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Abstract— This work addresses the problem of dis-
tributed formation tracking for a group of follower holo-
nomic mobile robots around a reference signal. The ref-
erence signal is comprised of the geometric center of the
positions of multiple leaders. This work’s main contribution
is a novel Modulated Distributed Virtual Observer (MDVO)
for the reference signal. Moreover, the proposed MDVO
is based on an exact dynamic consensus algorithm with
a prescribed convergence time. In addition, we provide
simulation examples showcasing two different application
scenarios for the proposal.

Index Terms— Distributed control; Dynamic consensus;
Leader-follower; Prescribed-time convergence

I. INTRODUCTION

Problems in the context of distributed Multi-Agent Systems
(MAS) have persistently attracted attention in the control and
robotics community during the last couple of decades. In
particular, a popular tool to achieve distributed collaboration
along the MAS are consensus protocols. In this setting, the
agents in the system agree on a quantity of interest by sharing
information to neighbors in the network. The problem can be
classified depending on whether the consensus value is static
[1], dynamic [2] or when it is dictated by a leader [3].

In addition, multi-leader distributed problems have attracted
attention in the literature. For example, in the context of
containment control and herding, there is interest in the
situation in which follower robots maintain a formation inside
the convex hull of the positions of a set of leader robots [4].
This is useful in situations with heterogeneous robots, where
leaders are equipped with sensors to detect obstacles, whereas
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followers are not. In this case, computing the geometric center
of the leaders’ positions and maintaining a formation around
it can be used as a safe strategy for the follower robots. In
the context of automated surveillance and escorting [5], leader
robots may be able to obtain imperfect detections of a single
target for follower robots to achieve a formation around it. In
this case, the geometric center of the leader estimations can
be used as an improved estimation for the target. Hence, we
are interested in the problem of distributed formation tracking
of a group of follower holonomic mobile robots around the
geometric center of a group of leaders.

A standard approach for the leader-follower tracking prob-
lem is to adopt an observer-based approach [6]. In this case, a
Distributed Virtual Observer (DVO) is used for the reference
of interest, in this case, the geometric center of the leaders’
positions. In a second step, a local controller is designed to
drive the followers’ state to the reference given by the DVO.
This strategy has been used for second-order systems [7],
Euler-Lagrange systems [8], and high order dynamics [9].

In the robotics context, it may be required for the DVO
to obtain the global reference in real-time, i.e., before a time
deadline [7]. This may be either mandated by the application
or to ensure the correctness of the local controller if both are
executed simultaneously. Finite-time stability concepts in con-
trol theory can be used to ensure convergence before a given
deadline. In contrast to usual asymptotic convergence, fixed-
time and prescribed-time stable systems have a uniformly
bounded settling-time [10] which can be used to prescribe
the convergence time. A time-independent fixed-time approach
has been used for leader-follower algorithms, e.g., in [7], [11]–
[14]. One of the disadvantages of these techniques is that an
explicit expression for the settling-time bound as a function of
initial conditions is usually unknown, limiting its applicability
for real-time. Even if a settling-time bound is known, it is
usually overestimated, leading to over-engineered solutions.

Other works use persistently growing time-varying gains,
which ultimately become singular at the deadline. This tech-
nique was used for consensus in [7], [15]–[18]. The most
significant disadvantage of this approach is that a small dis-
turbance easily compromises the system’s behavior due to the
high gains employed. Moreover, Time Base Generators (TBG)
were used as tracking references in [19] achieving convergence
before a deadline in a single-leader scenario with agents of
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high order dynamics. A similar multi-leader problem is tackled
in [4] where convergence in prescribed-time is obtained by
means of a switching algorithm inducing Zeno behaviour

Motivated by the previous discussion, we propose a frame-
work for multi-leader formation tracking. The main contri-
bution of the proposal is a Modulated Distributed Virtual
Observer (MDVO) which computes the geometric center of
the multiple leaders’ position. One of the building-blocks of
the MDVO is an adaptation for real-time constraints of the
EDCHO protocol [2] which was shown to have robust features
compared to linear and first order sliding mode protocols as
discussed in [2], [20]. The new protocol introduces TBGs as
modulating functions in order to prescribe the convergence
time, where we provide a formal stability analysis. Further-
more, the versatility of MDVO is shown through simulations
showcasing two different application scenarios for multi-robot
systems. The differences of MDVO with respect to the rest of
the literature are also discussed.

