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Disturbance Bounds for Signal Temporal Logic Task Satisfaction:
A Dynamics Perspective
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Abstract—This letter offers a novel approach to Test and
Evaluation of pre-existing controllers from a control barrier
function and dynamics perspective. More aptly, prior Test
and Evaluation techniques tend to require apriori knowledge
of a space of allowable disturbances. Our work, however,
determines a two-norm disturbance-bound rejectable by a
system’s controller without requiring specific knowledge of these
disturbances beforehand. The authors posit that determination
of such a disturbance bound offers a better understanding of
the robustness with which a given controller achieves a specified
task - as motivated through a simple, linear-system example.
Additionally, we show that our resulting disturbance bound is
accurate through simulation of 1000 randomized trials in which
a Segway-controller pair successfully satisfies its specification
despite randomized perturbations within our identified bound.

[. INTRODUCTION

While there exist multiple temporal logic formalisms,
two of increasing interest in the controls community are
Linear Temporal Logic and Signal Temporal Logic [1]-
[3]. This interest arises as these logical schemes offer suc-
cinct ways of expressing complex, desired behavior, while
also providing necessary and sufficient criteria by which to
determine if a system has achieved this behavior [3]-[6].
As a result, there has been significant work utilizing these
specification schemes and associated satisfaction criteria to
develop optimization-based control schemes that enforce
satisfaction of these behavioral specifications [7]-[11]. Addi-
tionally, these formalisms and satisfaction criteria have also
prompted the development of evaluation schemes to test a
controllers ability to realize these desired system behaviors
when experiencing environmental disturbances [12]-[18].
Finally, the authors note that there has also been significant
work aimed at developing controllers that robustly reject
these environmental disturbances, most recently with active
disturbance rejection control [19]-[22].

However, this leads to a question we aim to explore in
this work. As mentioned prior, existing work in the Test
and Evaluation community endeavors to test and evaluate
a controller’s ability to realize desired system specifications
while subject to environmental disturbances. These proce-
dures typically amount to an optimization problem over the
feasible space of these disturbances, requiring identification
of the allowable disturbances beforehand [23]. As such, the
authors posit that it might be more fruitful were we to
identify the level of disturbance that a given controller can
reject as opposed to determining the worst-case disturbance
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from a given set. More accurately, can we use a system
model and model-theoretic control techniques to identify a
two-norm disturbance-bound that our controller can reject
whilst still satisfying its incumbent specification?

Our Contribution: Our contribution is twofold. First, we
construct two optimization problems that each generate two-
norm disturbance-bounds rejectable by a system’s controller
while it steers its system to satisfy its specification. Each
optimization problem focuses on a specific subset of Signal
Temporal Logic, and we use their solutions to construct
our system-level bound. Secondly, we show that our gen-
erated bound is accurate. Over 1000 simulated Segway runs
where disturbances are sampled randomly from within our
prescribed norm-bound, we show that the Segway-controller
pair rejects disturbances within our identified bound and
achieves its Signal Temporal Logic task. For context, the
subset of STL tasks studied in the sequel is consistent with
prior works in the controls literature [9], [10], [24].

Organization: Section [[I] details some background material
in Subsection [[I-Al motivates our problem in Subsection [[I-
and formally states our problem in Subsection Then,
Section details our main contributions - the optimiza-
tion problems determining two-norm disturbance-bounds re-
jectable by a system’s controller. Finally, Section illus-
trates our results through a simulated Segway example.

II. PROBLEM FORMULATION

This section will detail some necessary background mate-
rial for the sequel - specifically Signal Temporal Logic and
Control Barrier Functions. We will start with some notation.

Notation: || - || is the 2-norm over R”. Ry = {z € R | = >
0}, R4y = {z € R| « > 0}. A function f : R — R
is Lipschitz continuous if and only if 3 L € R, such that
|f(z)— f(2)] < L||z—z||. A continuous function o € K¢ o
if and only if « : (—00,00) = R, a(0) = 0, r > s implies
a(r) > a(s), and lim, o, a(r) = co. For any continuously
differentiable function h : R™ — R, a € R is a regular value
if and only if D h(x) # 0V z s.t. h(xz) = a. The space
of all signals S®" = {s| 5:[0,7] = R", ¥V T > 0} with s
a signal. || -[|[4,5] is an induced (semi)-norm over S®" where
5]l a,5) = max;e(q p [|5(t)]| for s € SE”.

