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Abstract— This work studies remote state estimation of mul-
tiple linear time-invariant systems over shared wireless time-
varying communication channels. We model the channel states
by a semi-Markov process which captures both the random
holding period of each channel state and the state transitions.
The model is sufficiently general to be used in both fast and
slow fading scenarios. We derive necessary and sufficient stability
conditions of the multi-sensor-multi-channel system in terms of
the system parameters. We further investigate how the delay of
the channel state information availability and the holding period
of channel states affect the stability. In particular, we show that,
from a system stability perspective, fast fading channels may be
preferable to slow fading ones.

Index Terms—Stability of linear systems, control over commu-
nications, estimation, Kalman filtering, Markov processes.

I. INTRODUCTION

THE incoming Fourth Industrial Revolution, Industry 4.0,
focuses heavily on interconnectivity, automation, ma-

chine learning, and real-time data for customized and flexible
mass production [1]. In particular, with low-cost and scalable
deployment capabilities, wireless remote state estimation from
ubiquitous sensors will be essential in many industrial net-
worked control applications, such as advanced manufacturing,
warehouses automation, mining, and smart grids [2].

The typical connection density in the Industry 4.0 era
is about 106/km2; however, wireless communications have
a limited spectrum bandwidth for transmissions. Therefore,
transmission scheduling among sensors is a critical issue
over the shared limited number of frequency channels. Most
wireless scheduling works focus solely on communications
performance, including throughput, latency, and reliability, but
are agnostic to upper-layer applications, such as estimation and
control [3]. However, for a multi-sensor-multi-channel remote
estimation system, where each sensor measures an unstable
dynamic plant, the scheduler must guarantee the stability of
the remote estimation of all plant states. Otherwise, some of
the plants cannot be stabilized, leading to catastrophic impacts
on real-world systems. The design of stabilizing multi-sensor-
multi-channel remote estimators is a challenging problem and
has drawn significant attention.

Optimal dynamic transmission scheduling policies of multi-
plant networked systems over shared wireless resources were
investigated in [4], [5]. However, the stability conditions of
these systems have not been investigated. Sensor transmission
scheduling of remote estimation systems over single and
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multiple packet drop channels were investigated in [6] and [7],
respectively. Once sufficient stability conditions were obtained,
Markov decision process (MDP) methods were be adopted
for finding the optimal scheduling policies. The work [8]
developed a sufficient stability condition over time-correlated
fading channels, whereas [9] derived a necessary and sufficient
stability condition.

Due to shadowing and multi-path propagation, wireless
channel states (e.g., qualities) are time-varying and time-
correlated [10]. Since wireless channel dynamics have sig-
nificant impact on the remote estimation quality, accurate
channel modeling is critical for stability analysis. In the multi-
system scheduling works above, time-invariant channels were
considered in [6], [7]; time-uncorrelated fading channels were
adopted in [4], [5]; recently, more practical time-correlated
fading channels were applied in [8], [9] and modeled by
Markov processes. However, the Markov modeling is suitable
for fast fading channels, i.e., the channel state changes at each
time, and is not accurate for slow fading scenarios. As verified
by experiments in industrial environments [11], semi-Markov
processes, which generalize Markov processes, are suitable for
characterizing slow fading channels in factories. In addition,
semi-Markov modeling also captures the time-varying feature
of the channel state holding period in practice, i.e., the channel
coherence time. Note that most of the existing channel models
assume fixed coherence time for tractability [10].

In this work, we focus on the stability analysis of a multi-
sensor remote estimation system over shared semi-Markov
fading channels. The novel contributions include:
•We build up a multi-sensor remote estimation system over

practical multi-level semi-Markov fading channels. To the best
of our knowledge, such a system has never been investigated
in the open literature. Note that the existing works [8], [9]
only considered the simpler Markov channel modeling with
binary-level channel states.
• We derive a necessary and sufficient stability condition

for remote estimation and also provide the structure of a
stability-guaranteeing scheduling policy. Our result establishes
a fundamental design guideline for stable remote estimation
systems over practical wireless channels.
• We also investigate how the delay of the channel state

information availability and the holding period of channel
states affects the stability. In particular, we show that a fast
fading scenario (e.g., with a short average holding period) is
preferable from a stability viewpoint.