A. Notation

Let Cm+1[0,∞) the set of all functions f : [0,∞) → R
from which the (m+1)-th derivative f (m+1)(t) is continuous
∀t ≥ 0. Given x = [x1, . . . , xn]

T denote the Euclidean norm
as ∥x∥ and the ∞-norm as ∥x∥∞ := max1≤i≤n |xi|.

(
µ
ν

)
denotes the binomial coefficient. Let sign(x) = 1 if x >
0, sign(x) = −1 if x < 0 and sign(0) = 0. Moreover, if x ∈ R,
let ⌈x⌋α := |x|αsign(x) for α > 0 and ⌈x⌋0 := sign(x).

II. PROBLEM STATEMENT

Consider a multi-agent system of N holonomic mobile
robots. From this team of robots, NL ≥ 1 robots are considered
to be leaders whereas the remaining NF = N−NL are followers.
Moreover, all robots are connected through a communication
network modeled by an undirected graph G, where a node
corresponds to a single robot and an edge corresponds to a
bi-directional communication link between two robots. We
do not assume that all followers are directly connected to a
leader, but that G is connected. In addition, for convenience
in the presentation, we index the robots using the index sets
IL = {1, . . . ,NL} for the leaders, IF = {NL + 1, . . . ,N} for
the followers and I = IL ∪IF. Let pi(t) ∈ R3 be the position
of the i-th robot in R3. For simplicity, we assume that the
follower robots have dynamics

p
(m)
i (t) = ui(t), i ∈ IF (1)

where p
(m)
i (t) is the m-th derivative of pi(t), i ∈ IF for given

m ∈ N and ui(t) ∈ R3, i ∈ IF is a local control input driving
the robot dynamics. Despite the simplicity of the model in
(1), the results presented in this work are easily adapted to
different linear dynamics. We assume that the leaders have
arbitrary (m + 1)-times differentiable trajectories pi(t),∀i ∈
IL. The leaders can cooperate into communicating information
to the network or collaborating in some form of distributed
computation. The goal of the followers is to choose ui(t), i ∈
IF in order to achieve the following:

Definition 1: We say that the followers achieved multi-
leader formation tracking if limt→∞ ∥pi(t)− p̄(t)− di∥ =
0,∀i ∈ IF where

p̄(t) :=
p1(t) + · · ·+ pNL(t)

NL
(2)

for formation displacements di ∈ R3 fixed beforehand.
In order to perform this task, a Distributed Virtual Observer

(DVO) estimating the reference p̄(t) can be used at each robot
so that the controller ui(t), i ∈ IF is designed for pi(t) to
track such reference. The desired properties of such DVO are
enlisted as follows.

Definition 2: A Distributed Virtual Observer (DVO) for
p̄(t) is an algorithm that runs at each robot i ∈ I and computes
local estimations p̂i,0(t), . . . , p̂i,m(t) ∈ R3 for p̄(t) and its
first m derivatives respectively. The DVO at robot i ∈ I
communicates Na > 0 reals in a vector ai(t) ∈ RNa only
to its neighbors through the network G. Moreover, a DVO has
a prescribed convergence time [7], [19] if given Tc > 0 then
p̂i,µ(t) = p̄(µ)(t),∀t ≥ Tc,∀i ∈ I,∀µ ∈ {0, . . . ,m}.

