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Abstract— Run Time Assurance (RTA) systems are online
safety verification techniques that filter the output of a pri-
mary controller to assure safety. RTA approaches are used
in safety-critical control to intervene when a performance-
driven primary controller would cause the system to violate
safety constraints. This paper presents four categories of RTA
approaches based on their membership to explicit or implicit
monitoring and switching or optimization interventions. To val-
idate the feasibility of each approach and compare computation
time, four RTAs are defined for a three-dimensional spacecraft
docking example with safety constraints on velocity.

I. INTRODUCTION

Designing control systems with high safety assurance
can result in conservative designs that limit performance
at the price of safety. One way to enforce safety of a
system is the use of Run Time Assurance (RTA), which is
an online safety assurance technique. Fundamentally, RTA
approaches filter potentially unsafe inputs from a primary
controller in a way that preserves safety of the system when
necessary. The primary controller can range from a human
operator to an autonomous control approach. RTA systems
are designed to be independent from the structure of the
primary controller, so that they can be applied to any system
to assure safety. This independence allows a designer to
decouple performance objectives and safety assurance.

This paper focuses on two different classes of RTA
monitoring approaches, explicit or implicit, as well as two
different classes of intervention approaches, switching-based
or optimization-based. First, explicit approaches precisely
define a safe set considering all constraints and may or
may not use a backup controller. Implicit approaches use
a predefined backup control law to compute trajectories
and evaluate when to intervene [1]. Explicit approaches
are beneficial because they require less online computation,
while implicit approaches are beneficial because they do
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not require a precise safe set to be defined, which can
be overly conservative or impossible to concisely specify
for complex systems. In terms of intervention, switching-
based approaches simply switch between a primary and
backup control signal, and are sometimes called a simplex
architecture [2]. Optimization-based intervention approaches
use barrier constraints to minimize deviation from the pri-
mary control signal while assuring safety [3]. Switching
approaches are simple, computationally efficient, and rely
on backup control designs that meet safety and human-
machine teaming constraints. On the other hand, optimization
approaches are minimally invasive to the primary controller,
where the intervention is smoother and more gradual than
switching approaches.

In this paper, an RTA strategy is presented that is designed
in the context of graceful degradation to have multiple
phases of intervention. All systems begin with a Plan A
primary controller, which may or may not be verified. Plan
B RTA filters can use any combination of explicit, implicit,
switching, and optimization approaches to actively assure
safety. This phase of RTA is considered unlatched, where
the system can frequently switch between the output of the
RTA filter and primary controller. In the event that Plan B
is insufficient, a fault compromises its safety assurance, or a
human operator wants to “pause” operations until they can
investigate anomalous behavior, a Plan C RTA filter may
switch to the backup controller and remained latched for a
longer time period until a specified condition is met. A Plan
D RTA filter uses a similar latched approach, where the goal
is to immediately act to prevent complete loss. Plan B RTA
filters are the least invasive to the primary controller while
still assuring safety, while Plan C and Plan D RTA filters
provide increasing degradation in the case of anomalous
system behavior. This paper focuses on developing Plan B
and Plan C RTA approaches as Plan D approaches, such as
sun safe mode [4], [5], already exist.

Although not always referred to as RTA, the concept of
online safety assurance has been used in several applications
such as autonomous vehicles [6], fixed wing aircraft collision
avoidance [7], spacecraft collision avoidance [8], VTOL
aircraft [9], and many more. RTA has also been compared
during Reinforcement Learning Training for 2D spacecraft
docking [10].