II. SYSTEM MODEL

We consider a remote estimation system with N sensors
each measuring an independent physical process, as illustrated
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Fig. 1. The multi-sensor-multi-frequency remote estimator. P, S, G, and RE
denote processes, sensors, gateway and remote estimator, respectively.

in Fig. 1. A local gateway connected to the sensors collects
their measurements and forwards them to a remote estimator.
Connections between sensors and the gateway are reliable
and not scheduled, while the gateway to remote estimator
communications are wireless and scheduled due to bandwidth
limitations. There exist infinitely many dynamic transmission
scheduling policies. It is critical to determine necessary and
sufficient conditions of the remote estimation system under
which there exists a scheduling policy that can stabilize the
system. If such a condition is not satisfied, then no stabilizing
scheduling policy exists and one should redesign the system.
The main focus of the current letter is to present a necessary
and sufficient stability condition, and thereby provide funda-
mental design guidelines for stable remote estimation systems.

Each process n is modeled as an LTI system:

xn(t+ 1) = Anxn(t) + wn(t),

yn(t) = Cnxn(t) + zn(t),

where xn(t) ∈ Rln and yn(t) ∈ Rrn are the process state
and the sensor measurements at time t ∈ N0, respectively.
An ∈ Rln×ln and Cn ∈ Rrn×ln are process n’s state transi-
tion matrix and sensor n’s measurement matrix, respectively.
wn(t) ∈ Rln and zn(t) ∈ Rrn are the process disturbance and
the measurement noise, and are independent and identically
distributed (i.i.d.) zero-mean Gaussian processes with the
covariance matrices Wn and Zn, respectively.

A. Local Estimation

Each sensor uses a local Kalman filter (KF) to pre-process
its measurement before sending to the gateway [8]. We have

xsn(t|t− 1) = Anxsn(t− 1)

Ps
n(t|t− 1) = AnPs

n(t− 1)A>n + Wn

Kn(t) =Ps
n(t|t− 1)C>n (CnPs

n(t|t− 1)C>n +Zn)−1

xsn(t) =xsn(t|t− 1)+Kn(t)(yn(t)−Cnxsn(t|t− 1))

Ps
n(t) = (In −Kn(t)Cn)Ps

n(t|t− 1)

where xsn(t|t− 1) and xsn(t) are the predicted and updated
state estimate at time t, respectively. Kn(t) is the Kalman
gain. Ps

n(t|t− 1) and Ps
n(t) are the predicted and updated

error covariance, respectively. In is the ln× ln identity matrix
In particular, xsn(t) is the optimal estimate of xn(t) at time
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Fig. 2. An illustration of the semi-Markov chain of {h(t)}.

t in terms of the estimation mean-square error, where the
estimation error covariance Ps

n(t) is defined as

Ps
n(t) , E

[
(xsn(t)− xn(t))(xsn(t)− xn(t))>

]
. (1)

We assume that the local KFs are stable and operate in
steady state [8], [12], i.e., Ps

n(t) = P̄n,∀t ∈ N0, n ∈ N ,
{1, 2, . . . , N}, and investigate the remote estimation stability.

B. Semi-Markov Fading Channel

We assume that there are M < N frequency channels for
sensor data transmission. The channels are not perfect for
transmission and can induce packet dropouts. The channel
qualities at the M frequencies are time-correlated and modeled
as a semi-Markov process as below. A better channel quality
leads to a smaller packet drop probability.

Consider an M -frequency-multi-level channel quality state
h(t) , [h1(t), h2(t), . . . , hM (t)], where the quality of the mth
frequency channel hm(t) has Mm levels and

hm(t)∈Hm,{h(m)
1 , h

(m)
2 , . . . , h

(m)
Mm
}, m∈M,{1, . . . ,M}.

The packet drop probabilities of transmissions at different fre-
quencies and different channel quality levels can be different.

The channel quality state h(t) forms a semi-Markov chain
with M̄ =

∏M
m=1Mm irreducible states, where

h(t) ∈ S = H1 ×H2 × · · · × HM = {h1,h2, . . . ,hM̄}

and hj = [hj,1, hj,2, . . . , hj,M ]. The transition in-
stants between channel quality states are denoted by
{t0, t1, . . . , tl, . . . }, with t0 = 0, and t0 < t1 < t2, . . . all
integers. The lth holding period, i.e., the amounts of time
spent in the same channel quality state before the lth channel
quality state transitions, is defined as ∆l , tl+1−tl. Assuming
that the holding periods are bounded by ∆̄ ∈ N, we have
∆l ∈ ∆ , {1, . . . , ∆̄},∀l. See Fig. 2 for an illustration of
the semi-Markov chain of {h(t)}. Note that the semi-Markov
chain degrades to a Markov chain when ∆̄ = 1.