To solve this problem we propose a Modulated Distributed
Virtual Observer (MDVO), outlined as follows. First, we
assign a local vector signal si(t) ∈ R3 at each robot depending
on if it is a leader or a follower:

si(t) =

{
pi(t) if i ∈ IL
0 if i ∈ IF

(3)

To allow a more general setting, we do not assume the global
number of leaders NL to be known to all robots. Instead, we
assign auxiliary scalar local labels ℓi as

ℓi =

{
1 if i ∈ IL
0 if i ∈ IF

(4)

Then, MDVO uses exact dynamic consensus tools in order
to compute the following averages through the N robots in a
distributed fashion:

s̄(t) =
s1(t) + · · ·+ sN(t)

N
=

p1(t) + · · ·+ pNL(t)

N

ℓ̄ =
ℓ1 + · · ·+ ℓN

N
=

NL

N

(5)

Note that p̄(t) can be computed from the ratio s̄(t)/ℓ̄.
Once each robot has access to the signal p̄(t), a trajectory
tracking controller can be applied. Computing the averages
(5) with prescribed convergence time is challenging due to
the time-varying character of the signals si(t), i ∈ I. Hence,
MDVO includes 4 distributed dynamic consensus blocks, one
to compute each component of s̄(t) and ℓ̄. Although we do
not assume knowledge of neither N nor NL, we assume that
all robots run the MDVO algorithm with the same parameters,
fixed beforehand. Moreover, each robot i ∈ I has access to its
own signal si(t) and label ℓi. This allows the possibility of the
same algorithm to work for different network configurations
and sizes. As described in Section IV-A, each robot i ∈ I
shares Na = 4 numbers, one for each consensus block, to
their neighbors.

This article has been accepted for publication in IEEE Control Systems Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2022.3181784

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



III. MODULATED DYNAMIC CONSENSUS

In this section, we present the general form of the distributed
dynamic consensus block used in the proposed MDVO. Here,
the block is presented for arbitrary scalar signals si(t) lo-
cated at each robot. The protocol has m + 1 internal states
xi,0(t), . . . , xi,m(t) and virtual outputs yi,0(t), . . . , yi,m(t) at
each agent i ∈ I. Given a deadline Tc > 0, the purpose of the
protocol is that each agent achieves yi,µ(t) = s̄(µ)(t), ∀t ≥
Tc,∀i ∈ I,∀µ ∈ {0, . . . ,m} where s̄(t) := (1/N)

∑N
i=1 si(t).

The algorithm is written as:

ẋi,µ = θ
µ+1
m+1 kµ

∑N
j=1aij⌈yi,0 − yj,0⌋

m−µ
m+1 + xi,µ+1

for 0 ≤ µ < m

ẋi,m = θkm
∑N

j=1aij ⌈yi,0 − yj,0⌋0

yi,µ = σ
(µ)
i − xi,µ.

(6)

where time dependence was omitted for brevity, aij ∈ {0, 1}
are the components of the adjacency matrix of G such that
only neighbors information contribute to (6). Moreover,

σ
(µ)
i (t) :=

dµ

dtµ

(
κ

(
t

Tc

)
si(t)

)
(7)

with the introduction of the function κ(•) to modulate the
signals si(t) in order to meet deadline at Tc. This function
must comply with the following properties:

Definition 3: A Cm+1[0,∞) function κ(•) is called an m-
th order modulating function if κ(0) = 0, κ(t) = 1,∀t ≥ 1
and κ(µ)(0) = κ(µ)(1) = 0,∀t ≥ 1,∀µ ∈ {1, . . . ,m}.
An example of such functions is provided in Appendix A.

Note that for a single (6) block, agents only share their
output yi,0(t). Moreover, (6) uses the parameter θ and the
modulating function κ(•) to start at consensus with yi,µ(0) =
0 and guide the convergence of the algorithm outputs towards
yi,µ(Tc) = s̄(µ)(Tc) as shown in the following:

Assumption 1: Given bounds L0, . . . , Lm+1 > 0, then
∀µ ∈ {0, . . . ,m + 1} it follows that

∣∣∣s̄(µ)(t)− s
(µ)
i (t)

∣∣∣ ≤

Lµ,∀t ∈ [0, Tc],
∣∣∣s̄(m+1)(t)− s

(m+1)
i (t)

