
Embedded Code Generation with CVXPY

Maximilian Schaller, Goran Banjac, Steven Diamond, Akshay Agrawal, Bartolomeo Stellato, and Stephen Boyd

Abstract— We introduce CVXPYgen, a tool for generating
custom C code, suitable for embedded applications, that solves
a parametrized class of convex optimization problems. CVXPY-
gen is based on CVXPY, a Python-embedded domain-specific
language that supports a natural syntax (that follows the
mathematical description) for specifying convex optimization
problems. Along with the C implementation of a custom solver,
CVXPYgen creates a Python wrapper for prototyping and
desktop (non-embedded) applications. We give two examples,
position control of a quadcopter and back-testing a portfolio
optimization model. CVXPYgen outperforms a state-of-the-art
code generation tool in terms of problem size it can handle,
binary code size, and solve times. CVXPYgen and the generated
solvers are open-source.

I. INTRODUCTION

Convex optimization is used in many domains, including
signal and image processing [1], [2], control [3], [4], and
finance [5], [6], to mention just a few. A (parametrized)
convex optimization problem can be written as

minimize f0(x, θ)
subject to fi(x, θ) ≤ 0, i = 1, . . . , p

gj(x, θ) = 0, j = 1, . . . , r,
(1)

where x ∈ Rn is the optimization variable, f0 is the objective
function to be minimized, f1, . . . , fp are the inequality
constraint functions, and g1 . . . , gr are the equality constraint
functions. We require that f0, . . . , fp are convex functions,
and g1, . . . , gr are affine functions [7]. The parameter θ ∈ Rd

specifies data that can change, but is constant and given
when we solve an instance of the problem. We refer to
the parametrized problem (1) as a problem family; when we
specify a fixed value of θ, we refer to it as a problem instance.
We let x? denote an optimal point for the problem (1),
assuming it exists.

The problem family can be specified using a domain-
specific language (DSL) for convex optimization. Such sys-
tems allow the user to specify the functions fi and gj

This work was supported by the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme
grant agreement OCAL, No. 787845, Stanford’s SystemX, and the AI Chip
Center for Emerging Smart Systems (ACCESS).

M. Schaller and G. Banjac are with the Department of Information Tech-
nology and Electrical Engineering, ETH Zürich, 8092 Zürich, Switzerland.
{mschaller, gbanjac}@ethz.ch

S. Diamond is with Gridmatic, Campbell CA 95008, USA.
steven@gridmatic.com

A. Agrawal and S. Boyd are with the Department of Electrical Engi-
neering, Stanford University, Stanford CA 94305, USA. {akshayka,
boyd}@stanford.edu

B. Stellato is with the Department of Operations Research and Fi-
nancial Engineering, Princeton University, Princeton NJ 08544, USA.
bstellato@princeton.edu

(a) Parser-solver calculating solution x? for problem instance with
parameter θ.

(b) Source code generation for problem family, followed by com-
pilation to custom solver. The compiled solver computes a solution
x? to the problem instance with parameter θ.

Fig. 1: Comparison of convex optimization problem parsing
and solving approaches.

in a simple format that closely follows the mathematical
description of the problem. Examples include YALMIP [8]
and CVX [9] (in Matlab), CVXPY [10] (in Python), Con-
vex.jl [11] and JuMP [12] (in Julia), and CVXR [13] (in R).
We focus on CVXPY, which also supports the declaration of
parameters, enabling it to specify problem families, not just
problem instances.

DSLs parse the problem description and translate (or
canonicalize) it to an equivalent problem that is suitable
for a solver that handles some generic class of problems,
such as linear programs (LPs), quadratic programs (QPs),
second-order cone programs (SOCPs), semidefinite programs
(SDPs), and others such as exponential cone programs [7].
We focus on solvers that are suitable for embedded applica-
tions, i.e., are single-threaded, can be statically compiled,
and do not make system calls: OSQP [14] handles QPs,
SCS [15] and ECOS [16] handle cone programs that include
SOCPs. After the canonicalized problem is solved, a solution
of the original problem is retrieved from a solution of the
canonicalized problem.

