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Distributed event-triggered flocking control of
Lagrangian systems

Ernesto Aranda-Escolástico, Leonardo J. Colombo, Marı́a Guinaldo.

Abstract—In this paper, an event-triggered control pro-
tocol is developed to investigate flocking control of La-
grangian systems, where event-triggering conditions are
proposed to determine when the velocities of the agents
are transmitted to their neighbours. In particular, the pro-
posed controller is distributed, since it only depends on
the available information of each agent on their own refer-
ence frame. In addition, we derive sufficient conditions to
avoid Zeno behaviour. Numerical simulations are provided
to show the effectiveness of the proposed control law.

Index Terms— Event-triggered control, flocking, La-
grangian systems.

I. INTRODUCTION

F
LOCKING, swarming, and schooling are common emer-

gent collective motion behaviors exhibited in nature.

These natural collective behaviors can be leveraged in multi-

robot systems to safely transport large cohesive groups of

robots within a workspace [1]. To capture these effects,

Reynolds introduced three heuristic rules in [2]: cohesion;

alignment; and separation, to reproduce flocking motions in

computer graphics. Later, these rules were used to construct

flocking control algorithms. In [3], the authors designed a

control law that captures the following three Reynolds rules by

using a collective potential function and a velocity consensus

term:

• Cohesion: Each agent should stay close to its neighbours.

• Separation: Agents cannot collide with their neighbours.
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• Alignment: Each agent should synchronize its velocity with

its neighbours.

Further, in [4] a theoretical framework was presented for the

design and analysis of distributed flocking control algorithms

based on leader-follower protocols. Since then, a great effort

has been dedicated to the study of flocking control algorithms

[5]–[7].

In this work, we continue with the understanding of flocking

control as satisfying the Reynolds’ rules [2] to study flocking

control of Lagrangian systems, since they capture a large class

of nonlinear control systems which appears, for instance, in

robotic applications.

Despite flocking control of agents with double integrator

dynamics has been widely studied in the literature [8], [9],

[10], only a few authors have proposed solutions for the flock-

ing problem of mechanical systems. In [11], a first approach

based on a gradient algorithm is proposed. Recently, flocking

for uncertain Euler-Lagrange systems has been proposed in

[12]–[16]. The case of global connectivity maintenance was

considered in [17]; other associated problems such as input

saturation [18] or actuator faults [19] have also been solved.

However, none of those works consider the problem of com-

munication between the agents.

When the system under study involves a large number of

agents, then the communication resources might be limited.

In this context, event-triggered control has been proved to

be a powerful tool to reduce the communication between the

agents [20]–[22]. Event-triggered flocking control has been

previously studied in nonlinear Lipschitz systems [23]–[25].

Nevertheless, Euler-Lagrange systems provide a larger class

of systems to be modeled enabling the implementation of

the strategy in a wide range of areas. In this regard, there

exist recent contributions handling different cooperative con-

trol objectives for Euler-Lagrange systems, such as consensus

[26], [27], formation containment [28], synchronization [29]

and targeted shape control [22], but none of them includes

stable flocking control under event-triggered communication

for multi-agent Lagrangian systems.

The main contribution of this article is the development of a

novel event-triggered control protocol for stable flocking con-

trol of multi-agent Lagrangian systems, where event-triggering

conditions are proposed to reduce the amount of communi-

cation required to achieve the control objective. Respect to

the existing works on cooperative control of Euler-Lagrange

systems, the proposed control law and trigger function neither

require the knowledge of the model parameters [26] nor its
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partial linearization to implement adaptive control laws [27]–

[29]. We further provide sufficient conditions to avoid Zeno

behavior in the proposed setting with a trigger function that

only depends on the local error and broadcasted states, and

does not require additional variables to exclude the Zeno

behavior [27].

We begin by reviewing the background about graph theory

and forced Euler-Lagrange equations for flocking control in

Section II. Section III addresses the problem of event-triggered

control for flocking of Euler-Lagrange systems and provide

sufficient conditions to avoid Zeno behaviour. Finally, a nu-

merical example with a swarm of 50 underwater vehicles is

presented in Section IV.

II. BACKGROUND AND PROBLEM FORMULATION

We begin by introducing the neccessary concepts on graph

theory and Lagrangian mechanics used along the paper.