∣∣∣ ≤ Lm+1,∀t ≥ Tc.
Theorem 1: Let Assumption 1 hold, G be a fixed connected

graph and k0, . . . , km > 0 as in Proposition 2 in Appendix
B for L = 1. Moreover, let xi,µ(0) = 0,∀i ∈ I,∀µ ∈
{0, . . . ,m} and κ(t) be a modulating function of order m.
Denote with Kµ := supt∈[0,1] |κ(µ)(t)| and choose

θ =

m+1∑
ν=0

(
m+ 1

ν

)
1

Tm−ν+1
min

Km−ν+1Lν (8)

for some Tmin > 0. Hence, given any deadline Tc ≥ Tmin, (6)
achieves yi,µ(t) = s̄(µ)(t),∀t ≥ Tc,∀i ∈ I,∀µ ∈ {0, . . . ,m}.

Proof: The proof can be found in Appendix C
Remark 1: Note that from (8), as the minimum allowed

deadline Tmin is decreased, the gain θ increases. This is ex-
pected since a smaller deadline will require greater correction
effort for faster results in the protocol.

Remark 2: The proposed protocol assumes that all agents
have knowledge of a synchronized global timer t to compute
the modulating function κ(t). This assumption has been used
extensively in other works (see [7], [15], [16]), which is

particularly important when a notion of a deadline Tc > 0
is present. It can be shown that due to finite-time stability
character of (6), a small deviation in the timers for the signal
κ(t) leads to at most small changes in the settling time.

IV. MULTI-LEADER FORMATION TRACKING

A. Modulated Distributed Virtual Observer
Equipped with the protocol in (6), MDVO is constructed us-

ing a ratio-consensus strategy. Recall the multi-leader follower
setting from Section II and the local signals si(t), ℓi from
(3) and (4). Moreover, write si(t) through its components as
si(t) = [sX

i (t), s
Y
i (t), s

Z
i (t)]

T ∈ R3. MDVO has four different
instances of (6). In particular, denote with Ms three identical
(6) blocks, one for each sX

i (t), s
Y
i (t), s

Z
i (t). Let yi,µ(t) ∈ R3 a

vector containing the three different µ-th outputs at robot i for
Ms. Similarly, denote with Mℓ the block (6) applied to labels
ℓi with µ-th output li,µ(t). Hence, each robot i ∈ I shares
[yi,0(t)

T , li,0(t)]
T ∈ RNa ,Na = 4. The outputs of MDVO are

p̂i,µ(t) :=
yi,µ(t)

max (li,0(t), 1/Nmax)
, i ∈ I, µ ∈ {0, . . . ,m} (9)

with a maximum allowed number of nodes Nmax ≥ N in the
network known by all robots. In order to ensure convergence of
Ms, the leaders pi(t), i ∈ IL cooperate such that the following
is complied.

Assumption 2: Given known L0, . . . , Lm+1 > 0, the
motion of any leader robot i ∈ IL is constrained as
∥p(µ)

i (t)∥∞ ≤ Lµ,∀µ ∈ {0, . . . ,m + 1} with t ∈ [0, Tc] and
∥p(m+1)

i (t)∥∞ ≤ Lm+1 with t ≥ Tc.
Theorem 2: Let Assumption 2 hold, G be a fixed connected

graph and a maximum allowed number of nodes Nmax ≥ N in
the network known by all robots. Moreover, let the instances
of Ms be designed as in Theorem 1 for L0, . . . , Lm+1 from
Assumption 2. Let the instance of Mℓ designed as Ms except
that θ = Km+1

Tm−ν+1
min

is chosen instead. This configuration along
with outputs p̂i,µ(t), µ ∈ {0, . . . ,m} as in (9) is a DVO for
p̄(t) with prescribed convergence time Tc as in Definition 2.