Let M ∈ RM̄ × RM̄ denote the channel quality state
transition probability matrix of the semi-Markov chain, where
the ith-row-jth-column element is

[M]i,j , Prob [h(tl+1) = hj |h(tl) = hi] ,∀l ∈ N0. (2)

The probability distribution of the holding period given the
current channel quality state is

ψi(δ) = Prob [∆l = δ|h(tl) = hi] ,∀l ∈ N0,hi ∈ S. (3)



We assume that the channel quality transition and the holding
period are independent, i.e.,

Prob [h(tl+1) = hj , ∆l = δ|h(tl) = hi] = [M]i,jψi(δ).

Let ∆l(t) , t−tl+1 denote the holding time of the current
channel quality state, where tl ≤ t < tl+1. Similarly, we
define the holding time of the next channel quality state as
∆l′(t+ 1) , (t+ 1)− tl′ + 1, where l ≤ l′ ≤ l + 1.

From (3), the probability that the channel quality state
transition occurs in the next time slot is

Prob [∆l′(t+ 1) = 1|∆l(t) = δ,h(t) = hi]

= Prob [∆l = δ|∆l ≥ δ,h(t) = hi] =
ψi(δ)∑∆̄

δ′=δ ψi(δ
′)
.

(4)

Now we define the channel state vector h̃(t) as the cascaded
state of h(t) and ∆l(t):

h̃(t) , (h(t), ∆l(t)) ∈ S̃ , S ×∆ = {h̃1, h̃2, · · · , h̃M̃},

where the cardinality |S̃| = M̄∆̄ , M̃ . From (2), (4), and the
semi-Markov property of {h(t)}, it is easy to show that {h̃(t)}
has the Markov property, i.e., given the current state h̃(t),
the next state h̃(t + 1) is independent of the previous states
{h̃(0), h̃(1), . . . , h̃(t − 1)}. Thus, the original semi-Markov
chain {h(t)} is converted to the Markov chain {h̃(t)}. In the
rest of the paper, we will use h̃(t) in stead of h(t) for ease
of analysis.

Using (2), (3), and (4), the channel state transition proba-
bility matrix M̃ ∈ RM̃ ×RM̃ of {h̃(t)} can be obtained, and
the ĩth-row-j̃th-column element is

[M̃]̃i,j̃,Prob
[
h̃(t+ 1)= h̃j̃=(hj , δj)|h̃(t)= h̃ĩ=(hi, δi)

]

=


[M]i,j

ψi(δi)∑∆̄
δ=δi

ψi(δ)
if δj = 1,

1− ψi(δi)∑∆̄
δ=δi

ψi(δ)
if δj = δi + 1 ≤ ∆̄,hj = hi,

0 otherwise.
(5)

For ease of analysis, we assume that {h̃(t)} is an aperiodic
and irreducible Markov chain.

We make the channel state availability assumption as below.

Assumption 1 (Known Current Channel State). At time t ∈ N,
the current channel state h̃(t) is known by the gateway prior
to transmission scheduling.

We note that the channel state can be estimated based on
standard channel estimation techniques [10]. The scenario with
delayed channel state information will be investigated at the
end of Section III.

We define the transmission failure event at frequency m

given the the channel state h̃j as µ
(
h̃j ,m

)
= 0 and the

packet drop probability

dj,m , Prob
[
µ
(
h̃j ,m

)
= 0
]
∈ [0, 1],∀j ∈ M̃,m ∈M,

(6)
where M̃ , {1, 2, . . . , M̃}.

C. Remote Estimation

In each time slot, the gateway collects N packets of the
sensor estimates {x̂s1(t), . . . , x̂sN (t)}, schedules M of them,
and sends through M frequency channels to the remote
estimator. Each frequency channel can transmit at most one
packet at a time, and the unscheduled packets are discarded.
Each scheduled packet can take at most one frequency channel
for transmission.