A. Graph theory

Consider an undirected graph denoted by G = (N , E)
where N = {1, 2, ..., s} denotes a finite and nonempty set

of nodes and E ⊂ N × N a set of unordered pairs of

nodes. Denote by |N | the cardinality of the set N . Neighbor’s

relationships of an agent i ∈ N are described by the set

Ni := {j ∈ N : {j, i} ∈ E}.

An arc {j, i} ∈ E describes that nodes i, j receive each

other’s information reciprocally. A path between i1 and ik,

k ≤ |N |, is a sequence of arcs of the form {i1, i2},

{i2, i3}, . . . , {ik−1, ik}. If each node of an undirected graph

G has an undirected path to any other node, then G is said to

be connected. Besides, A ∈ R|N |×|N| denotes the adjacency

matrix, a matrix A = [aij ]|N |×|N| defined by aij > 0 if

{j, i} ∈ E and aij = 0 otherwise. Since G is undirected,

A is a symmetric matrix, i.e. aij = aji, for all i, j ∈ N .

B. Agents Dynamics: Forced Euler-Lagrange equations

Consider s ≥ 2 autonomous agents whose positions are

denoted by qi ∈ Rd, and denote by q ∈ Rd|N | the stacked

vector of agents’ positions.

The neighbor relationships between agents are described by

the undirected graph G which is assumed to be time-invariant

and connected. The stacked vector of relative positions be-

tween neighboring agents, denoted by z ∈ Rd|E|, is given

by z = B
T
q, where B := B ⊗ Id ∈ Rd|N |×d|E|, with B

being the incidence matrix for G. Note that zk ∈ Rd and

zk+|E| ∈ Rd in z correspond to qi − qj and qj − qi for the

edge Ek. Define zk := qi−qj and consider the desired distance

between neighboring agents over the edge Ek as dk.

Next, assume the motion of the agent i ∈ N is determined

by a Lagrangian function Li : R
d×Rd → R, that is, the Euler-

Lagrange equations for Li describe the dynamics for the agent.

The Lagrangian function for agent i ∈ N , in generalized

coordiantes, is given by Li(qi, q̇i) = Ki(qi, q̇i)−Ui(qi) where

Ki and Ui are the kinetic and potential energies, respectively.

While conservative forces are included into the potential

energy, a non-conservative force between agents on an edge

can be defined by a smooth map Fij : (R
d×Rd)×(Rd×Rd) →

(Rd × Rd) × (Rd × Rd). For instance, Fij can describe

consensus in the velocities between two agents. Lagrange-

d’Alembert principle [30] implies that the natural motions

of the system are those paths q ∈ C∞([0, T ], (Rd × Rd))

satisfying δ
∫ T

0 Li(qi, q̇i) dt +
∫ T

0 Fij(qi, qj , q̇i, q̇j)δqi dt = 0,
for all variations vanishing at the end points, i.e., δqi(0) =
δqi(T ) = 0. Note that the second term is the virtual work

since Fij(qi, qj , q̇i, q̇j)δqi is the virtual work done by the force

field Fij with a virtual displacement δqi. Lagrange-d’Alembert

principle leads to the forced Euler-Lagrange equations

d

dt

(
∂Li

∂q̇i

)

−
∂Li

∂qi
= Fij(qi, qj , q̇i, q̇j), i ∈ N , j ∈ Ni. (1)

We can expand the forced Euler-Lagrange equations, by

computing the time derivative. Expanding the previous expres-

sion, equations (1) takes the form

∂2Li

∂q̇i∂qi
︸ ︷︷ ︸

Ci(q,q̇)

q̇i +
∂2Li

∂q̇i∂q̇i
︸ ︷︷ ︸

Mi(q,q̇)

q̈i = Fij(qi, qj , q̇i, q̇j) +
∂Li

∂qi
︸︷︷︸

gi(q)

. (2)

Equations (1) determine a system of implicit second-

order differential equations. The Lagrangian Li is said

to be regular (see for instance [31]), if for each i ∈
N , the (d|N | × d|N |) block matrix M(qi, q̇i) with blocks

Mi(qi, q̇i) :=
(

∂2Li

∂q̇i∂q̇i

)

d×d
is non-singular. In such a case,

the local existence and uniqueness of solutions is guaranteed

for any given initial condition.

Remark 1: Note that the flocking stabilization systems (i.e.,

flocking control for double-integrator agents [8], [10]) can be

seen as forced Euler-Lagrange equations (1) by considering

the Lagrangian function L : Rd|N | × Rd|N | → R given by

L(q, q̇) =
1

2

|N |
∑

i=1

(

||q̇i||
2 −

∑

j∈Ni

Vij(qi, qj)
)

, (3)

together with Fij =
∑

j∈Ni

(q̇j − q̇i) and q̇i = vi.