Proof: The proof can be found in Appendix D.
Remark 3: Theorem 2 assumes knowledge of Nmax which

can be overestimated by anything arbitrarily bigger than N.
This avoids any division by zero in (9). This assumption is
not restrictive in many situations where the communication
link between robots only allow a fixed maximum number of
identification numbers for each node e.g., at the data-link layer.

Remark 4: Note from (6) that if for some i ∈ I, si(t) =

0,∀t ≥ 0, the output comply yi,µ(t) = s
(µ)
i (t) − xi,µ(t) =

−xi,µ(t) leading to xi,µ(t) = −s̄(µ)(t),∀t ≥ Tc without the
need of any additional differentiator to compute s

(µ)
i (t). This

is the case of the ratio-consensus strategy for all followers
i ∈ IF where sX

i (t) = sY
i (t) = sZ

i (t) = ℓi = 0,∀t ≥ 0.

B. Formation tracking
Access to the signal p̄(t) and its first m derivatives through

outputs p̂i,0(t), . . . , p̂i,m(t), i ∈ I of the MDVO enables the
design of local controllers ui(t), i ∈ IF in (1) such that
multi-leader formation tracking is achieved. Recall the fixed
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formation positions di, i ∈ IF such that the proposed control
design has the form

ui(t) = p̂i,m(t)− ρ0(pi(t)− p̂i,0(t)− di)

−
m−1∑
µ=1

ρµ(p
(µ)
i (t)− p̂i,µ(t))

(10)

for i ∈ IF, where ρ0, . . . , ρm−1 > 0 are chosen such that
λm +

∑m−1
µ=0 ρµ−1λ

µ−1 have roots in the left half plane.
Corollary 1: Let MDVO designed as in Theorem 2 and

Assumption 2 hold. Then, (10) makes the followers achieve
multi-leader formation tracking as in Definition 1.

Proof: First, note that each instance of (6) in the MDVO
is finite-time stable as a result of Theorem 1, thus having
bounded outputs for t ∈ [0, Tc]. As a result, the output (9)
of MDVO is bounded for all t ∈ [0, Tc] as well. Hence,
the linear system (1) being input to state stable does not
exhibit any finite-time escape before t = Tc. Now, let t ≥
Tc and note that the separation principle is complied since
Theorem 2 implies p̂i,m(t) = p̄(µ)(t),∀t ≥ Tc with p̄(t) as
the geometric center of the leaders positions from (2). Set
ei(t) = pi(t) − p̄(t) − di with closed-loop error dynamics
for i ∈ IF complying e

(m)
i (t) = −

∑m−1
µ=0 ρµe

(µ)
i (t) for

t ≥ Tc, which is asymptotically stable towards the origin.
Hence, ∥pi(t)− p̄(t)− di∥ → 0 as t → ∞.

Remark 5: In (10), a linear trajectory tracking controller
is proposed. It is important to note that once each agent is
equipped with the value of the reference p̄(t) along with its
derivatives as computed from the MDVO, the employment of
a wide variety of trajectory tracking controllers for integrator
systems is enabled. In particular, it enables the usage of
controllers which incorporate barrier functions for collision
avoidance as in [21] or to reject disturbances as in [19].

V. SIMULATION EXAMPLES

In this section, we assume all robots of order m = 3.
Consensus blocks from (6) are configured with m = 3, gains
k0 = 7.5, k1 = 19.25, k2 = 17.75, k3 = 7 taken from [2] and
the modulating function in (12) from Appendix A for m = 3.
Similarly, all robots use the controller (10) for all t ≥ 0.
Consider Tmin = Tc = 0.5, N = 8 and a very overestimated
Nmax = 103 ≥ N. Simulations1 where performed using the
explicit Euler method with time step ∆t = 10−6.

