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Abstract— We present a novel distributed multi-robot coor-
dination strategy to persistently monitor a closed path-like
environment. Our monitoring strategy relies on a class of
time-inverted Kuramoto dynamics, whose multiple equilibria
coincide with different monitoring configurations and allow
us to tune the covering time of specific areas based on their
priority. We provide a detailed analysis of the equilibria
of the considered class of time-inverted Kuramoto dynamics
and demonstrate the effectiveness of the proposed monitoring
strategy via numerical examples.
Index Terms— Time-inverted Kuramoto dynamics, persistent
monitoring, multiagent systems, nonlinear networked systems.

I. INTRODUCTION

Distributed control algorithms for the coordination of teams
of robots have received increasing attention in the last years.
In this area, one fundamental problem is to deploy robots to
persistently and dynamically patrol, or monitor, an area of
interest, which finds application for service and maintenance,
event detection, and surveillance, among others. In this paper
we propose and analyze a novel distributed strategy for the
persistent monitoring of one-dimensional closed regions.

A. Related work

In the last decade several researchers have studied the prob-
lem of persistent monitoring. In [15] the authors formally
introduce the idea of persistent monitoring in a changing
environment and present a linear program formulation. The
problem of monitoring a set of stationary points of interest is
studied in [14]. In [11], given different priorities to different
points of interest, the authors propose a method to generate
the route through graph-theoretic techniques, and then to
coordinate the robots to obtain equal-time-spacing trajecto-
ries. Kingston et al. [7] present a decentralized algorithm
for perimeter surveillance; the algorithm manages changing
perimeters and insertion/deletion of agents. In [1] a non-
deterministic patrolling algorithm is considered to deal with
an adversarial setting. A solution for dynamic perimeter
surveillance is presented in [13], [6]. An optimal persistent
monitoring problem is formulated in [4] in a one-dimensional
space and in a two-dimensional space in [10]. Soltero et
al. [16] account for the collision avoidance in persistent
monitoring problem on intersecting trajectories. Finally, [12]
proposes a perimeter surveillance strategy based on artificial
vector fields for three-dimensional mission spaces.
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Differently from the existing literature, in this paper we
propose a novel strategy for single-agents and clustered per-
sistent monitoring of a one-dimensional closed path, where
multiple agents repeatedly visit all points of the path in
different coordinated fashion. The case of single-agents mon-
itoring proves useful when the monitoring objective is, for
instance, to detect deterministic events, while the clustered
case is particularly appropriate when multiple measurements
at the same location increase the detection probability, and
it also improves the reliability of the monitoring strategy
against agent failures.

B. Paper contribution and organization

We propose a novel distributed monitoring strategy based on
a class of time-inverted Kuramoto dynamics. The proposed
strategy allows us to tune the monitoring priority of different
locations in a one-dimensional closed environment, and to
dynamically modify them through sparse control actions. Our
strategy is based on the translation of the desired monitoring
task into the property of the equilibria of the considered
class of time-inverted Kuramoto dynamics, which we can
characterize and control by operating on the parametric
description of the curve that describes the trajectory of the
robots. Finally, we provide a set of numerical experiments
to validate the effectiveness of the proposed strategy.
A preliminary version of the results contained in this paper
was presented in [2]. However, compared to [2] we made
several advances: we provide Theorem 1, which in the
previous version was informally addressed. In addition, this
paper shows Theorem 2, which was presented in [2] just
as a conjecture. The core of the novel contribution are the
results that link persistent monitoring (Section III) with the
properties of the Kuramoto equilibria. Finally, we offer here
a rich numeric validation of our results.
The paper is organized as follows. Section II describes our
problem setup and presents the analysis of the time-inverted
Kuramoto dynamics. Section III contains our persistent mon-
itoring strategy. Finally, Section IV presents our numerical
results and Section V concludes the paper.

II. PROBLEM SETUP AND PRELIMINARY RESULTS

The persistent monitoring problem that we are going to
address in this paper is the following: given a closed path
P ⊂ R3 and N robotic agents, steer the robots in a
configuration such that each point q ∈ P is periodically
visited by one or multiple robots, with a constant frequency.