It is useful to think of the whole process as a function that
maps θ, the parameter that specifies the problem instance,
into x?, an optimal value of the variable. With a DSL, this
process consists of three steps. First the original problem
description is canonicalized to a problem in some standard
(or canonical) form; then the canonicalized problem is solved
using a solver; and finally, a solution of the original problem
is retrieved from a solution of the canonicalized problem.

ar
X

iv
:2

20
3.

11
41

9v
2

 [
m

at
h.

O
C

]
 3

1
M

ar
 2

02
2

Most of these DSLs are organized as parser-solvers, which
carry out the canonicalization each time the problem is
solved (with different parameter values). This simple setting
is illustrated in figure 1a. We are interested in applications
where we solve many instances of the problem, possibly in
an embedded application with hard real-time constraints. For
such applications, a code generator makes more sense. A
code generator takes as input a description of a problem
family, and generates specialized solver source code for that
specific family. That source code is then compiled, and we
have an efficient solver for the specific family.

This workflow is illustrated in figure 1b. The compiled
solver has a number of advantages over parser-solvers. First,
the compiled solver can be deployed in embedded systems,
fulfilling rules for safety-critical code [17]. Second, by
caching canonicalization and exploiting the problem struc-
ture, the compiled solver is faster.

A well known code generator is CVXGEN [18]. It handles
problems that can be transformed to QPs and includes a
custom interior-point solver. CVXGEN is used in many
applications, including autonomous driving, dynamic energy
management, and real-time trading in finance. SpaceX uses
CVXGEN to generate flight code for high-speed onboard
convex optimization for precision landing of space rock-
ets [19].

CVXGEN was designed for use in real-time control sys-
tems, where the problems solved are not too big, either in
terms of the number of variables or number of parameters.
CVXGEN unrolls for-loops in its generated source code
files to increase the solving speed, but this can also result
in large compiled code size. Due to the flat and explicit
code generated, CVXGEN only handles problems with up
to around a few thousand parameters. (More accurately,
CVXGEN is limited to 4000 nonzero entries in the linear
system of equations solved in each iteration.)

A. Contribution

In this paper, we introduce the code generation tool
CVXPYgen, which produces custom C code to solve a
parametrized family of convex optimization problems. The
design decisions for CVXPYgen are somewhat different from
those made for CVXGEN. First, CVXPYgen is built on top
of the DSL CVXPY, whereas CVXGEN is entirely self-
contained. This means that prototypes can be developed,
prototyped, and simulated in Python using CVXPY. Sec-
ond, CVXPYgen interfaces with multiple solvers, currently
OSQP, SCS, and ECOS. This means that CVXPYgen sup-
ports problems more general than those that can be trans-
formed to QPs. As far as we know, CVXPYgen is the first
generic code generator for convex optimization that supports
SOCPs. When using OSQP or SCS (both based on first-
order methods), the generated solvers support warm-starting,
which can bring more speed in some applications [4]. Third,
CVXPYgen does not aggressively unroll loops in the gen-
erated code, which allows it to support high-dimensional
parameters. In addition, matrix parameters can have any
user-defined sparsity pattern. CVXPYgen uses partial update

canonicalization, in which only the parameters changed are
processed when solving a new problem instance. Fourth,
CVXPYgen and its generated solvers are fully open-source,
whereas CVXGEN is proprietary.

CVXPYgen (and more generally, code generation) is use-
ful for two families of practical applications. The first is
solving convex optimization problems in real-time settings
on embedded devices, as is done in control systems, real-time
resource allocators, and other applications. The second is in
solving a large number of instances of a problem family, pos-
sibly on general-purpose computers. One example is back-
testing in finance, where a trading policy based on convex
optimization is simulated on historical or simulated data over
many periods. Typical back-tests involve solving thousands
or more instances of a problem family. In these applications,
there is no hard real-time constraint; the goal is simply to
speed up solving by avoiding repeatedly canonicalizing the
problem.