A. Herding with cooperative sheep
Consider a team of NL = 3 shepherds and NF = 5 sheep

robots with initial positions and communication topology
shown in Figure 1-a). The goal is for the shepherds to move
along a trajectory, dragging the sheep robots along a fixed
circular formation around the geometric center of the shepherd
positions. Figure 1-b) shows the signals li,0(t), computed in
the MDVO for all robots. The signals start at consensus and
converge to NL/N = 3/8 before the deadline Tc = 0.5.
Similarly, as shown in Figure 1-b) the signals p̂i,0(t) converge
to p̄(t) exactly at the deadline Tc = 0.5 as well. The closed

1Simulation files for the algorithms presented in this work can be found on
https://github.com/RodrigoAldana/EDC.
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Fig. 1. Experimental results for the formation control as in of Section
V-A. a) Nodes labeled with L are leader robots, whereas F are followers.
Continuous lines show the trajectory in the XY plane of all robots. Dotted
red line shows the trajectory of the geometric center of the leaders p̄(t).
Continuous red lines show communication links between the robots. b)
The signal li,0(t) (blue) in the MDVO is shown for all agents, achieving
the correct value of NL/N = 3/8. All agents maintain consensus from
the start due to the modulating function. The dotted black line denotes
the deadline at Tc = 0.5. The consensus error is depicted (red),
reaching the origin before the deadline. c) The formation error is shown,
reaching the origin asymptotically.

loop formation error dynamics when using the controller (10)
converges to the origin as depicted in Figure 1-d), such that
the final formation is achieved.

B. Cooperative target estimation with uncertain
measurements

Consider NL = 3 robots equipped with sensors ca-
pable of detecting a moving target of interest pT(t) =
[xT(t), yT(t), zT(t)]

T with m-th order dynamics. On the other
hand, consider NF = 5 auxiliary robots which cannot detect
the target, but are required to follow a formation around it.
In this case, the leaders instead of sharing their position,
share their estimate of the target position as pi(t) = pT(t) +
ni(t) impregnated with noise ni(t). The signal ni(t) has
components sampled from a Gaussian distribution with zero
mean and variance 1 at each time step, modeling detection
errors. Hence, all robots run the MDVO in order to obtain
the averaged target estimate p̄(t), which is an improved
global version of the individual estimates pi(t). For the
sake of brevity, Figure 2 only shows the performance in the
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Fig. 2. Experimental results for the cooperative target estimation as in
Section V-B. a) Shows the target trajectory xT(t) in the X axis (red), the
NL = 3 leader estimations sX

i (t) (grey) and the collective estimations
pX
i,0(t) (color) at the followers. b) Shows the estimation error, where a

noise attenuation of 0.58 ≈ 1/
√

NL = 1/
√

3 is observed.

estimation of the signal pT(t) for the X coordinate. Note
that the average error for the X coordinate estimation at the
leaders |sX

i (t) − xT(t)| is 0.7986, 0.797, 0.746 respectively.
However, the average error for the signal |p̂X

i,0(t) − xT(t)|
is of 0.4769, 0.4676, 0.4677, 0.4630, 0.4763 respectively at the
followers where a noise attenuation of 0.58 ≈ 1/

√
NL = 1/

√
3

is observed as expected from an averaged estimate.

VI. COMPARISON WITH RELATED WORKS

First note that the leader-follower strategies based in au-
tonomous fixed-time consensus protocols in [7], [11]–[14]
cannot be extended to the multi-leader setting and have a
greatly overestimated settling time estimation in the high
order case [12]–[14], leading to over-engineered solutions
in practice. In addition, it is usual for these approaches to
require knowledge of global information such as the algebraic
connectivity of the network in order to set the convergence
time bound. In contrast, the proposed MDVO works in a multi-
leader setting with a non-conservative settling time estimate
due to the use of the modulating function in (6) and as shown
in Figure 1, without requiring knowledge of the number of
leaders or the algebraic connectivity of G.

The works [7], [15]–[18] use time-dependent prescribed-
time consensus protocols that require persistently growing
unbounded gains, problematic to implement in practice. Sim-
ilarly, MDVO is based on a time-dependent protocol due to
use of the modulating function. However, we do not require
unbounded gains in (6). In [4] a time-varying protocol is
used for a multi-leader problem. However, different from
MDVO, such protocol requires a sequence of sampling instants
inducing Zeno behaviour and complicating its discrete-time
implementation under a lower bounded time step.