A. Connectivity and motion constraints

1) Multi-agent network: The interconnection between the N
robots are described by the undirected graph G(V, E), where



V = {1, . . . , n} denotes the set of robots and E ⊆ V×V their
interconnections. Let us indicate with V(i) the i–th entry of
the set V . In this work we focus on ring-like interconnections,
where E = {(V(i), j) : j = V(i + 1)} ∪ {(V(i), j) : j =
V(i−1)}}∪{(V(1),V(N))}∪{(V(N),V(1))} and the order
of the V entries is arbitrary (i.e., it is not necessarily a 2-
circulant topology). In the rest of the paper we refer to the
ring topology edge set as R, and let Ri = {j : (i, j) ∈ R}.
2) Motion constraints: We assume that the robots are con-
strained to move on the closed path P ⊂ R3, which can be
written in parametric form as r(γ) : R → R3. The state of
the i–th robot is θi ∈ R, while its position on P is r(θi). We
assume that it is possible to directly control the i–th state
velocity θ̇i,∀i. For clarity, in Fig. 1, the path of interest P
is a circle (dashed blue line), where r(γ) = [cos γ, sin γ, 0]
and the robots’ positions r(θ) = [r(θ1), r(θ2), . . . , r(θN )]>

are depicted with blue filled circles.

B. Robot dynamics

We let the state of each robot evolve according to a class of
time-inverted Kuramoto dynamics. In particular,

θ̇i = ω −
∑
j∈Ri

sin (θj − θi) , ∀i = 1, . . . , N, (1)

where ω is the natural frequency parameter. Compared to the
classic homogeneous Kuramoto model [8], where all agents
typically converge to a phase-synchronized state, the negative
sign in (1) and the fixed ring topology force the robots to
converge to different, stable, splay-state configurations, as we
discuss next. In the following we will implicitly observe
the evolution of the angles from a mobile reference frame
that rotates with constant speed ω. Hence, by assuming
that all the agents have the same natural frequency ω,
we can consider ω = 0 without loss of generality.
Theorem 1 (Convergence to the equilibrium). The dynam-
ical system (1) converges to an equilibrium point

θ?(p) = [θ0 + 2z1π, θ0 + 2z2π +
2πp

N
, . . .

. . . , θ0 + 2zNπ +
2πp(N − 1)

N
]>,

(2)

where θ0 ∈ R can be any real number, p ∈ {(N/4 +
kN, 3N/4 + kN) ∩ Z}, and zi, k ∈ Z for all i = 1 . . . N .

Proof. Firstly, we prove that the system converges to an
equilibrium point. The undirected graph G(V,R), which has
card(V) = N number of nodes and card(R) = M = N
number of edges, can be uniquely associated with a directed
graph obtained introducing a direction to the arc according
to the lexographical order of the nodes it connects (i.e., if
e = {i, j} ∈ R with i < j then the orientation of the arc in
the directed graph will be from i to j). Define B ∈ RN×M as
the incidence matrix of the directed graph just introduced.
The dynamics can be written in the more compact form:
θ̇ = B sin(B>θ), where θ = [θ1, θ2, · · · , θN ]> and where
we consider the sin function as applied element-wise to

vector B>θ. By selecting as a Lyapunov function

V (θ) =
N2 − 2N + 21>N cos

(
B>θ

)
N2

, (3)

with the gradient with respect to θ being ∇θV =
− 2
N2B sin

(
B>θ

)
, the time derivative of (3) is equal to

V̇ (θ) = ∇θV >θ̇ = − 2

N2
θ̇>θ̇ ≤ 0,

by the LaSalle invariance principle [9] the system converges
to an equilibrium point.
Directly from the dynamics (1), it follows that the necessary
condition for the equilibrium is

