into CVaR having a larger control feasibility set.
We provide more insight in the following remark.

Remark 2: Consider the control feasibility sets KER and
KCVaR respectively for ER and CVaR, defined according
to (5). Then, depending on the choice of q and construction
of cσ we can obtain either KER ⊆ KCVaR or KCVaR ⊆ KER.
Looking at the LHS of inequalities (12b) and (12a), although
we have kv

q(ξ ) > ke(ξ ) from Theorem 1, there isn’t con-
clusive proof to suggest KER ⊆ KCVaR due to the additional
kv

σ
dcσ

dξ
(ξ ) term in the denominator of (12b).

Stability analysis: Next, let us look at the stability
properties of the proposed controller u in (7). It is clear
that if the nominal controller k(x) also satisfies the safety
constraint (7b), then u = k(x) and the stability properties of
k(x) transfer over to u. To analyze stability, first we look into
the RPMs and determine how they affect the deviation from
k(x). Later, we treat the controller u as a perturbed version
of k(x) and analyze accordingly.

Let δ = k(x)− u(x) be the perturbation to the nominal
controller k(x) and δ ER, δ CV

q and δ
cpt
θ

be the respective
perturbations of ER, CVaR and CPT with corresponding
parameter choices. Then we have the following:

Proposition 4: Under the assumptions of Proposition 2,
choose u as in (7). Assume ‖δ ER‖, ‖δ CV

q ‖ and ‖δ cpt
θ
‖ are

bounded. Then for any given states x, y, and choice of q,
there exists a θ such that:

1) ‖δ cpt
θ
‖ ≤ ‖δ ER‖ and ‖δ cpt

θ
‖ ≤ ‖δ CV

q ‖.
2) The agent stabilizes inside BεM

(x∗) asymptotically for
all RPMs and their respective ε follow εCPT ≤ εCVaR

and εCPT ≤ εER.
Proof: For 1), apply Proposition 3 and the fact that

KER ⊆ KCPT and KCVaR ⊆ KCPT.
For 2), employ an ISS argument to construct the BεM

(x∗)
for each RPM considering the unforced system with u= k(x)
in (2) and P(x)=G(x)δ being the forcing term after applying
RPA controls u from (7). From ISS, since the radius of the
stability ball is proportional to the upper bound on ‖P(x)‖,
the result immediately follows from the first part.
Proposition 4 implies that, with an appropriate θ , CPT can
not only produce the least perturbation among the three
RPMs, but can also stabilize to the smallest ball around x∗.



Fig. 1: Illustration of simulation setting and measuring DTE for an agent at
x(t), facing an obstacle which is localized imperfectly in a circle of radius
r and centered at yµ (t).

V. SIMULATION RESULTS

Here, we visualize the results from Theorem 1 and demon-
strate the effectiveness of the controller generated in (7). We
consider a few scenarios involving an agent moving in an
2D environment containing one or more moving obstacles
(sources of uncertain risk) and use this to compute the RPA-
CBF (6) to guide the agent to a desired goal safely. We
compare CPT, CVaR and ER as RPA models and illustrate
the results followed by a discussion.

Uncertain Cost: We assume an agent x ∈R2 with dynam-
ics (2) in a 2D state space containing an obstacle y ∈ R2

moving according to (3). We assume that the obstacle is im-
perfectly localized and is known to be within a ball of radius
r centered at yµ ∈X , i.e , y∈Br(yµ)

7. With this, the relative
vector ξ = y−x belongs to the space: ξ ∈Br(yµ−x). We use
the notion of “distance to endangerment (DTE)”, d : Rn →
R≥0, d(ξ ) , ‖ξ‖ to construct the uncertain cost c. From
this, we obtain d ∈ [‖x−yµ‖−r,‖x−yµ‖+r]. (visualized in
Figure 1). We consider the cost c(ξ ) = k1e−k2d(ξ )2

, denoting
the cost of being at x, knowing the obstacle y∈Br(yµ), with
constants k1,k2 > 0.

With this, we assume the cost c is distributed as a trun-
cated Gaussian (Section III) with cµ(ξ ) = k1e−k2d2

µ (ξ ) and
cσ (ξ ) = cµ(r)pN (ξ ,I), where dµ = ‖x−yµ‖ and pN (µ,Σ)
is the pdf of a bi-variate Normal distribution with mean
µ and covariance Σ and I is the 2D identity matrix. We
proceed to construct the uncertain cost outcomes according
to Section III and then calculate Rcpt,Rv,Re appropriately.
We use the reference value ρ = cµ(r), to denote the risk
threshold.