B. Prior work

Several other code generators for optimization have been
developed in addition to CVXGEN. FORCESPRO [20] and
FORCES NLP [21] are proprietary code generators for
multi-stage control problems. They handle problems that
can be transformed to multi-stage quadratically constrained
quadratic programs and nonlinear programs, respectively.
The open-source code generators QCML [22] and CVXPY-
CODEGEN [23], which interface with ECOS, were de-
veloped before CVXPY included support for parameters.
These early prototypes are no longer actively supported or
maintained.

C. Outline

The remainder of this paper is structured as follows. In
§II we describe, at a high level, how CVXPYgen works, and
in §III, we illustrate how it is used with a simple example.
In §IV and §V we compare CVXPYgen to CVXGEN (for
embedded use) and CVXPY (for general purpose use),
respectively. We conclude the paper in §VI.

II. CVXPYGEN

CVXPYgen is based on the open-source Python-embedded
DSL CVXPY. CVXPY handles many types of conic pro-
grams and certain types of nonconvex problems, whereas we
focus on LPs, QPs, and SOCPs for code generation. CVXPY
provides modeling instructions that follow the mathematical
description for convex optimization problems. It ensures that
the modeled problems are convex, using disciplined convex
programming (DCP). DCP is the process of constructing
convex functions by assembling given base functions in
mathematical expressions using a simple set of rules [24].
DCP ensures that the resulting problem is convex, and also,
readily canonicalized to a standard form.

In DCP, parameters are treated as constants, optionally
with specified sign, and there are no restrictions about how
these constants appear in the expressions defining the prob-
lem family. The recently developed concept of disciplined

parametrized programming (DPP) puts additional restrictions
on how parameters can enter a problem description. If a
problem family description is DPP-compliant, then canoni-
calization and retrieval can be represented as affine mappings
[25]. Thus DPP-compliant problems are reducible to ASA-
form, which stands for Affine-Solve-Affine [25]. This is the
key property we exploit in CVXPYgen. More about the DCP
and DPP rules can be found in the aforementioned papers,
or at https://www.cvxpy.org.

After CVXPY has reduced the DPP-compliant problem
to ASA-form, CVXPYgen extracts a sparse matrix C that
canonicalizes the user-defined parameters θ to the parameters
θ̃ appearing in the standard form solver:

θ̃ = C

[
θ
1

]
.

CVXPYgen analyzes C to determine the user-defined pa-
rameters (i.e., components of θ) that every standardized
form parameter depends on. This information is used when
generating the custom solver, where only slices of the above
mapping are computed if not all user-defined parameters are
updated between solves. In addition, it is very useful to
know the set of updated canonical parameters when using
the OSQP solver or SCS, as detailed below.

In a similar way the retrieval of the solution x? for the
original problem from a solution x̃? of the canonicalized
problem is an affine mapping,

x? = R

[
x̃?

1

]
,

where R is a sparse matrix. Typically R is a selector matrix,
with only one nonzero entry in each row, equal to one, in
which case this step can be handled via simple pointers in
C.

CVXPYgen generates allocation-, library-, and division-
free C code for the canonicalization and retrieval steps,
which in essence are nothing more than sparse matrix-vector
multiplication, with some logic that exploits pointers or
partial updates. Sparse matrices are stored in compressed
sparse column format [26] and dense matrices are stored as
vectors via column-major flattening.