A. Preliminaries

In this section, we will provide a brief description of
Signal Temporal Logic and Control Barrier functions - two
topics that are necessary for the sequel. Afterwards, we will
motivate the specific problem under study with an example.



Signal Temporal Logic: Signal Temporal Logic (STL) is a
language by which rich, time-varying system behavior can be
succinctly expressed. This language is based on predicates
# € A which are boolean-valued variables taking a truth
value for each state x. Predicates p and specifications 1 are
defined as follows, with ”|” demarcating definitions:

p(x) = True <= hy,(x) >0, hy: X =R,
Y £ G| =[py V althyr Aoty Upgp) Y2, ¥ €S.

Here, 11,1 are specifications themselves, and 1, Ula,p) Y2
reads as: 1 should be true at time ¢ = a and should continue
to be true until 15 is true, which should be true by some time
t <b [2], [3]. Finally, S is the set of all STL specifications.

We write (s,t’) = ¢ when a signal s satisfies a specifica-
tion ) for times ¢ > t'. To be brief, will refrain from formally
defining the satisfaction relation |=, as we will instead note
that every STL specification ¢ has a robustness measure p
that is positive for signals s that satisfy ).

Definition 1. A function p : S*" xR, — R is a robustness
measure for a Signal Temporal Logic specification v if it
satisfies the following equivalency:

pls,t) >0 < (s,8) | ¥

For a more comprehensive definition of the satisfaction
relation, please see Section 2.2 in [6]. Finally, to simplify
notation, two commonly used temporal logic operators will
be produced here. The first is F(, )¢ which reads as ¢
should be true at some point in the future for some time
t € [a,b]. The second is G, ) 1) which reads as ¢ should
be true for all times t € [a, b]. In both cases, b > a.

F[a,b] 1/) = True U[a,b] ¢, G[a,b] ¢ = (True U[a7b] —|¢) .

Control Barrier Functions: Originally inspired by their
counterparts in optimization (see Chapter 3 of [25]), control
barrier functions are a modern control tool used to ensure
safety in safety-critical systems that are control-affine, i.e.,

i=f(x)+g(@)u, z€X R, ueld CR™. (1)

We will assume we have a feedback controller k(z) for (I)),
which results in the following closed-loop dynamics:

& = fa(z) £ f(2) + g(2)k(z), = € X. (2)

Now, solutions to (2) may not exist for all time [26]. As
such, we denote this interval of existence of solutions to (2))
emanating from xg as I(zg) = [0,%max]. We denote the
corresponding solution as ¢;(xz¢), where

Gi(0) = fer (Pu(20)),  Bo(x0) = 0. €))
Then, forward invariance is defined as follows.

Definition 2. The set C C R™ is forward invariant with
respect to the dynamical system @) if V z¢ € C, ¢i(x0) €
CV telI(xg), with ¢¢(x0) as per (3).

Control barrier functions then, are a tool used to ensure
forward invariance of their O-superlevel sets. Specifically, for
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Fig. 1. The motivating example detailed in Section @ for this paper’s

problem. For the closed-loop system shown, the undisturbed trajectory
(black) satisfies its specification - reach the goal (green) within 2 seconds.
However, disturbing the same system results in a trajectory (red) that fails
to satisfy this specification. This phenomenon prompted the authors to ask
the question - can we determine the two-norm disturbance-bound that a
controller can reject while steering a system to satisfy its specification?

a continuously differentiable function h : R™ — R, define
its O-superlevel set C and boundary OC as follows:

C={zxeX|h(x) >0}, IC={ze X |h(x)=0}. 4
Then, the definition of control barrier functions is as follows.

Definition 3. (Adapted from Definition 5 in [27]) For
the control-affine system (1)), a continuously differentiable
function A : R® — R with 0 a regular value is a control
barrier function if 3 o € K¢ oo such that V x € X,

oh

sup | h(z,u) £ 5p (@) +g(@)u)| 2 —alh(z)).
uel €

This ends our brief overview of necessary topics. The next
section motivates the specific problem under study.