Due to the transmission scheduling and packet dropouts,
the remote estimator cannot receive all sensor packets at each
time. Let γn(t) = 1 denote the event that sensor n’s packet
is successfully received by the remote estimator at time t.
We also define the age-of-information (AoI) for each sensor,
φn(t) ∈ N, which is the time duration between the previous
successful sensor n’s packet detection and the current time t,
i.e., φn(t) , min{t′:t′<t,1(γn(t′)=1),t′∈N0}(t − t′), where 1(·)
is the indicator function. Thus, the AoI state has the updating
rule below

φn(t) =

{
1 if γn(t− 1) = 1

φn(t− 1) + 1 otherwise.
(7)

The optimal minimum mean-square error (MMSE) remote
estimator [12] works as below, considering the one-step trans-
mission delay [13]

x̂n(t) =

{
Anxsn(t− 1), if γn(t− 1) = 1,

Anx̂n(t− 1), otherwise.
(8)

and can be simplified as

x̂n(t) = Aφn(t)
n xsn(t− φn(t)). (9)

From (1) and (9), the estimation error covariance of process
n is derived as

Pn(t) , E
[
(x̂n(t)− xn(t))(x̂n(t)− xn(t))>

]
= θφn(t)

n (P̄n),
(10)

where P̄n was defined in Section II-A, θn(X) = θ1
n(X) ,

AnXA>n + Wn, and θm+1
n (·) , θn(θmn (·)),m ∈ N.

Thus, the remote estimation quality of process n at time t
can be quantified via the sum average estimation error
E
(
(x̂n(t)− xn(t))>(x̂n(t)− xn(t))

)
= Tr (Pn(t)), where

Tr(·) is the trace operator. By introducing the following
function

cn(i) , Tr
(
θin(P̄n)

)
,∀i ∈ N (11)

and using (10), we have

Tr (Pn(t)) , cn(φn(t)), (12)

which is the estimation cost function of process n and is
determined by its AoI state φn(t) ∈ N.

Note that due to the transmission scheduling and er-
ror, the AoI state φn(t) can have unbounded support,
i.e., the remote estimator may not receive sensor n’s
packet for an arbitrarily long time. Thus, the cost function
cn(φn(t)) in (11) takes values from a countably infinite set
{Tr
(
θ1
n(P̄n)

)
,Tr
(
θ2
n(P̄n)

)
, . . . }.

As discussed in [12], if ρ(An) ≥ 1, the cost grows up
unbounded with the increasing AoI. Our focus is on the remote
estimator’s stochastic stability defined as below.



Definition 1 (Average Mean-Square Stability). The N -sensor-
M -frequency remote estimation system described above is av-
erage mean-square stable, if the long-term average estimation
cost J is bounded, where

J ,
N∑
n=1

Jn, Jn , lim sup
T→∞

1

T

T∑
t=1

cn(φn(t)), n ∈ N .

Using [9, Lemma 1], it is straightforward to establish the
following property of cn(·):

Lemma 1. For any given ε > 0, there exists positive constants
κ and η such that

(Upper bound) cn(i) < κ
(
ρ2(An) + ε

)i
, (13)

(Lower bound) cn(i) ≥ η(ρ(An))2i,∀i ∈ N. (14)

D. Transmission Scheduling Policy

We solely focus on deterministic stationary scheduling poli-
cies. Let ν(t) , [ν1(t), . . . , νN (t)] ∈ {0, 1, . . . ,M}N denote
the scheduling action for the N sensors at time t. In particular,
if νn(t) = 0, sensor n is not scheduled; if νn(t) ∈ M,
sensor n is scheduled at frequency νn(t). The scheduling
actions are sent to the sensors via feedback channels. We
assume that these transmissions are error-free due to the small
communication overhead.

From (12), the AoI state φ(t) , [φ1(t), φ2(t), . . . , φN (t)]
determines the current estimation cost. From (5) and (8), the
current channel state h̃(t) reflects the chances of transmission
success in the current time slot, and will affect the next channel
state and hence the estimation cost in the next step. Then,
using the Markov properties (5) and (7), a scheduling policy
π(·) should take into account both the channel and AoI states
for decision making, i.e.,

ν(t) = π(φ(t), h̃(t)). (15)

III. STABILITY CONDITIONS

The LTI system model and the semi-Markov channel statis-
tics jointly determine the stability of the overall remote es-
timator. Our result is stated in terms of the channel state
transition matrix M̃, the length-M̃ channel selection vector
v , [v1, v2, . . . , vM̃ ] ∈ MM̃ , where the ith element vi ∈ M
denotes the selected frequency index given the channel state
h̃i, and the M̃ × M̃ diagonal packet drop probability matrix
V(v) given the channel selection vector v ∈MM̃ :

[V(v)]m,m , dm,vm ,m ∈ M̃, (16)

where di,j was defined in (6).