∑
j∈Ri

sin (θi − θj) =
0,∀i = 1, . . . , N . Hence, all the possible equilibrium points
have to belong to the symmetric set θ?(p) (2), where p ∈ Z,
or to the set θ?(z) = [θ0 + z1π, θ0 + z2π, . . . , θ0 + zNπ]>,
where sin(θi − θj) = 0, ∀j ∈ Ri and ∀i = 1 . . . N .
By computing the Jacobian A around the candidate equi-
librium points, we obtain

A =


aii =

∑
j∈Ri

cos
(
θ?j − θ?i

)
ahi =

{
− cos (θ?h − θ?i ) , h ∈ Ri

0, h /∈ Ri.
(4)

From the Jacobian matrix (4), it turns out that, if the
condition

∑
j∈Ri

cos(θ?j − θ?i ) > 0 is true for at least one
agent, the equilibrium is unstable. Moreover, since for
at least one agent the condition

∑
j∈Ri

cos(θ?j − θ?i ) < 0
has to be satisfied, we can discard the equilibria θ?(z).
In fact, the only configuration in θ?(z), which leads to a
candidate stable equilibrium, it is contained in θ?(p) (i.e.
θ?(N/2) ), hence we can focus only on the equilibrium
configurations in (2). By exploiting the properties of
circulant matrices [5], we can express the eigenvalues
of A in closed form:

λr(A) = −2 cos

(
2πp

N

)[
−1 + cos

(
2πr

N

)]
.

Since cos
(

2πp
N

)
= cos(θ

?(p)
i − θ?(p)j ), it follows that neces-

sary condition for stability is given by cos(θ
?(p)
i −θ?(p)j ) <

0, ∀j ∈ Ri and ∀i = 1 . . . N . Thus, the equilibria in (2)
are stable if and only if p ∈ {(N/4+kN, 3N/4+kN)∩Z},
where k ∈ Z. By choosing p ∈ {(N/4 +kN, 3N/4 +kN)∩
Z}, the linearized dynamics has a single eigenvalue equal to
zero because of the θ0 rotations; all the others eigenvalues
are negative.

In this work we refer to splay-state configuration as
the equilibria in (2). In Fig. 1 we depict some examples
for the possible equilibrium configurations with different
number of agents. Notice that we depict only the set
p ∈ {0, bN/2c] ∩ Z}}, since p ∈ {[dN/2e, N) ∩ Z}
contains equivalent equilibrium configurations, e.g., let
us consider N = 7, the equilibrium configurations
with p = {0, 1, 2, 3} are equivalent to the equilibrium
configurations with p = {7, 6, 5, 4} respectively, we will
use this fact later in the paper. More formally, we can
state the following:



p = 0 p = 1 p = 2 p = 3 p = 4

UNSTABLE EQUILIBRIA

N = 7

N = 8

N = 9

Fig. 1: Equilibrium configurations (2), for the dynamical model
in (1). We depict the equilibrium configurations by changing the
values for p by considering the number of agents N = 7, 8, 9.
The blue filled circles represent the agents while the orange links
indicate the graph topology.

Remark 1. By selecting p ∈ {(0, N)∩Z} in equation (2),
the equilibrium configurations can be split into two
equivalent sets p1 ∈ I1 and p2 ∈ I2, where I1 =
{(0, bN/2c] ∩ Z}} and I2 = {[dN/2e, N) ∩ Z}. Indeed,
let us select p1 equal to the i–th component of the I1
interval, i.e., p1 = I1[i], and let us select p2 = I2[N + 1−
i], ∀i = 1 . . . card(I1), by construction of (2), it follows
that mod(θ

?(p1)
j , 2π) ≡ mod(θ

?(p2)
N+2−j , 2π) ∀j = 2 . . . N

(by assuming the same θ0 value).
The following result is instrumental to our analysis. Firstly,
let us define what we meant by cluster:
Definition 1 (Cluster). A group Y of robots forms a cluster
if θi − θj = 2kπ, for every i, j ∈ Y and some k ∈ Z.
Lemma 1 (κ-clustered coverage). Given N > 2 and the dy-
namics (1), the number of agents that clusters together at the
stable equilibrium points (2) is given by the greater common
divisor between N and p, denoted by κ = gcd(N, p). The
clusters divide the circle in N/κ equal parts (κ-clustered
coverage).