Perceived safety visualization: Under the previous setting,
we provide visualizations of the costs and perceived risks,
shown in Fig. 2. Fig. 2a and 2b show the mean cost cµ

and standard deviation cσ respectively, across X = [0,15]2

with obstacle’s mean position at y = (10,10) and cmin = 1
and cmax = 200. Versatility: CPT’s versatility is illustrated
in Fig. 2c and Fig. 2d through contour maps of hR(ξ ) =
ρ − Rcpt(x) across X . Fig. 2c shows that despite risk
threshold ρ being very small (ρ = 27) and close to cmin,
the entire space is perceived safe with positive h values.
In Fig. 2d, we observe the opposite, where a very high
risk threshold value (ρ = 199), close to cmax still makes
almost the entire X unsafe with negative hR(ξ ) values. This

7W.l.o.g. this assumption also allows us to consider obstacles with a size.

illustrates the versatility of CPT as an RPM in accordance
with Proposition 1.

Inclusiveness: This concept is illustrated in Fig. 2e–2g.
The black lines indicate the level sets of Rcpt = ρ and RCV =
ρ evaluated by varying their respective parameters. From
Fig. 2e it is clear that variation in the level sets of CVaR is
marginal compared to CPT (Fig. 2f and 2g). The level set
RER(ξ ) = ρ is shown in Fig. 2e as the inner most ellipse. We
see that CPT is able to capture a more risk averse (larger) as
well as more risk insensitive (smaller) perception than CVaR
(and ER). This verifies the claims of Theorem 1 visually.

RPA-CBF controller: We consider a single agent with
unicycle dynamics and a single obstacle whose dynamics
evolve in the space X ⊂ R2. We use the costs defined in
the previous paragraph with r = 0.5 and k1 = 200,k2 = 0.01.
The agent starts at x(0) = (5,2)> (green dot) and its goal
is x∗ = (10,10)> (motion up) while the obstacle moves
from (13,13)> (rhino in red ellipse) to (2,3)> (motion
down). If obstacle and vehicle follow along straight paths,
a collision would occur and safety would be violated. To
handle unicycle dynamics we use the projected point method
to control a virtual point p ∈ R2, a distance l along the
direction of its heading. That is, p = x+ l~d, where ~d is the
direction vector corresponding to the agents heading φ and
x ∈ R2 is the planar coordinates of the agent. With this we
get the reverse transformation for the control inputs:[

u1
u2

]
=

[
cos(φ) sin(φ)
−sin(φ)

l
cos(φ)

l

]
u. (16)

Where u1,u2 ∈ R are the linear and angular velocity inputs
of the unicycle model and u ∈ R2 is the optimized input
generated from (7) considering the p dynamics ṗ = u. We
use a standard proportional controller for k(x) with a constant
(0.6,0.6) We note that one can always appropriately tune the
reference value ρ by l units to ensure safety w.r.t. x. The
results of varying λ , γ and κ are shown in Fig. 3. For all the
settings, the agent will collide with the obstacle (red ellipse)
if it follows the nominal path (black line) from applying
controls k(x), thus making it unsafe. By using the controller
u from (7), the agent is able to swerve away from the obstacle
in time and still manage to reach the goal. We see that from
Fig. 3d - Fig. 3f, the cbf hR remains positive throughout the
execution, thus indicating that perceived safety is maintained
irrespective of model and parameter choice. Next, we notice
that by using CPT-CBF controller u (Fig. 3d and Fig. 3e),
the deviations from the nominal path correspondingly get
more pronounced as the perceived risk increases (higher λ

and γ). Whereas, for CVaR-CBF this deviation (Fig. 3f) is
comparatively minimal across its parameter spectrum. This
is in accordance with our claims that CVaR is less inclusive
(Theorem 1) and versatile (Proposition 1) than CPT, causing
only minor changes in trajectories in comparison with CPT-
based CBF controller.