C. Problem formulation

Consider a network given by s ≥ 2 agents, each one with a

dynamics evolving according to the Euler-Lagrange equations

associated with the Lagrangian Li : Rd × Rd → R. The

network is modelled by an undirected graph G = (N , E) that

is assumed to be connected and time-invariant.

From equations (2) we can identify the Coriolis and Mass

matrices associated with the Lagrangian Li. These matrices

must satisfy (see for instance [31]):

(P1) Mi(q, q̇) is positive definite and bounded for any qi ∈
R

d and i ∈ N . That is, there exists αi, αi ∈ R>0 such

that αiId×d ≤ Mi(qi, q̇i) ≤ αiId×d.

(P2) Ṁi(qi, q̇i)−2Ci(qi, q̇i) is skew-symmetric, for each i ∈
N .

(P3) Ci(qi, q̇i) is bounded w.r.t. qi for each i ∈ N and

linearly bounded w.r.t. q̇i. That is, there exists ζi ∈ R>0

such that for all i ∈ N , ||Ci(qi, q̇i)|| ≤ ζi||q̇i||.
(P4) If q̇i, q̈i ∈ L∞, then d

dt
Ci(qi, q̇i) is a bounded operator.



The goal is to show that under these conditions agents can

achieve flocking motion based on Raynolds rules of alignment,

cohesion and separation under an event-triggered framework.

It is assumed that each agent is equipped with the following

sensing and communication capabilities:

(A1) Agent i ∈ N is able to measure the distance to its

nearest neighbours continuously.

(A2) Agent i ∈ N transmits its velocity to its neighbours at

fixed instants of time, which should be determined.

Note that these are assumptions that agree with the reality,

in the sense that many mobile robots are equipped with a

set of sensors that allow them to measure its velocity and

relative positions respect to other robots or obstacles. However,

getting a measurement or an estimation of other agents’

velocities is not easy, and flocking control requires agents to

exchange this information to synchronize themselves with their

nearest neighbors. Otherwise, additional assumptions over the

system model and a significant increase on the computation

onboard are needed [28], [29], [32]. Though recent works have

addressed the problem of achieving cooperative control objec-

tives in multi-agent systems with position measurements only

(such as in [33] for the consensus problem of double integrator

agents), the design of observers in cooperative Euler-Lagrange

systems is generally high dimensional and complex [34]–[36].

Hence, we propose to employ an event-based strategy for the

transmission of the velocity measurements in order to reduce

the communication exchange. In an event-triggered policy, the

agent j ∈ Ni sends the information at instants tjk with k ∈ N

and these measurements are obtained by the agent i ∈ Nj .

III. CONTROLLER DESIGN

In this section we provide an event-triggered control law for

flocking of Euler-Lagrange systems. In particular, we consider

s ≥ 2 agents with dynamics described by the Euler-Lagrange

equations as in Section II-B. Note that we can write equations

(2) as

Mi(qi)q̈i +Ci(qi, q̇i)q̇i = Fi, (4)

where Mi and Ci satisfies properties (P1)-(P4) and Fi :=
Fij(qi, qj, q̇i, q̇j)+gi(qi) is the control law to be designed for

each agent to satisfy Raynolds rules for flocking. According

to the Reynolds model [2], the motion of each agent in the

flock is defined by the three rules of alignment, cohesion and

separation, weighted by positive constant coefficients αi and

βi. We will refer to them as Reynolds gains.

To satisfy these rules, we consider for each agent a term in

the control law based on the gradient of the potential function

Vi =
∑

j∈Ni

Vij(‖zk‖). (5)

In particular, Vi must be nonnegative, of class C∞, and also its

component functions Vij must satisfy the following properties

as it was stated in [3]:

(V1) Vij → ±∞ whenever ‖zk‖ → 0.

(V2) Vij possesses a unique minimum and it occurs when

‖zk‖ is dk, that is, when agents on an edge are separated

at the desired distance dk.

Additionally, to be able to avoid Zeno behavior, we consider

that Vij also satisfies

(V3) ∇qiVij is bounded whenever ‖zk‖ → ∞.