Note that the example in Section V-A was chosen precisely
since it cannot be solved by existing approaches as a whole.
The reason is that other leader-follower approaches [4], [7],
[11]–[19], cannot be directly extended to handle the computa-
tion of the geometric center of multiple leaders, or to dynamics

of order higher than 2. Moreover, note that the same observer
structure of MDVO is used in Section V-B for a different
problem than in Section V-A, which highlights the versatility
of our proposal in contrast to prior work. Another important
improvement of MDVO is that the number of numbers shared
between agents Na remains the same regardless of the system
order m. In contrast, other high-order techniques [4], [12]–
[14], [17]–[19] share a vector of a size growing with m.

VII. CONCLUSION

An MDVO was presented for its use in multi-leader forma-
tion tracking of holonomic mobile robots. It was shown that
the proposed MDVO, based in distributed dynamic consensus
blocks, is able to compute the geometric center of the average
of the leader positions in a prescribed convergence time. The
versatility of the proposal was shown in different application
scenarios for multi-leader formation control. This discussion
motivate the formal analysis of the MDVO under communi-
cation delays in a future work.

APPENDIX

A. Examples of modulating functions
Given m ∈ N, an m-th order modulating func-

tion κ(t) can be constructed as follows. First, define
κ(t) = [κ(0)(t), . . . , κ(m)(t)]T . Moreover, let A ∈
R(m+1)×(m+1), B ∈ R(m+1)×1 be the appropriate matrices
modeling an (m+ 1)-th order integrator such that

κ̇(t) = Aκ(t) +Bκ(m+1)(t), κ(0) = 0 (11)

Furthermore, let W =
∫ 1

0
exp(AT τ)BBT exp(Aτ)dτ , κf =

[1, 0, . . . , 0]T and

κ(m+1)(t) = BT exp(AT (1− t))W−1κf (12)

Hence, κ(t) is obtained through repeated integration of (12).
Proposition 1: The solution of (11) for t ∈ [0, 1] with

κ(m+1)(t) given in (12) in combination with κ(t) := 1,∀t ≥ 1
is a modulating function of order m.

Proof: The proof follows directly by identifying W as
the controlability Gramian [22, Definition 2.12, page 240] for
(11) in the interval [0, 1] and κ(m+1)(t) obtained from [22,
Corollary 2.14, page 238] to reach κ(1) = κf starting from
κ(0) = 0, which comply with Definition 3.
As an example, consider m = 1, such that (12) lead to κ̈(t) =
6 − 12t, κ̇(t) = 6t − 6t2, κ(t) = 3t2 − 2t3 for t ∈ [0, 1]
in combination with κ(t) = 1,∀t ≥ 1. Hence, κ(t) verifies
κ(0) = κ̇(0) = κ̇(1) = 0 and κ(1) = 1.

B. The EDCHO protocol
The EDCHO protocol, presented in [2], is a distributed

algorithm designed to compute σ̄i(t) = (1/N)
∑N

i=1 σ̃i(t) and
its first m derivatives at each agent, where σ̃i(t) are local
time-varying signals. EDCHO can be written as

˙̃xi,µ = kµ
∑N

j=1aij⌈ỹi,0 − ỹj,0⌋
m−µ
m+1 + x̃i,µ+1

for 0 ≤ µ < m

˙̃xi,m = km
∑N

j=1aij ⌈ỹi,0 − ỹj,0⌋0

ỹi,µ = σ̃
(µ)
i − x̃i,µ.

(13)

This article has been accepted for publication in IEEE Control Systems Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2022.3181784

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



where time-dependency is omitted for brevity, aij ∈ {0, 1} are
the components of the adjacency matrix of G.