Any solver can be used to solve the canonicalized problem,
which provides the final link:

x̃? = S(θ̃),

where S denotes the mapping from the canonicalized pa-
rameters to a solution of the canonicalized problem. (We
assume here that the problem instance is feasible, and that
when there are multiple solutions, we simply pick one.)
If available, CVXPYgen uses the canonical solver’s code
generation method to produce C code for canonical solving.
As of now, only OSQP provides this functionality [27].
Otherwise, the solver’s C code is simply copied, possibly
modified for use in embedded applications.

OSQP and SCS provide a set of C functions for updating
their parameters. This way, when only canonical vector
parameters are updated, the factorization of the linear system

involved in the OSQP or SCS algorithms can be cached and
re-used, which can lead to substantial speed up and division-
free code. In the same way as only the parts of θ̃ are re-
canonicalized that depend on the updated parts of θ, only
the OSQP or SCS update functions associated with these
parameters are called before the canonicalized problem is
solved.

The code and the full documentation for CVXPYgen with
its generated solvers are available at

https://pypi.org/project/cvxpygen.

III. SIMPLE EXAMPLE

We consider the nonnegative least squares problem

minimize ‖Gx− h‖22
subject to x ≥ 0,

(2)

where x ∈ Rn is the variable and G ∈ Rm×n, h ∈ Rm are
parameters, so θ = (G, h). We will canonicalize this to the
standard form accepted by OSQP,

minimize 1
2 x̃

TPx̃+ qT x̃
subject to l ≤ Ax̃ ≤ u, (3)

where x̃ ∈ Rñ is the canonical variable and all other symbols
are canonical parameters, i.e., θ̃ = (P, q,A, l, u). (In this
form, entries of l can be −∞, and entries of u can be +∞.)

The naı̈ve canonicalization of (2) to (3) takes x̃ = x and

P = 2GTG, q = 2GTh, A = I, l = 0, u =∞.

In this canonicalization, θ̃ is not an affine function of θ, since
some entries of θ̃ are products of entries of θ.

The canonicalization that uses DPP first expresses prob-
lem (2) as

minimize ‖x̃2‖22
subject to x̃2 = Gx̃1 − h, x̃1 ≥ 0,

with variable x̃ = (x̃1, x̃2), where x̃1 = x and x̃2 ∈ Rm.
We can express this as (3) with parameters

P =

[
0 0
0 2I

]
, q = 0, A =

[
G −I
I 0

]
,

l = (h, 0), u = (h,∞),

where the second part of u has ∞ in every entry, i.e.,
there is no upper bound on the second part of Ax̃. In this
canonicalization, θ̃ is indeed an affine function of θ. The
retrieval map has the simple (linear) form x? = [I 0]x̃?.

We generate code for this problem as shown in figure 2.
The problem is modeled with CVXPY in lines 5–9. The
actual code generation is done in line 11. The variable and
parameters are named in lines 5–7 via their name attributes.
These names are used for C variable and function naming.

https://www.cvxpy.org
https://pypi.org/project/cvxpygen

1 import cvxpy as cp
2 from cvxpygen import cpg
3
4 # model problem
5 x=cp.Variable(n, name='x')
6 G=cp.Parameter((m,n), name='G')
7 h=cp.Parameter(m, name='h')
8 p=cp.Problem(cp.Minimize(cp.sum_squares(G@x-h)),
9 [x>=0])

10 # generate code
11 cpg.generate_code(p)

Fig. 2: Code generation for example (2). We assume that the
dimensions m and n have been previously defined.

10 20 30 40 50 60
0.0

0.5

1.0

S
ol

ve
T

im
e

[m
s]

CVXGEN

CVXPYgen

10 20 30 40 50 60
H

0

500

1000

B
in

ar
y

S
iz

e
[k

B
]

Fig. 3: Comparison of solve times (top) and binary sizes
(bottom) with CVXGEN (magenta) and CVXPYgen (blue)
used for code generation.