Under these assumptions, the acceleration of agent i is

determined by its neighbors Ni as follows:

q̈i = −αi

∑

j∈Ni

∇qiVij − βi

∑

j∈Ni

(q̇i(t)− q̇j(t)). (6)

Remark 2: Note that the first term of the control law is

devoted to cohesion and separation of the agents, while the

second term is included in the control law to guarantee the

alignment between agents. Note also that the choice of the

gain values in the Reynolds flocking is not unique and in

many situations it is application-dependent. For instance, in

operations of maximal area coverage, increasing the separation

gain could help to amplify the spreading of the robots. Instead,

in operations that require the flock to squeeze through narrow

canyons, the cohesion could be increased to make the group

fit into a reduced space.

The control law (6) requires that each agent i has access to

the relative state zk = qi − qj and velocity q̇j of its neighbors

j ∈ Ni. By assumption (A1), each agent i can measure the

distance to its neighbours, and according to (A2), it shares

its velocity with them. Thus, an event-triggered mechanism is

considered to reduce the communication between the agents

maintaining an appropriate performance.

If the velocity of agent i ∈ N is transmitted to its controller

and its neighbours in the instants tik, then the second factor

on the left hand side of (6) becomes

− βi

∑

j∈Ni

(q̇i(t
i
k)− q̇j(t

j
k)), (7)

where tjk is the triggering time to be defined. To determine

these triggering instants, we consider the error vector

ei(t) = q̇i(t
i
k)− q̇i(t), (8)

for any t ∈ [tik, t
i
k+1) such that

tik+1 = inf {t > tk : fi(ei(t), q̇i(t)) > 0} , (9)

where fi : R
d ×Rd → R is the triggering function for the ith

agent given by

fi(t, ei(t)) =‖ei(t)‖

−
σi

∑

j∈Ni
βi‖q̇i(tik)− q̇j(t

j
k))‖

2

2‖
∑

j∈Ni
βi(q̇i(tik)− q̇j(t

j
k))‖

,
(10)

where σi ∈ R>0 determines the number of triggered events.

Hence, the proposed control law for the coordination of mul-

tiple mechanical systems satisfying Reynold rules of flocking,

based on an event-triggered protocol, is given by

Fij(qi, qj, q̇i, q̇j) =− αi

∑

j∈Ni

∇qiVij −
∂L

∂qi
(11)

− βi

∑

j∈Ni

(q̇i(t
i
k)− q̇j(t

j
k)),



so, the control law Fi for agent i ∈ N is given by

Fi(qi, qj , q̇i, q̇j) =− αi

∑

j∈Ni

∇qiVij (12)

− βi

∑

j∈Ni

(q̇i(t
i
k)− q̇j(t

j
k)).

The next result shows convergence to flocking motion with

the designed event triggered control law.

Theorem 1: Under the sensing and communication assump-

tions (A1)-(A2), a network of s ≥ 2 agents with dynamics (4)

and control law (12) achieves stable flocking if the control

gain and the parameter of the event-triggering function (10)

fulfill βi > 0 and 0 < σi < 1 for all i ∈ N , respectively.

Proof: Consider as a candidate Lyapunov function

V =

|N |
∑

i=1

∑

j∈Ni

αiVij +
1

2

|N |
∑

i=1

q̇⊤i Miq̇i. (13)

Its time derivative is

V̇ =

|N |
∑

i=1

∑

j∈Ni

αiq̇
⊤
i ∇qiVij (14)

+

|N |
∑

i=1

(q̇⊤i Miq̈i +
1

2
q̇⊤i Ṁiq̇i).

By using equation (2), equation (14) can be written as

V̇ =

|N |
∑

i=1

∑

j∈Ni

αiq̇
⊤
i ∇qiVij +

|N |
∑

i=1

1

2
q̇⊤i Ṁiq̇i.

−

|N |
∑

i=1

∑

j∈Ni

q̇⊤i [Ciq̇i + αi∇qiVij + βi(q̇i(t
i
k)− q̇j(t

j
k))].

Using the fact that (Ṁi−2Ci) is skew-symmetric and group-

ing, αi-terms and consequently cancelling out the αi terms,

then V̇ reduces to V̇ = −
∑|N |

i=1 q̇
⊤
i

∑

j∈Ni
βi(q̇i(t

i
k)−q̇j(t

j
k)).