B. A Motivating Example

To better motivate our problem statement, we will provide
a brief example. Consider the following single integrator
system subject to an STL specification v with associated
robustness measure p and with g = [0.75,0.75]7:

i=u, x€[-1,1]% u € [-0.5,0.5]? (5)
pg(x) = True <= (h#(x) £01— |z - 9||2> 20,
_ A
¢ - F[O,Q] Hg; p(S, 0) - tren[g,);] hu (S(t)) : (6)

It is fairly simple to construct a controller U that ensures that
(6(0),0) |= v, where $(0) € S®" is the closed-loop solution
of (3) and this controller U starting from zo = 0. Figure [I]
shows an example controller and resulting trajectory ¢(0).
Indeed, this controller also ensures that p(¢(0),0) = 0.09,
indicating that this controller robustly steers the system to
satisfy . However, if we introduce some disturbance to the
system, as shown via the red trajectory in the same figure,
the system fails to satisfy 1. As a result, the controller is
not as robust as once claimed. It is for this reason that we
aim to develop techniques to discern the level of robustness
- in a two-norm sense - that a controller can reject while



still ensuring STL specification satisfaction. Such techniques
would provide a better understanding of the efficacy of a
controller in robustly realizing a required task. With this
motivation in mind, we will formalize our problem statement.

C. Problem Statement

We will start by mentioning two, separate systems - our
nominal controlled system and its perturbed version.

&= f(z) + g(z)U(x)
T = fcl(x) +d

For both closed-loop systems and (CL-d), we will
assume f, g, U are locally L1psch1tz continuous. This implies
V 1y € X that solutions ¢(z0) to (CL)) and ¢%(z¢) to (CL-d)
have nonzero intervals of existence I(z¢) and I%¢(x) respec-
tively [26]. Furthermore, we will denote ¢(zo) € S¥ to be
the state trajectory signal and ¢;(z¢) € X to be the state at
time ¢ as per equation (3).

We will also assume that this system is subject to an STL
specification that is of the following form:

2 fu(x), 2€e X, U: X = U, (CL)
deR™. (CL-d)

w="True | g | -p|w Aws,

(7N
Y =Gpyw| Flayw | w Ugpwa | P1 A

Additionally, we will make the following two assumptions
about the predicate functions h,, and the robustness measures
p used in our forthcoming analysis.

Assumption 1. The predicate functions h,, are continuously
differentiable.

Assumption 2. The robustness measures p for our signal
temporal logic specifications ¢ are partially Lipschitz con-
tinuous, i.e. 3 L,b > 0 such that,

[p(s,0)

where | - [|[0,5) is an induced (semi)-norm over S®".

—p(2,0)[ < Llls = 2l o),

Here, we note that our restriction to this specific subclass
of STL specifications aligns with prior work coupling Sig-
nal Temporal Logic and control barrier functions (see the
examples in [9]-[11], [24]). We will also make one fairness
assumption - that the intervals of existence for solutions to
either system or are sufficiently large enough
to permit analysis as to whether they satisfy their STL
specification. We will also state one definition to formalize
what we mean when we say a system satisfies a specification.

Definition 4. We say (CL) satisfies a specification 1) over
the space X, i.e. (CL) =x 1 if and only if,

0) v

Then our problem statement is as follows.

VreX, (¢(x),

Problem 1. Let v be a Signal Temporal Logic specification
of the form in (1). Determine a space X C X and a distur-
bance bound 84 such that (CL-d) E=x ¥ V d s.t. ||d|| < dq.

In the sequel, the following definition of P(w) for speci-
fications w as defined in equation will be useful:
pEeEw < (w(z)=True = p(z) = True),
Pw)={neA|peuw}

This results in the following Lemma.

®)

Lemma 1. The following equivalency holds:

w(@) = (Auepw) p@)) .

Proof: Follows by definition of w (7) and P(w) ). ™
This ends our formal problem statement. We will now
move to detailing our main contributions.