II. RUN TIME ASSURANCE

Safety-critical systems may be modeled as dynamical
systems, where x ∈ Rn denotes the state vector and u ∈
Rm denotes the control vector. Assuming control affine
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Fig. 1: Feedback Control System with RTA.

dynamics, a continuous-time system model is given by a
system of ordinary differential equations where,

ẋ = f(x) + g(x)u. (1)

At their core, RTA systems decouple the task of assuring
safety from all other objectives of the controller. The control
system is split into a performance-driven primary controller
and a safety-driven RTA filter, which allows the designer to
isolate unverified components of the system. This concept
is shown in Figure 1, where components with low safety
confidence are outlined in red and components with high
safety confidence are outlined in blue. In a typical feedback
control system, the controller directly interacts with the
plant. In a feedback control system with RTA, the RTA
filter preempts potentially unsafe inputs from the primary
controller, referred to as the desired input udes, and instead
outputs a safe action, referred to as the actual input uact.
The RTA filter intervenes when necessary to enforce safety,
and otherwise allows udes to pass through unaltered.

A. Defining Safety

To assure safety of a dynamical system, inequality con-
straints ϕi(x) : Rn → R, ∀i ∈ {1, ...,M} are defined for M
safety constraints on the state vector, such that ϕi(x) ≥ 0
when the constraint is satisfied. The allowable set CA, defined
as the set of states that satisfies all of the safety constraints,
is given by,

CA := {x ∈ Rn|ϕi(x) ≥ 0,∀i ∈ {1, ...,M}}. (2)

In real world systems, constraints on actuation further limit
safety to a forward invariant subset CS ⊆ CA referred to as
the safe set, where

x(t0) ∈ CS =⇒ x(t) ∈ CS,∀t ≥ t0. (3)

This set is said to be control invariant if a control law u
exists that is forward invariant given constraints on actuation.
Because the methods used to obtain CS are generally not
scalable to complex and higher order systems, it is helpful
to define a forward invariant backup set CB ⊆ CS that can
be more easily defined based on the design requirements.

B. Switching-based Algorithms

Switching-based RTA filters contain a monitor to the
desired input udes from the primary controller for safety.
If udes is safe, it is passed unaltered to the plant as uact;
otherwise, a backup input ub from a verified backup con-
troller will be substituted for uact passed to the plant. One
possible implementation of a switching-based RTA filter is
constructed as follows.

Switching Filter

uact(x) =

{
udes(x) if φudes

1 (x) ∈ CS
ub(x) if otherwise

(4)

Here, φudes
1 (x) represents a prediction of the state x if

udes is applied for one discrete time interval.
The difference between explicit and implicit switching

filters is the way in which CS is defined. CS can be defined
explicitly,

CS = {x ∈ Rn |h(x) ≥ 0}, (5)

with inequality constraint function h(x) : Rn → R, such that
verifying x ∈ CS is equivalent to verifying h(x) ≥ 0. CS can
also be defined implicitly using closed loop trajectories under
a backup control law,

CS = {x ∈ Rn | ∀t ≥ 0, φub(t;x) ∈ CA} (6)

where φub represents a prediction of the state x for t seconds
under ub.

C. Optimization-based Algorithms

Optimization-based RTA algorithms use gradient compu-
tations to create a set of barrier constraints, as presented in
[11]–[14]. By optimizing the actual input uact, the algorithm
is minimally invasive with respect to the safety constraints
and results in smoother intervention when compared to a
switching-based approach. Optimization filters can use a
quadratic program, where the objective function is mini-
mizing the l2 norm difference between udes and uact. One
possible implementation of the optimization-based RTA filter
is constructed as follows.

Optimization Filter

uact(x) = argmin ‖udes − u‖2

s.t. BCi(x,u) ≥ 0, ∀i ∈ {1, ...,M}
(7)

Here, BCi(x,u) represents a set of M barrier constraints
used to enforce safety of the system. The purpose of these
constraints is to enforce Nagumo’s condition [15]. To apply
Nagumo’s condition, the boundary of the set formed by
h(x) is examined to ensure ḣ(x) is never decreasing. This
condition can be written as,