Proof. See [2] for a proof of this result.

We conclude this section with a result concerning the con-
trollability properties of the nonlinear system (1). In what
follows, we show how different equilibrium configurations
can be obtained by simply controlling the position of one
robot.1 Let us call C the set of controllable agents.
Theorem 2 (Control of the final equilibrium). Let N > 2.
If the agents are in a stable configuration with a value of
p ∈ {(N/4, bN/2c) ∩ Z} and the position of a single agent
i ∈ C is changed from θi to θi + π, then the system (1)
converges to the equilibrium configuration corresponding to
p+ ∈ Z, with p < p+ ≤ dN/2e.

Proof. Without loss of generality, let us consider C = {1}.
Under the conditions stated above the following statements
hold true:

1See https://www.youtube.com/watch?v=AQxW9aP8ugo for
an illustrative simulation.

1) Let us consider a 2-circulant topology, i.e. an ordered
ring topology, to simplify the notation, then θ̇1 = 0,
θ̇N−k ≤ 0, θ̇2+k ≥ 0, ∀t and for k = 0, . . . , bN/2c.

2) Let us define ∆θ
?(p)
ij = ‖mod(θ

?(p)
i , 2π) −

mod(θ
?(p)
j , 2π)‖, then ∆θ

?(p+)
ij > ∆θ

?(p)
ij , where p+ is

the value of p associated with the configuration reached
after the perturbation δθ1 = π.

Because of the symmetry of the splay-state solutions θ?(p)

in (2) and the symmetry of the equilibrium configurations
with respect to the perturbation δθ1 = π, it follows from
the dynamics (1) that θ̇1 = 0 and θ̇2+k = −θ̇N−k for
k = 0, . . . , bN/2c − 1. If we hypothesize that an agent
changes it’s velocity in sign during the evolution of the
system, all the agents have to do so in a symmetric fashion,
since θ̇2+k = −θ̇N−k for k = 0, . . . , bN/2c − 1. However,
since V̇ ≤ 0 (see Theorem 1), this is not possible because
it would imply to go back to a configuration with an higher
Lyapunov function value. Hence, since the perturbation of
agent 1 by δθ1 = π, leads to θ̇2 < 0 and θ̇N > 0 when
p ∈ {(N/4, bN/2c) ∩ Z} (θ̇2 > 0 and θ̇N < 0 when p ∈
{(dN/2e, 3N/4) ∩ Z}), by assuming an initial equilibrium
configuration θ?(p) with p ∈ {(N/4, bN/2c) ∩ Z}, the
networked dynamics of the system (1) implies θ̇2+k ≤ 0,
θ̇N−k ≥ 0 for k = 0, . . . , bN/2c − 1, at any time t, hence
the statement 1 is satisfied.
By assuming that the system after the perturbation is not
in an equilibrium configuration, the statement 1 implies
the statement 2, (see Fig. 3 for a clearer visualisation). In
fact, according to statement 1, the next reached equilib-
rium will have a lower value for θ2 and an higher value
for θN . Since all the values in between are equidistant
mod(2π) at the equilibria in (2), the statement 2 is a
consequence. Because of Theorem 1, starting from θ?(p),
by applying the perturbation δθ1 = π, the system will
converge towards θ?(p

+), and since ∆θ
?(p+)
ij > ∆θ

?(p)
ij ,

because of statement 2, the new equilibrium configuration
have to satisfy p+ > p. The upper bound p+ ≤ dN/2e,
again, comes from the fact that V̇ ≤ 0 (see Theorem 1).
Indeed, by considering the Lyapunov function in equation (3)
and the equilibrium points (2), it is easy to recognize
that {θ?(bN/2c), θ?(dN/2e)} = arg minθ∈θ?(p) 1

>
N cos

(
B>θ

)
,

with p ∈ {(N/4, 3N/4) ∩ Z}, hence the upper bound for p
is dN/2e.