Note that by using the fact that q̇⊤i = q̇⊤i (t
i
k)− e⊤i , then

V̇ =−

|N |
∑

i=1

q̇⊤i (t
i
k)

∑

j∈Ni

βi(q̇i(t
i
k)− q̇j(t

j
k))

+

|N |
∑

i=1

e⊤i
∑

j∈Ni

βi(q̇i(t
i
k)− q̇j(t

j
k)).

(15)

On the one hand, since the graph is undirected and

connected, the first term in (15) can be rewritten

such as −
∑|N |

i=1 q̇
⊤
i (t

i
k)

∑

j∈Ni
βi(q̇i(t

i
k) − q̇j(t

j
k)) =

− 1
2

∑|N |
i=1

∑

j∈Ni
βi‖q̇i(tik)− q̇j(t

j
k)‖

2. On the other hand, the

second term can be bounded as
∑|N |

i=1 e
⊤
i

∑

j∈Ni
βi(q̇i(t

i
k) −

q̇j(t
j
k)) ≤

∑|N |
i=1 ‖ei‖‖

∑

j∈Ni
βi(q̇i(t

i
k) − q̇j(t

j
k)‖. So, under

the event-triggering condition given by (10) and from (15), we

obtain that

V̇ ≤ −
1

2

|N |
∑

i=1

(1− σi)
∑

j∈Ni

βi‖q̇i(t
i
k)− q̇j(t

j
k)‖

2 ≤ 0. (16)

This implies that V is bounded and has a limit. Therefore,

limt→∞ ‖q̇i(tik)− q̇j(t
j
k)‖ = 0. Observing (8) and (16), this

implies that ei → 0 when t → ∞ and, consequently, ‖q̇i −
q̇j‖ → 0 when t → ∞. Moreover, since V is bounded, then Vij

is also bounded. Thus, collisions between the interconnected

agents are avoided, because of (V1), i.e, since Vij → ±∞
when ‖zk‖ → 0. �

In any event-triggered control framework is important to

show that Zeno behaviour is avoided. Next we provide suffi-

cient conditions to avoid Zeno behaviour.

Corollary 1: The event-triggered control law (12) avoids

Zeno behaviour whenever (V3) holds.

Proof: We next show that a minimum interevent time 0 ≤
tm ≤ tik+1−tik exists for all i ∈ N . To do that, let us consider

the time derivative of ei for t ∈ [tik, t
i
k+1),

d

dt
ei(t) = −q̈i = M−1

i (qi)
(

αi

∑

j∈Ni

∇qiVij(t)

+ βi

∑

j∈Ni

(q̇i(t
i
k)− q̇j(t

j
k)) +Ci(qi, q̇i)q̇i

)

.

By properties (P1)-(P3), Mi(qi) and Ci(qi, q̇i) are bounded. q̇i
is bounded because we have shown that the Lyapunov function

is bounded in Theorem 1. Therefore, since ∇qiVij(t) is also

bounded, then

d

dt
‖ei(t)‖ ≤ ‖ėi(t)‖ ≤ l, (17)

where l is a positive constant. Taking t ∈ [tik, t
i
k+1), we obtain

‖ei(t)‖ ≤ l(t−tik) ≤ l(tik+1−tik). Thus, tik+1−tik ≥ ‖ei(t)‖/l
which is larger than 0 if ei(t) 6= 0. Since ei(t) = 0 is

maintained only if the control objectives are achieved, the

Zeno effect is avoided. �

IV. NUMERICAL EXAMPLE

In this section, we test the distributed event-based control

law (12) with a network of underwater vehicles. A detailed

model of the vehicles is described in [22]. We consider a

network of s = 50 fully actuated vehicles (rigid bodies)

evolving on the special Euclidean group SE(3) of rigid

motions in the space. Any element of SE(3) is given by

gi =

[
Ri bi
0 1

]

with Ri ∈ SO(3) describing the orientation

for the ith-body as a rotation matrix and bi = (bxi , b
y
i , b

z
i ) ∈ R

3

is the position of the center of mass for the ith-body in

inertial frame, with ḃi = (ḃxi , ḃ
y
i , ḃ

z
i ) representing the velocity

vector for agent i in the directions x, y, z, respectively. The

graph defining the neighbor’s relations is randomly generated

(ensuring that it is connected and undirected).

Besides, in some rigid body applications, the mass matrix

is usually given by Mi = miIi where mi is the mass of the

body and Ii its matrix of inertia moments. We will consider

models for underwater vehicles where the elements of Mi may

be different due to the fact that added masses have to be taken

into account.