ḣ(x) = ∇h(x)ẋ = Lfh(x) + Lgh(x)u ≥ 0 (8)

where Lf and Lg are Lie derivatives of f and g respectively.
Since the boundary of the set has no volume, it is not
practical to enforce this condition on its own. Instead, a class
κ strengthening function α is used to enforce the constraints
on the boundary and relax the constraints away from the
boundary. The barrier constraint is then written as,

BC(x,u) := Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0. (9)

Similarly to switching-based filters, the difference between
explicit and implicit optimization filters is how these barrier



constraints are defined. Using the system model given in (1),
the barrier constraints can be defined explicitly as,

BCi(x,u) := ∇hi(x)(f(x) + g(x)u) + α(hi(x)) ≥ 0,

∀i ∈ {1, ...,M}. (10)

Again, hi(x) is a set of M control invariant safety con-
straints. Explicit optimization methods differ from switching-
based methods in that they do not need a backup controller.
The barrier constraints can also be defined implicitly as,

BCi(x,u) := ∇ϕi(φub
j )D(φub

j )[f(x) + g(x)u− f(φub
j )

− g(φub
j )ub(φ

ub
j )] + α(ϕi(φ

ub
j )), ∀i ∈ {1, ...,M} (11)

where ϕi(x) is a set of M safety constraints that define
the allowable set CA, φub

j refers to the jth discrete time
interval along the backup trajectory ∀t ∈ [0, T ), and D(φub

j )
is computed by integrating a sensitivity matrix along the
backup trajectory. Note that for practical implementation, the
trajectory is evaluated over a finite set of points. Implicit
optimization filters typically use the same verified backup
controller as implicit switching filters, which would be
suitable for degradation to a Plan C RTA system. Implicit
methods also introduce a trade-off between computation time
and safety guarantees, as when more samples are taken along
the trajectory, the computation time increases while safety
can be guaranteed over a longer time horizon.

III. SPACECRAFT DOCKING PROBLEM

In the spacecraft docking problem, an active “deputy”
spacecraft approaches a passive “chief” spacecraft to simu-
late docking in a linearized relative motion reference frame.
Both spacecraft are assumed to be rigid bodies, represented
as point-mass objects. It is also assumed that the mass of
both satellites is significantly smaller than the mass of Earth,
mass loss during maneuvers is significantly smaller than the
spacecraft mass, the chief spacecraft is in a circular orbit,
and that the distance between the spacecraft is significantly
smaller than the distance of either spacecraft to Earth.
This section discusses the dynamics, safety constraints, and
applications of RTA for spacecraft docking.

A. Dynamics

The location of the deputy with respect to the chief is
expressed in Hill’s reference frame [16], where the origin is
located at the mass center of the chief. As shown in Figure
2, the vector x̂ points away from the center of the Earth, the
vector ŷ points in the direction of motion, and the vector ẑ
is normal to x̂ and ŷ.

A first order approximation of the relative motion dynam-
ics between the deputy and chief spacecraft is given by the
Clohessy-Wiltshire equations [17],

ẋ = Ax+Bu (12)

where x = [x, y, z, ẋ, ẏ, ż]T ∈ X = R6 is the state vector,
u = [Fx, Fy, Fz]

T ∈ U = [−umax, umax]
3 is the control

Fig. 2: Hill’s reference frame centered on a chief spacecraft.

vector, and

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3n2 0 0 0 2n 0
0 0 0 −2n 0 0
0 0 −n2 0 0 0

 , B =


0 0 0
0 0 0
0 0 0
1
m 0 0
0 1

m 0
0 0 1

m

 .
(13)

In these equations, n =
√
µ/a3 is the spacecraft mean

motion and m is the mass of the deputy.