Fig. 2 shows the evolution of the Lyapunov function V (θ),
by applying four times a perturbation of δθi = π at different
instants of time, while Fig. 3 shows the trajectory of the
robot states θ.

III. PERSISTENT MONITORING STRATEGY

The persistent monitoring of a generic path of interest P
can be obtained by imposing to the state θi the dynamics
in (1) with ω > 0, for each robot in the system. It follows
from Theorem 1 that the agents converge to an equilibrium
configuration that belongs to (2), which is a κ-clustered
configuration (see Lemma 1). By constraining the i–th robot
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Fig. 2: Lyapunov function value evolution in time. At time t0
the system is perturbed from θi(t0) to θ′i(t0) = θi(t0) + δθ′(t0),
where δθ′(t0) = π. Hence the system reaches the new equilibrium
configuration θ′i(t1). This procedure is repeated until it reaches the
“most stable” equilibrium configuration.
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Fig. 3: Evolution of the θ value in time. We are considering the
same situation depicted in Fig. 2. It can be notice how the difference
∆θ

?(p+)
ij increases after each perturbation.

position to be equal to r(θi), ∀i = 1 . . . N , where r(γ) : R→
R3 is a parametric representation of the path of interest P ,
the robots will patrol the path in a κ-clustered configuration.
It means that, at the equilibrium, each point on the
path of interest is repeatedly covered by κ = gcd(N, p)

robots, with a constant frequency f = N/κ
2π/ω .To control the

final equilibrium configuration we can rely on Theorem 2,
which, however, drives the system towards p = bN/2c. In
this Section, we provide sufficient conditions to fully control
the final equilibrium configuration. Moreover, we show how
to take into account different patrolling priorities on different
locations on the path of interest.
By acting on the parametric representation r(γ) of the path
of interest P , we can: i. manipulate the final equilibrium
configurations, and ii. assign priorities, in terms of coverage
time, to each curve stretch.
Let us start with the equilibrium manipulation. This feature
can be very useful in practice, for instance, if the agents have
the capability to communicate only with the neighbors in a
physical sense, i.e., with the agents in front and behind, or if
a clustered persistent monitoring is required. In the presented
framework, we are going to show that we can steer the
system towards any equilibrium configuration in (2), if the

number of agents N is odd, and by controlling the position of
a single agent. Let us start by defining a sufficient condition
for 1-clustered coverage configuration.
Theorem 3 (Sufficient condition for 1-clustered coverage
configuration). Given an odd number of agents N > 2, by
controlling the position of at least 1 agent i.e., card(C) ≥ 1,
it is always possible to steer the final configuration to the
1-clustered coverage formation.

Proof. Theorem 1 ensures convergence to θ?(p) with p ∈
{(N/2, 3N/4) ∩ Z}. By using the results of Lemma 1,
we know that for N ∈ {2N + 1}, the configurations
θ?(bN/2c) and θ?(dN/2e) are 1-clustered coverage configura-
tions, since (N, (N±1)

2 ) are coprime, i.e., gcd(N, bN/2c) =
gcd(N, dN/2e) = 1. Moreover, because of Theorem 2, under
the assumption that card(C) ≥ 1, it is always possible to steer
the system towards the equilibrium θ?(bN/2c) (or θ?(dN/2e)),
hence the proof.

Since we can steer the system to the 1-clustered coverage
state, the trick here is to change the parametric representa-
tion of the path of interest. In particular, we multiply the
parametrization variable by α ∈ N, obtaining an alternative
path r̃(γ). By using this contrivance, we do not change
the shape of the path of interest but only its length by a
factor α, i.e., r̃(γ) has the same shape of r(γ), however,
by considering γ ∈ (0, 2π), it completes multiple laps,
repeating the same positions α times. As a consequence,
the equilibrium configurations, from the perspective of the
“single-lap path” r(γ), change in θ̃?(p) = αθ?(p).
To recover any κ-clustered configuration, the greatest com-
mon divisor between N and α has to be set equal to κ, i.e.,
η = gcd(N,α) = κ.
More formally we can state the following:
Lemma 2 (Equilibrium manipulation 1). Given an odd
number of agents N > 2, let us consider the following
configuration