For simplicity in the model, assume that possible dissipating

forces acting on the body under the water are negligible. The

potential energy for the ith underwater vehicle is given by

Ui(Ri, bi) = ργ̄ig〈r̄i, RT
i e3〉+ (ργ̄i −mi)gb

z
i , where g is the



Fig. 1. Trajectory in the space for the center of mass of the agents.
Final states are represented by a cross “×”.

gravitational acceleration, mi are the masses of each body,

ρ, is the density of water, γ̄i is the volume of each body,

and r̄i ∈ R3 is a vector from the center of gravity to the

center of buoyancy (in the body fixed frame) of each body.

The positive z-axis in R
3 for each body, i.e., bzi , is taken to

point downwards in the same direction as the gravity. Under

these considerations, the control equations are given by

Ṙi =RiΩ̂i, ḃi = Riνi,

Miν̇i =Miνi × Ωi −RT
i (mi − ργ̄i)ge3 + ui

JiΩ̇i =JiΩi × Ωi +Miνi × νi − ργ̄igr̄i × (RT
i e3) + ūi,

for i = 1, 2, 3, with Ωi = (Ω1
i ,Ω

2
i ,Ω

3
i ) ∈ R3 orientation

of agent i and Ω̂ its associated skew-symmetric matrix under

the hat isomorphism ·̂ : R3 → so(3) [31]. For numerical

simulations we consider all rigid bodies have mass (including

added masses) mi = 123.8 kg, and inertia matrices Mi =
miIi+diag(65, 70, 75) kg, Ji = diag(5.46, 5.29, 5.72) kg×m2

and Ii = Id3×3 kg× m2, with Id3×3 the (3×3)-identity matrix.

Also assume that ργ̄ig = 1215.8 N and r̄i = (0, 0,−0.007)T

m. We set the parameters of the control law and the event-

triggering condition as βi = 10 and σi = 0.01 for i = 1, ..., 50,

respectively. We choose the potential function described in

[37], which satisfies (V1)-(V3) and whose gradient is

∇qiVij =







(0, 0, 0) ‖zk‖ > R
2πzk sin(2π(‖zk‖−dk))

‖zk‖
zk < ‖zk‖ ≤ R

20 zk
‖zk‖

‖zk‖−dk

‖zk‖
‖zk‖ ≤ dk

,

where dk = 0.5 m and R > maxk dk is a positive constant

set to 1. Initial conditions are also randomly choosen.

In Figure 1, we can observe the trajectory followed by the

agents. First, agents are distanced by the repulsive potential

while consensus in linear velocities is achieved and the agents

maintain the formation (Figure 2, the velocities of the agents

converge to three values corresponding to x, y, z directions).

From the communication point of view, the average number

of generated events is 99, i.e., each agent transmitted its

velocity 99 times (in average) to their neighbours, so the

average inter-event time is 2.02 s. The agent 44 generated

the minimum number of transmissions (62) to its neighbours,

while the agent 6 generated the maximum number (144). To

illustrate the distribution of events over time, three agents

Fig. 2. Linear velocities of the agents.
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Fig. 3. Example of events triggered in 3 agents.

have been selected (agents 1, 25 and 50), and the instances

of event times are depicted as example in Figure 3. At the

beginning, the agents need to exchange information of their

velocities very frequently (but not continuously according to

Corollary 1). However, once they are close to the consensus in

velocities, the transmission of information is clearly reduced

and communication resources are optimized.

We evaluate flocking behavior through the metrics described

in [38]. The average minimum distance to a neighbor measures

the cohesion between the agents. In this case, due to the nature

of the potential, the distance between the agents is stabilized

far enough to avoid collisions. Since the graph is fixed, we can

use the average velocity difference to measure the consensus

of velocities in 3D, which is clearly achieved in the example.

These results are depicted in Figure 4.

V. CONCLUSIONS

We have designed an event-triggered control protocol for

flocking control of multi-agent Lagrangian systems. In par-

ticular, the proposed controller in this work is distributed: it

only depends on the available information of each agent on

their own reference frame, the velocity of its neighboors at

event times, and to the desired distance to the neighboors. We

have also provided sufficient condition to avoid Zeno behavior.

The results show that the control objective is achieved while

the amount of communication is reduced thanks to the event-

triggering communication. Future work includes extension to
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Fig. 4. Flocking metrics. Average minimum distance to a neighbor in
violet. Average velocity difference in orange.

system with delays and underactuated systems with partially

unknown dynamic.
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