B. Defining the Allowable Set

The system is defined to be safe if it follows two safety
constraints for all time: a distance dependent speed limit and
a maximum velocity limit. The distance dependent speed
limit is defined as,

‖vH‖ ≤ ν0 + ν1‖rH‖ (14)

where ν0 defines the maximum allowable docking velocity,
ν1 is a constant, and

‖rH‖ = (x2 + y2 + z2)1/2, ‖vH‖ = (ẋ2 + ẏ2 + ż2)1/2.
(15)

This constraint forces the deputy to slow down as it ap-
proaches the chief to avoid crashing. As an inequality con-
straint, it can be written as,

ϕ1(x) := ν0 + ν1‖rH‖ − ‖vH‖. (16)

The maximum velocity limit is defined as,

|ẋ| ≤ vmax, |ẏ| ≤ vmax, |ż| ≤ vmax (17)

where vmax is a constant given by,

vmax =
umax

m
(tstop) (18)

and tstop is the time required to reach zero velocity in the
x̂, ŷ, or ẑ direction. As inequality constraints, the maximum
velocity limit can be written as,

ϕ2(x) := v2max − ẋ2, ϕ3(x) := v2max − ẏ2,
ϕ4(x) := v2max − ż2.

(19)

The allowable set CA is then defined as the set of states
where ϕi ≥ 0 for all four constraints.



C. Defining the Safe Set

Next, the safe set CS is determined given the constraint on
actuation, u ∈ U = [−umax, umax]

3.

Assumption III.1. ‖rH‖ is upper bounded by a maximum
distance Rmax.

This assumption is due to the fact that when ‖rH‖ be-
comes large, the linearization used in obtaining the equations
of motion given in (12) breaks down and is no longer valid.

Lemma III.2. A maximum control input of

umax ≥ (3n2 + 2nν1 + ν21)Rmax + (2n+ ν1)ν0 (20)

guarantees that h1(x) = ϕ1(x).

Proof: Assume that the system is at a point on the boundary
of ϕ1(x), i.e., ϕ1(x) = 0. Since the environment is spher-
ically symmetric, the problem can be considered in polar
coordinates, where only the radial component of the velocity
affects whether the constraint is satisfied at a future instant
in time. Denote the radial and tangential components of the
velocity vector as vr and vθ, respectively. Note that vθ does
not affect the radial component of the position, rr, and only
causes the point to travel along the level set ϕ1(x) = 0.

A lower bound on umax is defined that guarantees the con-
trol invariance of CS by inspecting the worst-case scenario.
This scenario occurs when ‖rH‖ = Rmax, ‖vH‖ = vmax,
and rr and −vr are pointed in the x̂ direction. Given the
dynamics in (12), the worst-case acceleration occurs in the ẋ-
component when x = [−Rmax, 0, 0, 0,−vmax, 0]

T , and thus,

ur = umax − 3n2Rmax − 2nvmax. (21)

In this case,

d

dt
(‖rH‖) = −vr,

d

dt
(‖vH‖) = ur. (22)

To ensure safety, the following condition must hold (noting
that both terms are negative),

d

dt
(ν1‖rH‖) ≤

d

dt
(‖vH‖) =⇒ ν1vr ≤ ur. (23)

Given Assumption III.1, vmax = ν1Rmax + ν0. By stating
that vr = vmax,

ν21Rmax + ν1ν0 ≤ ur (24)

where ur is the worst-case acceleration. By substituting and
rearranging terms, it can be found that h1(x) = ϕ1(x) if

umax ≥ (3n2 + 2nν1 + ν21)Rmax + (2n+ ν1)ν0. � (25)

Lemma III.3. A maximum control input of

(3n2x+ 2nẏ)2 <
(umax

m

)2
, (−2nẋ)2 <

(umax

m

)2
,

(−n2z)2 <
(umax

m

)2
,

(26)
guarantees that h2(x) = ϕ2(x), h3(x) = ϕ3(x), and
h4(x) = ϕ4(x) respectively.