θ?(p) =

[
0,

2πp

N
, . . . ,

2πp(N − 1)

N

]>
where p = N−1

2 + kN , i.e., 1-clustered coverage formation.
By considering the alternative configuration θ̃?(p) = αθ?(p),
let us define η as the greatest common divisor between
α and N , i.e., η = gcd(α,N), the resulting alternative
configuration is an η-clustered coverage.

Proof. In this case we obtain the following equilibrium
configurations

θ?(p) =

[
0,
α/ηπ(N − 1)

N/η
, . . . ,

α/ηπ(N − 1)(N − 1)

N/η

]>
.

Since N − 1 is an even number, α/η and N/η are integers,
it is by construction the η-clustered configuration.

Finally, by combining Theorem 3 and Lemma 2 we can
conclude that the system, through equilibrium manipulation,
can be steered towards any configuration in the set (2),
including the unstable configurations.
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Fig. 4: Example of a path of interest P with 4 points of interest
r(γi).

Lemma 3 (Equilibrium manipulation 2). Given an odd
number of agents N > 2, being in the equilibrium con-
figuration (2) with p = N−1

2 , by considering the modified
equilibrium configurations θ̃?(

N−1
2 ) = αθ?(

N−1
2 ), we can

reconstruct all the equilibria θ?(p̄) with p̄ ∈ N, by tuning
the parameter α.

Proof. Since αθ?(
N−1

2 ) = θ?(α
N−1

2 ) and p = N − 1 is
equivalent to p = 1 because of Remark 1, by selecting α =
2p̄ we have that θ?(p̄(N−1)) ≡ θ?(p̄), hence the proof.

Notice that in Lemma 2 – 3 the number of agents has to be
odd, otherwise the configuration p = N−1

2 + kN /∈ Z would
not be an equilibrium.
Remark 2. We showed that by shaping the path parametriza-
tion, we can reach different configurations. However, by
manipulating α, in particular by increasing it, we have to
account for a proportionate increase of the agents’ velocities,
which is compensated by scaling the natural frequency ω by
the parameter α.
The other feature, that we mentioned before, associated to the
path parametrization, is the priority assignement to different
locations on the path. Let us consider z points of interest
w = {w1, w2, ..., wz}, where wi ∈ P, ∀i = 1 . . . z. We can
express P in the parametric form r(γ) = [x(γ), y(γ), z(γ)]>,
where r(γ1) = w1, r(γ2) = w2, . . . , r(γz) = wz . To assign
different priorities to different locations on the path, the idea
is to modify the parametric representation of the curve P ,
by scaling ∆γij = ‖γi−γj‖ by a factor fi, keeping ∆γii =
2kπ.
For the sake of clarity, we depict in Fig. 4 the path P ⊂
R2, the phase differences ∆γij and the points of interest
wi, where z = card(w) = 4. Let us consider the weighted
phase differences ∆γ̃ij = fi∆γij , when the priority factor
is equal to fi = 1 ∀i (∆γ̃ij = ∆γij), the agents’ velocities
are equal to v =

√
ẋ(γ)2 + ẏ(γ)2. By imposing f1 > 1 we

are proportionally decreasing the agents’ speeds at the l12

stretch (the agents cover the points on l12 for more instants
of time), while if f1 < 1, we are proportionally increasing it.
In this way we can tune the covering time (i.e., the amount
of time spent by the agents in the proximity of the points of
interest) to each stretch of the path of interest P = {P12 ∪
P23 · · · ∪ Pz1}. In the following section we provide some
simulation results.
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Fig. 5: Simulations with N = 25, on a custom path P with three
points of interest depicted with colored squares. (a) No priorities
assigned fi = f, ∀i = 1 . . . 6 , (b) priorities assigned f1 = 3f ,
fi = f ∀i = 2 . . . 6. Quantitative results on the monitoring time
are reported in Table I, in the first (a) and in the second (b) column
respectively.