Theorem 1. The M -sensor-N -frequency remote estimator
described in Section II under Assumption 1 can be stabilized
if and only if the following condition holds

ρ2
maxλ < 1,

where ρmax , maxn∈N ρ(An) is the largest spectral radius
of all processes,

λ , ρ
(
V(v?)M̃

)
, v? = [v?1 , . . . , v

?
M̃

], (17)

and
v?i = arg min

m∈M
di,m, i ∈ M̃. (18)

Remark 1. We see that the stability depends on the system
parameter of the most unstable process, the channel state dy-
namics, and the packet drop probabilities at different channel
states. Although Theorem 1 does not provide direct insights on
the structure of a stable scheduling policy, we will construct
a policy with stability guarantees in the proof of the sufficient
condition. Numerical examples of the stability condition are
provided in Section IV.

We will prove the necessary and sufficiency parts of Theo-
rem 1 in the sequel. Note that if all processes are stable, i.e.,
ρmax < 1, the remote estimator is always stable. Thus, in the
following, we only focus on the case with ρmax ≥ 1.

Proof of Necessity. The proof has three parts: 1) the construc-
tion of a virtual policy that can always achieve an average cost
of the remote estimator lower than any real scheduling policy;
2) the average cost function analysis of the virtual policy; 3)
the derivation of the necessary condition.

1) Policy construction: To prove the necessity, we consider
a virtual scenario that only the packet of the sensor correspond-
ing to the most unstable process is scheduled for transmission
in each time slot, while the other sensors’ estimates are
perfectly known by the remote estimator and need not packet
transmissions. Without loss of generality, we assume that
process 1 is the most unstable one, i.e., ρmax = ρ(A1). In
other words, only sensor 1’s is scheduled in each time slot
and it can select any of the frequencies for transmission. For
ease of notation, we will drop out the process index n in the
following analysis. Furthermore, we replace the cost function
c(i) with its lower bound (14).

Thus, the original sensor scheduling policy (15) is reduced
to a frequency selection one

ν(t) = π(φ(t), h̃(t)) ∈M, (19)

where ν(t) and φ(t) are the frequency selection action and
the AoI state of sensor 1, respectively. Recall that we focus
on deterministic stationary scheduling policies, and hence drop
the time index t in the following.

Let vi(φ) , π(φ, h̃i) ∈ M denote the selected channel for
transmission given the current AoI state φ and the channel
state h̃i. From (19), for given φ, the frequency selection rule
at M̃ different channel states can be uniformly written as:

v(φ) = [v1(φ), . . . , vM̃ (φ)] ∈MM̃ .

Given φ and the frequency selection vector v(φ), we obtain
the packet drop probability matrix V(v(φ)) based on (16):

[V(v(φ))]m,m = dm,vm(φ),∀m ∈ M̃.

From (7), the current frequency selection action ν will
only affect the next AoI state φ′ and cost c(φ′), and has no
impact on the next channel state. Given the current AoI φ, the
current channel state h̃i, and the selected frequency m, the
probabilities that φ′ = φ + 1 and 1 are di,m and 1 − di,m,
respectively. Using the monotonicity of the cost function in



(14), the AoI state 1 is a better state than φ+1 in terms of the
current and future cost functions. So the frequency selection
action that leads to the lowest chance of state φ+1 is the best
action in terms of the long-term average cost. The optimal
frequency selection policy is a greedy one that always select
the frequency with the lowest packet drop probability at each
time, and thus is independent of the AoI state.

Lemma 2. For the remote estimator described above, if there
exists deterministic and stationary frequency selection policies
that stabilize the remote estimator, the optimal policy achieving
the minimum average cost is independent of the AoI state, and
is given by

ν?i = π?(h̃i) , arg min
m∈M

di,m,∀i ∈ M̃. (20)

In what follows, we solely need to analyze the average cost
of the remote estimator over the optimal policy above.