Proof: From (12), in order for the safety constraints to be
control invariant, the magnitude of acceleration from the term
Bu must be greater than the magnitude of acceleration from
the term Ax to ensure the velocity components of the state
vector x are controllable. This becomes,

(3n2x+ 2nẏ)2 <
(umax

m

)2
, (−2nẋ)2 <

(umax

m

)2
,

(−n2z)2 <
(umax

m

)2
(27)

for ẋ, ẏ, and ż respectively. �

Assumption III.4. For this paper, u ∈ [−1, 1]3 N, n =
0.001027 rad/s, m = 12 kg, ν0 = 0.2 m/s, ν1 = 4n, vmax =
10 m/s, and Rmax = 10 km.

CS is dependent on a specific control law and system
dynamics, and therefore it varies depending on the system.
Given Assumption III.4, both Lemma III.2 and Lemma III.3
are valid, and therefore CS = CA and CS is control invariant.

D. Defining the Backup Set

Solutions to (12) where u = 0 are known as natural
motion trajectories (NMTs) [18]. Elliptical closed NMTs
centered at the origin are periodic solutions that also satisfy,

ẏ(0) = −2nx(0), ẋ(0) =
n

2
y(0). (28)

Elliptical NMTs are useful because they provide conve-
nient “parking orbits” in the event of a fault, where the
spacecraft will stay on the NMT for all time without using
fuel. Note that since elliptical NMTs are a set of closed
trajectories, they create an invariant set. Additionally, all
elliptical NMTs satisfy the following equations,

x(0) = b sin(ν), ẋ(0) = bn cos(ν),

y(0) = 2b cos(ν), ẏ(0) = −2bn sin(ν),
z(0) = c sin(ψ), ż(0) = nc cos(ψ),

(29)

where,

c =
b

sin θ1

√
tan2 θ2 + 4 cos2 θ1,

ν = tan−1

(
2
cos θ1
tan θ2

)
− ψ.

(30)

In these equations, b is the semi-minor axis, θ1 and θ2 are
angles from the x−y plane and the y−z plane to the angular
momentum vector as shown in Figure 3, and ψ is the phase
angle. To ensure that CB ⊆ CS, it must be proven that CS
contains CB.

Lemma III.5. CB ⊆ CS if CB contains a set of elliptical
NMTs adhering to the constraints,

tan2 θ2 + 4 cos2 θ1

sin2 θ1
≤
(ν1
n

)2
− 4,

b ≤ vmax

2n
, c ≤ vmax

n
,

(31)

Proof: Consider the point on an elliptical NMT where ‖rH‖
is minimized and ‖vH‖ is maximized. If h1(x) ≥ 0 at this



Fig. 3: Depiction of angles θ1 and θ2 for an elliptical NMT.

point, this condition will hold for the entire NMT. At this
point, ν = π

2 and ψ = 0. Evaluating (29) at this point and
assuming ν0 = 0, the constraint becomes,√

(2bn)2 + (nc)2 ≤ ν1
√
(b)2 (32)

which can be simplified to,

c2 ≤ b2
[(ν1

n

)2
− 4

]
. (33)

Substituting c and simplifying:

tan2 θ2 + 4 cos2 θ1

sin2 θ1
≤
(ν1
n

)2
− 4. (34)

Next, consider the point along each axis where the el-
liptical NMT reaches its maximum velocity. If (17) is not
violated at these points, then it will never be violated for the
entire NMT. These points are, ẋ = bn, ẏ = 2bn, and ż = cn.
The constraint then becomes,

bn ≤ vmax, 2bn ≤ vmax, cn ≤ vmax (35)

and therefore,

b ≤ vmax

2n
, c ≤ vmax

n
. � (36)

E. Control Law to Safe Backup Set

An LQR tracking controller is used to guide the spacecraft
to the backup set, similar to the method used in [18]. The
controller first computes a discrete set of NMTs that are part
of CB, then guides the spacecraft to the closest point based
on position to one of the NMTs. Once the l2 norm between
the spacecraft position and desired position is less than a set
value ε, the desired position begins to update based on the
dynamics of the system. Since the desired point starts on an
NMT, it will stay on the NMT for all time.