TABLE I: Quantitative results of simulation in Fig. 5. Amount
of the time spent by the agents in the proximity of the points of
interest, by considering a proximity radius of 0.5 m and by changing
the priority factors fi.

- f1 = f2 = f5 f1 = 3f2 = 3f5 f2 = 1
2 f1, f5 = 1

3 f1 f1 = 2f2, f5 = 5f2
t1(s) 12.59 24.82 15.65 14.13
t2(s) 12.60 8.43 7.79 7.01
t5(s) 12.59 8.33 5.22 35.87

IV. SIMULATION RESULTS

The proposed approach for persistent monitoring has been
extensively tested in simulations. In Fig. 5 we simulate
N = 25 agents that have to persistently monitor a given path
of interest P = {P12∪P23∪P34∪P45∪P56∪P61}, for the
case of equal (Fig. 5-(a)) and different (Fig. 5-(b)) priority
assignments. In this case, we designed v =

√
ẋ(γ)2 + ẏ(γ)2

to be constant, hence in a 1-clustered coverage condition,
without priority assignments Fig. 5-(a), we have equal cov-
ering time and homogeneous monitoring frequency for all
the points on the path. We depicted with colored squares (in
red, green and blue) three points that belong to different parts
of the path. In Table I we report the amount of the time spent
by the agents in the proximity of each of these points, by
considering a proximity radius of 0.5 m and by changing the
priority factor fi. The red point w1 belongs to the subpath
P12, i.e., w1 ∈ P12, the green point w2 ∈ P23, while the blue
point w3 ∈ P56. As we expect the amount of monitoring time
is equal on the three points of interest when f1 = f2 = f5

(Fig.5-(a)), while by considering f1 = 3f2 = 3f5 it results
that t1 (the monitoring time for the point of interest w1)
is about three time as much as t2 and t5 (Fig.5-(b)). By
selecting f2 = 1/2f1 and f5 = 1/3f1, it results that t1 is
twice t2 and about three times as much as t5. Finally by
selecting f1 = 2f2 and f5 = 5f2, we have t2 ≈ 1/2t1 and
t2 ≈ 1/5t5.
In Fig. 6 we show how the configuration θ̃?(bN/2c) =
αθ?(bN/2c) changes with α. In this simulative example we
have N = 15 agents; in corrispondence of η = gcd(α,N) >
1 the configuration goes in clusters, i.e., for α = {3, 5, 6},



(a) (b) (c)
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Fig. 6: Graphical representation of the equilibrium configuration at
θ̃?(bN/2c) multiplied by different values of α = {1, 2, 3, 4, 5, 6},
by considering N = 15.

which are respectively Fig. 6-(c),(f),(g), while for α =
{1, 2, 4}, Fig. 6-(a),(b),(d), the system falls in 1-clustered
coverage state configurations, since η = 1, in accordance
with Lemma 2.
In Fig. 7 we depict an example for a three-dimensional
mission space:

P3D :


x(θ) = sin(5θ)

y(θ) = sin(θ)

z(θ) = cos(3θ)

. (5)

In this case we consider N = 15 agents, and we illustrate the
final configurations for α = {1, 3, 5, 15} respectively from
Fig. 7-(a) to 7-(d). Other paths with interesting properties
in persistent monitoring and surveillance applications can be
used in our framework, e.g., the Lissajous curves [3].

V. CONCLUSIONS

We proposed a novel strategy for multi-robot persistent
monitoring on closed paths. We used the idea of the time-
inverted Kuramoto to achieve our goal. It permits to monitor
a generic closed path in different configurations i.e., in splay-
state configurations, and it allows to assign different priorities
to the different locations on the path. Future works may
consider the online path parametrization, hence dealing with
time-varying paths. Other interesting directions may consider
heterogeneous agents and the management of malicious
attacks in the network. Finally, we plan to implement the
algorithm on wheeled robots or UAVs.
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