2) Analysis of the average cost and the necessary condition:
We adopt an estimation cycle based analysis method that we
developed earlier in [9], [12]. The infinite time horizon are
divided into estimation cycles, each starting after a successful
transmission and ending at the next one. Thus, the AoI state
is always equal to 1 at the beginning of each estimation cycle,
and linearly increases step-by-step. Let Tk denote the length
of the kth estimation cycle. Ck is the sum cost in the kth
estimation cycle and is a function of Tk as

Ck = g(Tk) ,
Tk∑
j=1

η(ρ(An))2j ≥ η(ρ(An))2Tk . (21)

Define the channel state before the kth cycle as bk ∈ S̃.
Without loss of generality, assume that the first M̃1 channel
states of S̃ can be pre-cycle states, where 0 < M̃1 ≤ M̃ , i.e.,
not all channel states in S̃ have to be a pre-cycle state. The
channel state h̃i with a strictly zero chance of transmission
success can never be a pre-cycle state, i.e., minm∈M di,m = 1.
Similar to [9, Lemma 1], the Markovian property of the pre-
cycle channel states below can be proved.

Lemma 3. {b}N is a time-homogeneous ergodic Markov
chain with M̃1 ≤ M̃ irreducible states of S̃. The state
transition matrix of {b}N is G′, which is the M̃1-by-M̃1 matrix
taken from the top-left corner of

G =

∞∑
j=1

Ξ̃(j),

where Ξ̃(j) = Ξ(j − 1) (I−V?) M̃, j = 1, 2, . . . , V? ,
V(v?), and

Ξ(j) =

{
I, j = 0

(V?M̃)j , j > 0.

We note that the terms Ξ(j−1) and (I−V?) M̃ in Ξ̃(j) are
related to the (j−1) times of consecutive failed transmissions
and the successful transmission right after these of a length-
j estimation cycle. Let β , [β1, . . . , βM̃1

]> denote the
stationary distribution of the Markov chain {b}N0

, which is the
unique null-space vector of (I−G′)> and βi > 0,∀i ∈ M̃1,
where M̃1 , {1, 2, . . . , M̃1}.

Due to the ergodicity of {bk} and the definition in (21), it
directly follows that the random processes {Tk} and {Ck}
are ergodic. Using the property that the time average is
equal to the ensemble average of an ergodic process, we
drop the time index of Tk, Ck and bk, and have E [C] =

lim
K→∞

1
K

∑K
k=1 Ck =

∑M̃1

m=1 βmE
[
C|b = h̃m

]
.

By following the same steps in the proof of Theorem 1
of [9], we can first show that the average cost J <∞ if and
only if E [C] < ∞, and then derive the necessary condition
making E [C] bounded as ρ2(A)ρ

(
V?M̃

)
< 1.

Proof of Sufficiency. We construct a persistent serial schedul-
ing policy that persistently schedules sensor 1’s transmission
at a time until it is successful and then schedules sensor 2 and
so on. For each transmission, the frequency is selected based
on the scheme (20). Using the upper bound of the per-step cost
function (13) and following the similar analytical steps of the
average sum cost per estimation cycle in [9], we can derive
the upper bound of each sensor’s average sum cost per cycle
and then obtain the sufficient condition of Theorem 1.

Remark 2. Although the policy constructed above is a
stability-guaranteeing one, it does not utilize the parallel
frequency channels and is strictly not optimal. For the optimal
policy design, once the stability condition is satisfied, we
can first design a suitable MDP problem, and then use
classic dynamic programming or deep reinforcement learning
algorithms to solve it, see for example [8], [14].

Extension Scenario: We also investigate the stability con-
dition of the scenario with delayed channel state information.

Assumption 2 (Known Previous Channel State [8], [9]). At
time t, only the previous channel state h̃(t− 1) is available.

Building on the multi-level Markov channel modeling of
{h̃(t)} in Section II-B and following the same analytical steps
in [9], which focused on the binary-level Markov channel
scenario under Assumption 2, we can derive the stability
condition as below.

Theorem 2. The M -sensor-N -frequency remote estimator
described in Section II under Assumption 2 can be stabilized
if and only if ρ2

maxλ∞ < 1, where λ∞ , minL∈N λL,

λL , min
vl∈MM̃

ρ (E(v1)E(v2) · · ·E(vL))
1
L (22)

and E(v) is an M̃ × M̃ matrix generated by the channel
selection vector v = [v1, . . . , vM̃ ] ∈MM̃ as

[E(v)]i,j , Prob
[
h̃(t) = h̃j , µ

(
h̃j , vi

)
= 0|h̃(t− 1) = h̃i

]
= M̃i,jdj,vi .