III. MAIN CONTRIBUTION

This section will be a series of optimization problems
designed to identify spaces X and norm bounds J; such
that Ex 1 for any STL specification ¢ satisfying
equation (7). We will start first with an optimization problem
for specifications ¢ = G w. We do so as these types
of specifications admit a time-independent solution worth
noting. As a result, our setting for the first optimization
problem is as follows, with sets Cj, as per equation @):

p=Gpyw, Co=X (] Cn,. 9)
peEP(w)
We will also define a feasible disturbance set A as follows:

oh,, T
f(:c,e,u) a fCl H

A(xvﬂaau) = {e eR ‘ §($,e,u) > -y (hu(x))} .
Then our proposed optimization problem determines an w-
specific bound &Y over C,, such that (CL-d) =¢, © i.e.,

5(1 = min max e,

zeC, e€eR (10)

subject to e € A(x, pu, o), ¥V o € P(w).

The formal statement of this theorem will follow.

Theorem 1. For equation (10), let each o, € Ko oo, let the
specification i and set C,, satisfy equation (9), and let each
predicate function h, satisfy Assumption |l Then,

59 >0 = (CLd) |=c, ¢ ¥V d s.t. ||d]| < &5

Proof: To start, for any d, Cauchy-Schwarz provides that

P’ ) (o) )2 5 1) - | G| 1

Then for any d such that ||d|| < § we have that the derivative
of h,, with respect to the perturbed dynamics satisfies
the following inequality reminiscent of the CBF inequality
in Definition [3 as §9 > 0:

hu(x,d) > —a,(hu(x), ¥ p€ Pw), = €C,.

Via Peano’s Uniqueness Theorem (Theorem 1.3.1 in [28]) we
know that & = —a,,(u) has a unique solution V ug > 0 as
—ay, is a continuous, non-increasing function in u. Using this
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in Section [[V] . when perturbed by randomly distributed disturbances whose
two-norm is less than the upper bound calculated by Theorem I 6
0.89. The robustness measure p is for the specification 2 = Gg,2) p2
as per equatlon (). In all cases, the system satisfies its specification as
P (¢ 0,0 ) > 0. This success indicates that, with high probability, this
Segway’s LQR controller rejects disturbances whose norm [|d|| < &9.

uniqueness result in conjunction with a Comparison Lemma,
Lemma 3.4 in [29], allows us to state that

" (qbf(xo)) >0, Ve Pw), x0 €C,, t € I%xq). (11)

Here, we note that this chain of logic was also utilized in
the proof for Theorem 1 in [27] as the proof for Lemma 3.4
in [29] requires Lipschitz continuity of ¢, to guarantee
a unique solution (see Appendix C.2 in [29]), and this is
already provided for via Peano’s Uniqueness Theorem. As a
result, equation (IT) implies that

hy, (qbf(a:o)) >0, Vue Pw), g €C,, t>0.
By definition of h, we have that

':Cw G[O,b] (/\“Ep(w)u) Vd s.t. ||d|| < (52
Then by Lemma [T] and equation (O) we have the following:
Fe, ¥V d st ||d < dg. u

While this result may seem similar to work regarding Input
to State Safe control barrier functions [30], such work tends
to enlarge the safe-set to account for disturbances. As our
safe-set - e.g. the region where p is true - is fixed, we
require an analysis that does not enlarge the safe set while
still accounting for disturbances, resulting in our Theorem [T}

For the second set of optimization problems, we will
require the Gronwall-Bellman Inequality.

Theorem 2 (From Theorem 1.3.1 in [31]). Let u, f : J =
[, B] = Ry be continuous over their domain, and let n :
J — Ry be continuous and non-decreasing. Then, ¥ t € J

/ fa
ult) < n(tyex / f(S)d8> .

This theorem allows us to establish the following lemma
bounding the difference between solutions to dynamical

systems (CL)) and (CL-d).

s)ds =

Lemma 2. For both systems (CL) and (CL-d), let f. be
locally Lipschitz continuous with constant L for some xq €
X. Then, if V d, ||d|| < dq,

||¢t(£Eo) — gbf(xo)H < dgtelt, ¥ t € I(zg) NI (x0).