IV. COMPARISON TO CVXGEN

We compare CVXPYgen to CVXGEN for a model predic-
tive control (MPC) problem family, described in Appendix I.
In particular, we compare solve times of the C interface and
executable sizes. The MPC problems are parametrized by
their horizon length H ∈ {6, 12, 18, 30, 60}; the number
of variables is around 10H . Figure 3 shows the resulting
solve times averaged over 100 simulation steps. CVXGEN
is not able to generate code for H > 18. Together with the
automatically chosen OSQP solver, CVXPYgen outperforms
CVXGEN for all problem sizes. The bottom of figure 3
presents the example executable sizes for CVXGEN and
CVXPYgen, respectively. For all values of H , the executa-
bles corresponding to CVXPYgen are considerably smaller.

The execution times cited above are on a MacBook
Pro 2.3GHz Intel i5. We have also used these generated
solvers to control the position of a custom-built 14-by-14
cm quadcopter. The generated code was compiled in a robot
operating system (ROS) node, and run on the drone’s Intel
Atom x5-Z8350 processor, at 30 Hz. We provide a video of
the quadcopter following a circle trajectory at

https://polybox.ethz.ch/index.php/s/
MARR9CGaLqmQaJ0.

0 20 40 60 80 100
N

0

2

4

S
ol

ve
T

im
e

[m
s]

CVXPY

CVXPYgen

Fig. 4: Comparison of solve times with CVXPY (magenta)
and the CVXPY interface of CVXPYgen (blue).

V. COMPARISON TO CVXPY

Here we compare CVXPYgen to CVXPY, for a (finan-
cial) portfolio optimization problem family, described in
Appendix II. This family of problems is parametrized by the
number of assets in the portfolio N ∈ {10, 20, 40, 60, 100}.
The number of variables in these problems is around 2N .
Figure 4 gives the results for 500 solves, a two year back-test
using historical data. We see that the average solver speed is
about 6 times faster with CVXPYgen, for N = 10, with the
ratio dropping to 2.5 for N = 100. The execution times are
measured on the same MacBook described in the previous
section.

An interesting metric is the break-even point, which is
the number of instances that need to be solved before
CVXPYgen is faster than CVXPY, when we include the
code generation and compilation time. This number is around
5000, and not too dependent on N . A typical back-test
might involve daily trading, with around 250 trading days
in each year, over 4 years, with hundreds of different hyper-
parameter values, which gives on the order of 100,000 solves,
well above this break-even point.

VI. CONCLUSION

We have described CVXPYgen, a tool for generating
custom C code that solves instances of a family of convex
optimization problems specified within CVXPY. This gives a
seemless path from prototyping an application using Python
and CVXPY, to a final embedded implementation in C.
In addition to CVXPYgen supporting a wider variety of
problems (such as SOCPs) than the state-of-the-art code
generator CVXGEN, numerical experiments show that it
outperforms CVXGEN in terms of allowable problem size,
compiled code size, and solve times. For applications running
on general purpose machines, we obtain a significant speedup
over CVXPY when many problem instances are to be solved.

APPENDIX I
MPC EXAMPLE

We use MPC to track the position and velocity of a quad-
copter with mass m, experiencing gravitational acceleration
g. We model the quadcopter as a point mass with position
error pk ∈ R3 and velocity error vk ∈ R3, where k denotes
the time step or period. We concatenate the position and
velocity error to the state zk = (pk, vk) ∈ R6, which we

https://polybox.ethz.ch/index.php/s/MARR9CGaLqmQaJ0
https://polybox.ethz.ch/index.php/s/MARR9CGaLqmQaJ0

regulate to 0. The input is the force vector uk ∈ R3 without
gravity compensation. The dynamics are

zk+1 = Azk +Buk,

where A ∈ R6×6 and B ∈ R6×3.
We limit the tilt angle of the quadcopter. Since the

quadcopter’s attitude is tied to the pointing direction of u plus
gravity compensation, we impose a (polyhedral) tilt angle
constraint as

cTj (uk)0:1 ≤ γ ((uk)2 +mg) , j = 0, . . . , N hs − 1,

where (·)0:1 and (·)2 denote the horizontal and vertical part
of a vector in R3 space, respectively, and γ > 0. We
use N hs halfspaces parametrized through cj . Compared to
a spherical (natural) tilt angle constraint, when added to
the MPC constraints, this formulation renders the problem
QP representable. The lower and upper thrust limits of the
propellers are represented as uvmin ≤ (uk)2 ≤ uvmax with
uvmin < 0 and uvmax > 0.