Both the implicit switching and implicit optimization RTA
filters use this LQR controller as a backup controller to
compute the backup trajectory. The explicit switching filter
uses a simpler backup controller, where ub is determined
to be the value for u that causes hi(x) = 0 when the
ith constraint is violated. Since multiple constraints can be
violated at once, the RTA must have a hierarchy to determine
which constraints take precedence. In this case, the distance

dependent speed limit is given higher priority and is therefore
evaluated second within ub.

The four RTA filters developed in this paper are all Plan
B RTA approaches, where the system can frequently switch
between the RTA filter output and the Plan A primary
controller to assure safety in real time. The implicit methods
use a Plan C backup controller, which guides the spacecraft
to a known invariant safe state along an elliptical NMT.
Although not used for this problem, an example of a Plan D
RTA filter for spacecraft docking is “sun safe mode,” where
the spacecraft points its antenna at the Earth and solar panels
at the Sun to prevent complete loss [4].

IV. SIMULATION RESULTS

An unconstrained LQR controller is used to guide the
deputy spacecraft to the origin to simulate docking. This con-
troller is aggressive and does not consider safety constraints,
and is therefore a good example to prove the effectiveness of
the four RTA approaches. Each simulation is initialized with
the same initial conditions to directly compare the results,
where ‖rH‖ = 9.85 km, ‖vH‖ = 0.866 m/s, and the position
of the chief is [x, y] = [0, 0]. Euler integration with a time
step of 1 second is used to simulate the dynamic system. For
the implicit methods, the backup trajectories are evaluated
over a period of 5 seconds.

A. Results

This section shows the results of one simulation for each of
the four RTA filters. In these figures, the green shaded region
represents CS, the red shaded region represents all unsafe
states, and the black dotted lines represent where hi(x) = 0.
Figure 4 shows the results of a simulation where no RTA
is used to demonstrate the unsafe nature of the primary
controller.

Figure 5 shows the simulation results for all four RTA
filters. For the explicit switching filter, when the primary
controller is pushing the system into an unsafe state, RTA
intervenes to ensure hi(x) = 0. For the explicit optimization
filter, RTA begins to intervene as the system approaches
the boundary of CS, and prevents it from ever touching the
boundary. For the implicit switching filter, there is unde-
sirable “chattering,” where the filter is frequently switching
between the primary and backup controllers. Lastly, the
behavior of the implicit optimization filter is shown to be
visually identical to the explicit optimization filter.

Finally, the computation time for each approach is com-
pared in Table I. The average computation time over 100
simulations is calculated and then normalized by the smallest
time (explicit switching) for comparison.

TABLE I: Comparison of Computation Time.

RTA Filter Time Multiple Standard Deviation
Explicit Switching 1.00x 0.03

Explicit Optimization 3.25x 0.13
Implicit Switching 11.31x 1.05

Implicit Optimization 13.33x 0.52



(a) Dist. Dependent Speed Limit. (b) Maximum Velocity Limit.

Fig. 4: Simulation Results with No RTA.

(a) Dist. Dependent Speed Limit. (b) Maximum ẋ Limit.

(c) Maximum ẏ Limit. (d) Maximum ż Limit.

Fig. 5: Comparison of RTA Approaches.

V. CONCLUSION

This paper presented four approaches to run time assur-
ance: explicit switching, implicit switching, explicit opti-
mization, and implicit optimization. These approaches were
compared through application on a safe satellite docking
problem. Due to their faster computation times, explicit
approaches are recommended if a control invariant set can
be defined. However, explicit safe sets can be difficult
to define as complexity of system dynamics and safety

constraints increases, which make implicit approaches a
popular choice. Switching approaches are recommended
for use in processing-constrained and faster-than-real-time
applications due to their faster computation time. Optimiza-
tion approaches are recommended when computationally
tractable for physical testing and operational use due to their
minimal interference with the primary controller and their
ability to better handle multiple constraints. Overall, all four
approaches effectively assure safety in real time.
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