From (Fig. 3), we see that the agent is able to reach
the goal while maintaining h ≥ 0 throughout, implying that
perceived safety is maintained according to Definition 1.
Furthermore, as before, we see that CPT is able to generate



(a) Mean cost cµ over X (b) Standard deviation cσ over X (c) Highly risk insensitive perception
(γ = 0.45 and ρ = 27) with contour
map depicting ρ−Rcpt

(d) Highly risk averse perception (λ =
100 and ρ = 199) with contour map
depicting ρ−Rcpt

(e) Level sets of Rq(ξ ) = ρ by varying CVaR
parameter q ∈ {0.001,0.1,0.4,0.8,0.95,0.999}

(f) Level sets of Rcpt(ξ ) = ρ by varying risk sensi-
tivity parameter γ ∈ {0.785,0.79,0.8,0.85,0.9,1.0}
with α = 0.74,β = 1,λ = 3.0

(g) Level sets of Rcpt(ξ ) = ρ by varying risk
aversion parameter λ ∈ {1.5,2.0,2.5,3.0,3.5} with
α = 0.74,β = 1,γ = 0.95

Fig. 2: (a)-(b) Cost maps cµ and cσ over the space X = [0,15]2 with obstacle’s mean position at yµ = {10,10}. (c)-(d) Illustration of versatility of CPT
through depicting scalar field ρ−Rcpt in previous setting. (e)-(f) Change in perceived safety sets Xsafe by varying CPT parameters γ and λ . (g) Change
in perceived safety sets Xsafe by varying CVaR parameter q

(a) Change in paths due to change in risk
aversion λ with γ = 0.88

(b) Change in paths due to change in risk
sensitivity γ with λ = 2.25

(c) Change in paths due to change in α with
β = 1

(d) Evolution of CBF function h with varying
λ

(e) Evolution of CBF function h with varying
γ

(f) Evolution of CBF function h with varying
κ in CVaR

Fig. 3: Path changes due to variation in risk aversion, risk sensitivity and CVaR parameter, with their corresponding CBF (h) evolution. The path of the
obstacle (red) cross the nominal path of the agent (black) with the uncertainty circle indicated in red.

a wider range of paths by tuning the risk aversion and risk
sensitivity parameter than CVaR, thus capturing a greater
variety of risk perception, which follows the theoretical
arguments from Theorem 1 and Proposition 1. We also see
that the agent also reaches the goal owing to the inherent
stability properties of the nominal controller k(x).

Next, we consider an environment where there are three
moving obstacles present and a single agent. We use the
composition approach proposed in [9] to construct the barrier
function to handle multiple obstacles. In this approach, the
worst case (closest) obstacle is dealt with first using the
min operator on the barrier functions generated by the

corresponding obstacles. Here, the agent has to go from
(−15,−15) to (15,15), while the obstacles’ starting and
goal points are respectively (−17,0),(0,14),(10,−10) and
(17,0),(0,−14),(−10,10). Nominal controller k(p) is gen-
erated with proportional constant [1.6,1.6]. The uncertainty
radius is r = 2.5 and other cost constants are identical to the
single agent setting. The results of varying the risk aversion
λ , risk sensitivity γ of CPT and κ of CVaR are shown in
Fig. 4.

Similar to the previous case (Fig. 3), we see that the
agent is able to reach the goal while maintaining h ≥ 0
throughout, implying that perceived safety is maintained



(a) Change in paths due to change in risk
aversion λ with γ = 0.88

(b) Change in paths due to change in risk
sensitivity γ with λ = 2.25

(c) Change in paths due to change in α with
β = 1

(d) Evolution of CBF function h with varying
λ

(e) Evolution of CBF function h with varying
γ

(f) Evolution of CBF function h with varying
κ in CVaR

Fig. 4: Path changes due to variation in risk aversion, risk sensitivity and CVaR parameter, with their corresponding CBF (h) evolution. The path of the
obstacle (red) cross the nominal path of the agent (black) with the uncertainty circle indicated in red.

according to Definition 1. Furthermore, as before, we see that
CPT is able to generate a wider range of paths by tuning the
risk aversion and risk sensitivity parameter than CVaR, thus
capturing a greater variety of risk perception, which follows
the theoretical arguments from Theorem 1 and Proposition 1.
We also see that in both the cases the agent also reaches the
goal owing to the inherent stability properties of the nominal
controller k(x).

VI. CONCLUSION AND FUTURE WORK

In this work, we have proposed a novel integration of
CPT (a non-rational decision making model) into a safety-
critical control scheme, to generate risk-perception-aware
(RPA) controls (according to a DM’s risk profile) in an
environment embedded with uncertain costs. Thus, opening
new avenues to incorporate behavioral decision theory into
safety-critical controls. Future directions include the design
of learning frameworks to determine the risk profile of an
observed agent and handling unknown obstacle dynamics.
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