Up to horizon H , we penalize state errors and control
effort via the traditional quadratic cost

zTHQT zH +

H−1∑
k=0

(
zTk Qzk + uTkRuk

)
,

with diagonal positive definite matrices Q and R, and pos-
itive definite QT , which is the solution to the discrete-time
algebraic Riccati equation (as a function of A, B, Q, and R).
In addition, at every stage, we discourage rapid changes of
the input (that the low-level attitude control system cannot
follow) with the additional cost term

H−1∑
k=0

(uk+1 − uk)
T
T (uk+1 − uk) ,

where T is diagonal positive definite. Combining all the
above constraints and cost terms, we arrive at the MPC
problem

minimize zTHQT zH +

H−1∑
k=0

(
zTk Qzk + uTkRuk+

(uk+1 − uk)TT (uk+1 − uk)
)

subject to z0 = zmeas, u0 = uprev
zk+1 = Azk +Buk, k = 0, . . . ,H − 1
uvmin ≤ (uk)2 ≤ uvmax, k = 1, . . . ,H − 1
cTj (uk)0:1 ≤ γ ((uk)2 +mg) ,
j = 1, . . . , N hs − 1, k = 1, . . . ,H − 1,

where the states zk and inputs uk are optimization variables.
The current state measurement is zmeas and the solution
for the input at the first stage from the previous solve is
uprev. In practice, these two would most certainly be the
only parameters of the problem. However, for demonstration
purposes, we declare all other symbols (except for variables,
all cj , N hs, and H) as parameters. This problem formulation
is not DPP-compliant, e.g., because of the multiplication of
parameters γ, m, and g.

Before rewriting the problem in DPP-compliant form, we
define the following convenience notation for matrix slicing.

We use the zero-based counting scheme. Mr:t,c:d is the slice
of some matrix M from its rth to its tth row (included)
and from its cth to its dth column (included). We slice full
columns by omitting the row indices, i.e., Mc is the cth
column of M . Finally, we write the DPP-compliant problem
as

minimize ‖Q1/2
T ZH‖22 + ‖Q1/2Z0:H−1‖2F

+‖R1/2U0:H−1‖2F + ‖T 1/2 (U1:H − U0:H−1)‖2F
subject to Z0 = zmeas, U0 = uprev

Z1:H = AZ0:H−1 +BU0:H−1

uvmin ≤ U2,1:H−1 ≤ uvmax
cTj U0:1,1:H−1 ≤ γU2,1:H−1 + d,
j = 0, . . . , N hs − 1,

where Z ∈ R6×(H+1) and U ∈ R3×(H+1) are the variables
and contain the state and input vectors, respectively, for in-
creasing stage count in their columns. The vector d ∈ RH−1

contains γmg in all its entries. The problem is parametrized
by

Q
1/2
T , Q1/2, R1/2, T 1/2, A, B,
γ, d, uvmin, uvmax, zmeas, uprev.

In the expressions above, M1/2 denotes any squareroot of
the positive definite matrix M , e.g., the transposed Cholesky
factor, ‖·‖F denotes the Frobenius norm, and the inequalities
are elementwise.

APPENDIX II
PORTFOLIO OPTIMIZATION EXAMPLE

We search for a portfolio of holdings in N assets and a
cash balance. The corresponding weights are w ∈ RN+1,
where the last entry represents the cash balance, and 1Tw =
1. We impose a leverage limit ‖w‖1 ≤ L, where L ≥ 1 is a
parameter.