Remark 3. The stability condition in Theorem 2 is more
restrictive than that in Theorem 1. Intuitively, the gap in
stability is introduced by the delay of the channel state in-
formation for scheduling. The scheduler with current channel
state information can make better decision for stabilizing the
system than the one with outdated information.
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Fig. 3. Stability regions (gray colored) with d̃21 = 0.2, d̃22 = 0.9 in (a)
and d̃21 = 0.9, d̃22 = 0.9 in (b), where the solid, doted, and dashed lines
indicate the regions with ψ̃1 = 0.99, 0.5, and 0.1, respectively.

We will show that λ in (17) is no larger than minL∈N λL
in (22). Using the property that ρ(XL)1/L = ρ(X), for
any square matrix X and positive integer L, we have λ =

ρ

((
V(v?)M̃

)L)1/L

,∀L. From the definition of V(v?) in

(18), the following inequality about non-negative matrices
holds element-wise V(v?)M̃ 4 E(v),∀v ∈ MM̃ , and hence(
V(v?)M̃

)L
4 E(v1)E(v2) · · ·E(vL),∀v1, . . . ,vL. Using

the property that the spectral radius of one non-negative
matrix is larger than the other if the former is larger element-
wise, it is readily shown that λ ≤ λL,∀L, and hence λ ≤ λ∞.

IV. NUMERICAL EXAMPLES AND CONCLUSIONS

In practice, the maximum frequency number of WiFi can
be 48, and the maximum holding period can be 100 calculated
by the practical channel coherence time and packet duration.
For the illustration of the stability condition, we consider a
simple 3-sensor-2-frequency remote estimation system with a
maximum holding period ∆̄ = 2.

The spectral radii of the three processes are
ρ(A1) = 1.5, ρ(A2) = 1.2, and ρ(A3) = 1.1. Each
of the two frequency channels has two quality states,
H1 = {h(1)

1 , h
(1)
2 } and H2 = {h(2)

1 , h
(2)
2 }. The packet

drop probability at frequency-m-state-i is denoted as
d̃m,i. Thus, the (vector) channel quality state has
M̄ = 4 states in total, h(t) ∈ {h1 = [h

(1)
1 , h

(2)
1 ],h2 =

[h
(1)
1 , h

(2)
2 ],h3 = [h

(1)
2 , h

(2)
1 ],h4 = [h

(1)
2 , h

(2)
2 ]}.

The channel quality transition probability is M =
[0.1 0.2 0.3 0.4; 0.2 0.1 0.4 0.3; 0.4 0.2 0.1 0.3; 0.3 0.1 0.4 0.3].
The probability distribution of the holding period is

ψi(δ) =

{
ψ̃1 if δ = 1

ψ̃2 = 1− ψ̃1 if δ = 2
,∀i = 1, 2, 3, 4.

Thus, the state h̃(t) = (h(t), ∆l(t)) has M̃ = M̄ × ∆̄ = 8
states: (h1, 1), (h1, 2), . . . , (h4, 1), (h4, 2). From Theorem 1,
the 8 diagonal elements of the matrix V(v?) are
min{d̃1,1, d̃2,1}, min{d̃1,1, d̃2,1}, min{d̃1,1, d̃2,2},
min{d̃1,1, d̃2,2}, min{d̃1,2, d̃2,1}, min{d̃1,2, d̃2,1},

min{d̃1,2, d̃2,2}, and min{d̃1,2, d̃2,2}. From (5), the channel
state transition matrix M̃ can be obtained directly.

In Fig. 3(a), we plot the stability regions in terms of d̃11

and d̃12 based on Theorem 1, where d̃21 = 0.2 and d̃22 = 0.9.
It is interesting to see that the stability region increases with
ψ̃1, i.e., the probability that the holding period of the channel
condition is 1. This implies that a fast fading scenario can
lead to a better stability than a slow fading one. Compared to
Fig. 3(a), we increase the packet drop probability at frequency-
2-state-1, i.e., d̃2,1, from 0.2 to 0.9 in Fig. 3(b). We see that the
reduced transmission reliability has lead to diminished stability
regions as expected.

V. CONCLUSIONS

We have investigated the necessary and sufficient stabil-
ity conditions of the multi-plant remote estimation system.
For future work, in addition to the local filter-based remote
estimation scenario, we will also consider the extension to
transmission of raw measurements and investigate the stability
conditions.
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