Assumption 3: Given L > 0, then if follows that∣∣∣σ̄(m+1)(t)− σ̃
(m+1)
i (t)

∣∣∣ ≤ L,∀t ≥ 0.
Proposition 2: [2, Adapted from Theorem 7] Let Assump-

tion 3 hold for given L,
∑N

i=1 x̃i,µ(0) = 0,∀µ ∈ {0, . . . ,m}
and a fixed connected communication network G. Then, there
exists a time T > 0 which depends on the initial conditions
ỹi,µ(0), i ∈ I and gains k0, . . . , km > 0 such that (13) comply
ỹi,µ(t) = σ̄

(µ)
i (t),∀t ≥ T, µ ∈ {0, . . . ,m}, i ∈ I.

Recall that given a value of L > 0, the design rules for the
parameters k0, . . . , km > 0 are detailed in [2, Section 6].

C. Proof of Theorem 1

First, let x̃i,µ(t) = xi,µ(t)/θ, σ̃i(t) = σi(t)/θ, ỹi,µ(t) =
yi,µ(t)/θ. Hence, using (6), the dynamics of the transformed
variables x̃i,µ(t) are equivalent to EDCHO in (13) from
Appendix B. Moreover, expanding (7) leads to

|σ(m+1)
i (t)− σ

(m+1)
j (t)| =∣∣∣∣∣

m+1∑
ν=0

(
m+ 1

ν

)
1

Tm−ν+1
c

κ(m−ν+1)

(
t

Tc

)(
s
(ν)
i − s

(ν)
j

)∣∣∣∣∣
≤

m+1∑
ν=0

(
m+ 1

ν

)
1

Tm−ν+1
min

Km−ν+1Lν = θ

for all t ∈ [0, Tc], where Assumption 1 was used. Thus,
|σ̃(m+1)

i (t) − σ̃
(m+1)
j (t)| ≤ 1. Hence, Assumption 3 in Ap-

pendix B is complied for signals σ̃1(t), . . . , σ̃N(t) with L = 1
due to smoothness of both si(t) and κ(t). Therefore, Proposi-
tion 2 in Appendix B implies that ỹi,µ(t) = (1/N)

∑N
i=1 σ̃i(t),

equivalently yi,µ(t) = (1/N)
∑N

i=1 σi(t),∀t ≥ T for some
time T > 0 which depends on the initial conditions yi,µ(0).
However, note that since σi(0) = κ(0)si(0) = 0,∀i ∈ I,
then yi,µ(0) = 0,∀µ ∈ {0, . . . ,m}, which means that (6)
starts from consensus. Thus, attractivity of (6) along yi,µ(t) =

(1/N)
∑N

i=1 σ
(µ)
i (t) for all µ ∈ {0, . . . ,m} is maintained

through t ∈ [0, Tc]. Note that σi(t) is a smooth signal at t = Tc

due to the properties of κ(t/Tc) and its derivatives at t = Tc

given in Definition 3. Thus the assumptions of the theorem
are maintained for t ≥ Tc. Now, σi(t) = si(t),∀t ≥ Tc such
that, yi,µ(t) = s̄(µ)(t), ∀t ≥ Tc and for any µ ∈ {0, . . . ,m}.

D. Proof of Theorem 2

Assumption 3 imply that Assumption 1 is complied for
each instance of (6) in Ms. Thus, Theorem 1 leading to
yi,µ(t) = s̄(t),∀t ≥ Tc. Now, note that ℓ(µ)i (t) = 0,∀t ≥ 0
and µ > 0 from (4). Hence, σℓ

i (t) = κ(t)ℓi satisfy Assumption
1 with bounds Lℓ

0, . . . , L
ℓ
m+1 given by Lℓ

0 = 1, Lµ = 0
with µ > 0. Therefore, the form of the parameter θ in
(8) of reduced to θ = Km+1

Tm−ν+1
min

. Thus, li,0(t) converge to
NL/N as a consequence of Theorem 1. Note that NL/N ≥
1/Nmax implying max(li,0(t), 1/Nmax) = NL/N for t ≥ Tc.
Henceforth, p̂i,µ(t) = p̄(µ)(t) is complied for all t ≥ Tc,
satisfying Definition 2.
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