Proof: This proof amounts to one application of Gronwall-
Bellman’s Inequality in Theorem [2] We can start with the
norm difference between solutions which yields the follow-
ing inequality for some ¢ € I(zo) N I%(x0):

J61(z0) — 60| <
[ 1 6uwo)) = fur (630 [ ds+ [ o).
0 0

By assumption that f,; is locally Lipschitz with constant L
and that all d are such that ||d|| < §; we have that

t
@) = ottan)]| < dut + [ L [[gslon) = 62w as.
u(t) n(t) u(s)

Applying Theorem 2| concludes the proof. ]

Our optimization problem for the remainder of the base
specification types Gy p) w, Fq 5 w, w1 Upg py w2 will make
use of Lemma [2| and Assumption [2| to generate disturbance-
bounds 4} for the entire state space X'. More aptly, our setting
is as follows, with ”|” demarcating different specifications:

VY =Gy w | Flapw | wi Uy ws, (12)
p(5,0) >0 < (5,0) =v¢, Ag= Héi;(l p(¢(x),0).

Then our theorem identifying a disturbance-bound §,4 for
specifications ¢ of the type in equation (12) is as follows.

Theorem 3. Let the closed-loop dynamics f. be locally
Lipschitz continuous with constant Ly ¥V xg € X, let the
specification v be as per equation (12)), and let the robustness
measure p also satisfy Assumption 2] with Lipschitz constant
L, and time constant b. If Ag > 0,

A
CLd) =x ¢V d s.t. ||d||sLdefbé6é-

Proof: For this proof, we will assume that our disturbances
d are such that ||d|| < M, and show M = §l. As a result,
by local Lipschitz continuity of f.; and Lemma [2| we have
that V zg € X,

| be(w0) — ¢ (o) || < Mte™s*, V¥ t € I(wo) N I%(xp).

Then as the robustness measure p satisfies Assumption [2]
with Lipschitz constant L, and time constant b, we have
that V 29 € & and with || - [[[g4) the induced signal norm,

|9 (6(20),0) = p (6"(20), 0)| < Ly [|¢(z0) — ¢*(x0) [0, -

13)

Then, by definition of || - [|jp,;) and our fairness assumption
that b € I(zo) N I%(z0) ¥ 29 € X, we have that

Ly [|é(z0) — ¢ (w0)[| g,y < LpMbe™®, ¥ g € X.
As a result, with M = Ay/(L,bels®) we have that

|p(¢($0),0) - P (¢d($0),0)| < Ad, A4 o € X.
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Fig. 3. Comparison of a Segway’s LQR controller steering the nominal system (CL) to the zero point (left) and the disturbed system (CL-d) to the same
zero point (center). The example Segway is illustrated to the far right. Notice that when the Segway undergoes disturbances whose norms are less than
the max bound calculated via our procedure 65 (1) = 0.01, the specification ¢ in equation (I8} is still satisfied.

By definition of Ay and M and the above inequality holding
Y xo9 € X, we have that

Ay
L,belst’
Then the result follows by Definitions |1| and |

Now it remains to identify a composite disturbance-
bound for specifications i = A;¢; where each ; is one
of the base specification forms already accounted for, i.e.
Go,p W, Gla,p) W, Fla 5w, or w1 Upg ) wa. To do so, we will
define an inclusion symbol for specifications.

i € = =Ny, P'(y)={¢" | ¢ €y}, (14)
e.g. fOI' ¢ = ¢1 A (¢2 A w?))a ¢17¢27¢3 S ¢

This leads to the following lemma similar to Lemma [I]

p (¢%(%0),0) >0, V zo,d s.t. zg € X, ||d|| <

Lemma 3. The following statement holds.

(.00 Fv <= (s,0) ¢, Y¢' € PL(y).
Proof: We first note that the satisfaction operator |= is re-
cursively defined for the conjunction operator as follows [6]:

(5,0) 1 Apa <= (s,0) =1 A (5,0) = o, (15)

Then the proof follows by equation (T3], the definition
of Pl() in (T4), the types of specifications ¢ as per
equation (7)), and the associativity of the A (and) operator. B

Then our final theorem determines a disturbance-bound d4
for specifications 1 = A;1; where each 1); is one of the base
specification forms mentioned prior. We will first pose our
optimization problem, then state our theorem.