The return r ∈ RN+1 has mean (or forecast) α ∈ RN+1,
so the expected portfolio return is αTw. The risk or variance
of the portfolio return is wTΣw, where Σ is the positive
definite covariance matrix of the asset returns.

We consider two additional objective terms. One is a trad-
ing or transaction cost (κtc)T |w−wprev|, where the absolute
value is elementwise, wprev is the previous period weights,
and κtc ≥ 0 is a parameter. The other is a short-selling cost
(κsh)T (w)−, where (w)− = max{−w, 0} (elementwise),
and κsh ≥ 0 is a parameter.

The overall objective function is

αTw−γriskwTΣw−γtc (κtc)T |w−wprev|−γsh (κsh)T (w)−,

where γrisk, γtc, and γsh are positive parameters that scale
the risk, transaction cost, and shorting cost, respectively.

Our final optimization problem is

maximize αTw − γriskwTΣw

−γtc (κtc)
T |w − wprev| − γsh

(
κsh
)T

(w)−

subject to 1Tw = 1, ‖w‖1 ≤ L,

where w ∈ RN+1 is the variable, and all other symbols are
parameters.

The covariance matrix Σ takes the standard factor model
form,

Σ = FFT +D,

where F ∈ R(N+1)×K and D is positive definite diagonal.
The number of factors in this risk model is K, which is
usually much less than N .

This problem formulation is not DPP-compliant, but
we can rewrite it in DPP-compliant form by eliminating
quadratic forms and collecting products of parameters, as
in

maximize
(
α
γrisk

)T
w − ‖FTw‖22 − ‖D1/2w‖22

−
(
γ tc

γriskκ
tc
)T |∆w| − (γsh

γriskκ
sh
)T

(w)−

subject to 1Tw = 1, ‖w‖1 ≤ L
∆w = w − wprev,

where the portfolio weight vector w ∈ RN+1 and the weight
change vector ∆w ∈ RN+1 are the variables. The problem
is parametrized by

α

γrisk , F, D1/2,
γtc

γriskκ
tc,

γsh

γriskκ
sh, L, wprev.

We consider N stock assets, chosen randomly from the
S&P 500, with historical return data from 2017–2019. For
each value of N , we set K = max(N/10, 5).

ACKNOWLEDGMENT

We would like to express our gratitude to John Lygeros for
enabling this collaboration. Moreover, we would like to thank
JunEn Low and Mac Schwager for providing the quadcopter
testing environment at the Stanford Flight Room.

REFERENCES

[1] J. Mattingley and S. Boyd, “Real-time convex optimization in signal
processing,” IEEE Signal Processing Magazine, vol. 27, no. 3, pp.
50–61, 2010.

[2] M. Zibulevsky and M. Elad, “L1-L2 optimization in signal and image
processing,” IEEE Signal Processing Magazine, vol. 27, no. 3, pp.
76–88, 2010.

[3] Y. Wang and S. Boyd, “Fast model predictive control using online
optimization,” IEEE Transactions on Control Systems Technology,
vol. 18, no. 2, pp. 267–278, 2009.

[4] C. Garcia, D. Prett, and M. Morari, “Model predictive control: Theory
and practice – a survey,” Automatica, vol. 25, no. 3, pp. 335–348, 1989.

[5] S. Boyd, E. Busseti, S. Diamond, R. Kahn, K. Koh, P. Nystrup, and
J. Speth, “Multi-period trading via convex optimization,” Foundations
and Trends in Optimization, vol. 3, no. 1, pp. 1–76, 2017.

[6] H. Markowitz, “Portfolio selection,” Journal of Finance, vol. 7, no. 1,
pp. 77–91, 1952.

[7] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[8] J. Löfberg, “YALMIP: a toolbox for modeling and optimization
in MATLAB,” in IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2004, pp. 284–289.