5 & 89 as per (I0) if ¢ is as per (),
|6} as per (I3) else,
oF = min §(¥;),
@)=, min 50

Cyp =X m C. as per (9).

P, €EPL(2) s.t.
1; as per

Theorem 4. Let the system’s specification v satisfy and
let the assumptions for Theorems (1| and (3| hold. If 65 (¢) > 0
with 61 (1) as per equation (I6), then

CLd) e, ¥ ¥ d s.t. ||d]| < 6 ().

(16)

amn

Proof: To start, we can assume without loss of generality
that there exist zero or more specifications 1; € P1(¢)) that
are of the form in equation (9). By definition of §2(v) in
equation (I6), Cy, in equation (I7), and Theorem |I|, we have
for each such specification ¢; (should they exist),

Fe, ¥i ¥V d s.t. ||d]| < 55 ().

This follows as if we have two sets A, B such that A C B,
a system S, and a specification 1, then by Definition [4]

S)ZBw —— S)ZAIZJ

Then we can also assume without loss of generality that we
have zero or more specifications v; € P1(v)) such that Y;
are not of the form in equation (9). For each such v;, by
definition of 67 (1), Cy, and Theorem |3} we have that

(CLd) =c, ©; ¥ d s.t. [|d]| <05 (¥).

Then the result holds via Lemma [ |
This ends the series of optimization problems to determine

our disturbance-bounds. We will now move to showcase

these results through a simulated example on a Segway.

IV. SIMULATED EXAMPLES

For our example, we aim to determine the robustness
with which a Segway’s LQR controller achieves two desired
performance bounds. First, the Segway’s pendulumn angle is
never to deviate too far from the vertical. Second, the Segway
is to reach its goal - its state x should lie within a norm
bounded ball around 0 - within two seconds. Mathematically
this leads to the following setting:

hi(x) = 0.25 — ||x||, ha(x) = 10(0.32 — 6%) — 264, (18)
pi(r) = (hi(r) > 0), ¥ =Fg2 1 A Gog p2, (19)
X C[-1,11* x [-0.4,0.4] x [-1.5,1.5],
x = [m,v,@,é]T € X cRY
Figure [3] shows the Segway setup and example LQR con-
troller steering the Segway to satisfy this specification .
To start, it is clear that both predicate functions hq, ho

in equation (I8) satisfy Assumption [T} Indeed as both are
Lipschitz continuous, so to are the associated robustness



measures generated from these predicate functions Lipschitz
continuous as well, which satisfies Assumption@ As a result,
we break our specification into two parts as required of
Theorem E| -1 = Fyogp and ¥y = Giggj po. This
resulted in a 69 = 0.89 after utilizing Theorem [1| for
and a Ay = 0.2 after utilizing Theorem |§| for 1.

Figure 2] shows the results of 1000 randomized trials of
the Segway undergoing disturbances d such that ||d|| <
52 = 0.89. As can be seen, the LQR controller realizes
a positive robustness measure indicating that the system-
controller pair can reject disturbances whose norm is under
the bound we identify through our procedure. Additionally,
under the assumption that our Segway’s closed-loop dy-
namics f; are Lipschitz continuous with constant Ly < 1
and knowing the associated robustness measure p for pp as
per (T9) is Lipschitz continuous with L, = 1, Theorem [3|
provides a secondary disturbance-bound 6 = 0.01. As per
Theorem [ this indicates that our Segway should satisfy
its overall specification ¢ if its disturbance d is such that
ldll < 6¥() = 0.01. Indeed the Segway does satisfy its
specification after 1000 randomized runs when perturbed by
normally distributed disturbances d such that ||d|| < 0.01.
One such run is shown in Figure [3]

V. CONCLUSION

In this paper, we constructed a series of optimization
problems to determine the level of disturbance - in a two-
norm sense - that a given system’s controller can reject while
satisfying its operational Signal Temporal Logic specifica-
tion. Additionally, we showed that our optimization problems
generate reasonable disturbance-bounds through simulating
a Segway whose dynamics are perturbed by disturbances
whose two-norm is less than our calculated bound. Future
work aims to decrease the conservativeness of our calculated
bounds and extend the class of specifications capable of
being analyzed by our approach.
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