[9] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1,” 2014.

[10] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization,” Journal of Machine Learning
Research, vol. 17, no. 83, pp. 1–5, 2016.

[11] M. Udell, K. Mohan, D. Zeng, J. Hong, S. Diamond, and S. Boyd,
“Convex optimization in Julia,” SC14 Workshop on High Performance
Technical Computing in Dynamic Languages, 2014.

[12] I. Dunning, J. Huchette, and M. Lubin, “JuMP: a modeling language
for mathematical optimization,” SIAM Review, vol. 59, no. 2, pp. 295–
320, 2017.

[13] A. Fu, B. Narasimhan, and S. Boyd, “CVXR: an R package for disci-
plined convex optimization,” Journal of Statistical Software, vol. 94,
no. 14, pp. 1–34, 2020.

[14] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:
an operator splitting solver for quadratic programs,” Mathematical
Programming Computation, vol. 12, no. 4, pp. 637–672, 2020.

[15] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd, “Conic optimization
via operator splitting and homogeneous self-dual embedding,” Journal
of Optimization Theory and Applications, vol. 169, no. 3, pp. 1042–
1068, 2016.

[16] A. Domahidi, E. Chu, and S. Boyd, “ECOS: An SOCP solver for
embedded systems,” in European Control Conference (ECC). IEEE,
2013, pp. 3071–3076.

[17] G. Holzmann, “The power of 10: Rules for developing safety-critical
code,” Computer, vol. 39, no. 6, pp. 95–99, 2006.

[18] J. Mattingley and S. Boyd, “CVXGEN: a code generator for embedded
convex optimization,” Optimization and Engineering, vol. 13, no. 1,
pp. 1–27, 2012.

[19] L. Blackmore, “Autonomous precision landing of space rockets,” in
Frontiers of Engineering: Reports on Leading-Edge Engineering from
the 2016 Symposium. The Bridge Washington, DC, 2016, pp. 15–20.

[20] A. Domahidi and J. Jerez, “Forces professional,” Embotech AG,
url=https://embotech.com/FORCES-Pro, 2014–2019.

[21] A. Zanelli, A. Domahidi, J. Jerez, and M. Morari, “FORCES NLP:
an efficient implementation of interior-point methods for multistage
nonlinear nonconvex programs,” International Journal of Control,
vol. 93, no. 1, pp. 13–29, 2020.

[22] E. Chu and S. Boyd, “QCML: Quadratic cone modeling language,”
url=https://github.com/cvxgrp/qcml, 2017.

[23] N. Moehle, J. Mattingley, and S. Boyd, “Embedded convex optimiza-
tion with CVXPY,” url=https://github.com/moehle/cvxpy codegen,
2017.

[24] M. Grant, “Disciplined convex programming (unpublished doctoral
dissertation),” 2004.

[25] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and Z. Kolter,
“Differentiable convex optimization layers,” in Advances in Neural
Information Processing Systems (NeurIPS), 2019.

[26] A. Buluç, J. Fineman, M. Frigo, J. Gilbert, and C. Leiserson, “Parallel
sparse matrix-vector and matrix-transpose-vector multiplication using
compressed sparse blocks,” in Symposium on Parallelism in Algorithms
and Architectures (SPAA). Association for Computing Machinery,
2009, pp. 233–244.

[27] G. Banjac, B. Stellato, N. Moehle, P. Goulart, A. Bemporad, and
S. Boyd, “Embedded code generation using the OSQP solver,” in IEEE
Conference on Decision and Control (CDC). IEEE, 2017, pp. 1906–
1911.

	I Introduction
	I-A Contribution
	I-B Prior work
	I-C Outline

	II CVXPYgen
	III Simple example
	IV Comparison to CVXGEN
	V Comparison to CVXPY
	VI Conclusion
	Appendix I: MPC example
	Appendix II: Portfolio optimization example
	References

