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Abstract—This letter introduces the NOnSmooth Nu-
merical Optimal Control (NOSNOC) open-source software
package. It is a modular MATLAB tool based on CasADi
and IPOPT for numerically solving Optimal Control Prob-
lems (OCP) with piecewise smooth systems (PSS). The tool
supports: 1) automatic reformulation of systems with state
jumps into PSS (via the time-freezing reformulation [1])
and of PSS into computationally more convenient forms,
2) automatic discretization of the OCP via, e.g., the recently
introduced Finite Elements with Switch Detection [2] which
enables high accuracy optimal control and simulation of
PSS, 3) solution methods for the resulting discrete-time
OCP. The nonsmooth discrete-time OCP are solved with
techniques of continuous optimization in a homotopy pro-
cedure, without the use of integer variables. This enables
the treatment of a broad class of nonsmooth systems in a
unified way. Two tutorial examples are given. A benchmark
shows that NOSNOC provides both faster and more ac-
curate solutions than conventional approaches, including
mixed-integer formulations.

Index Terms— software, hybrid systems, optimal control,
numerical algorithms

I. INTRODUCTION

N
ONSMOOTH and hybrid dynamical systems are a pow-

erful tool to model complex physical and cyber-physical

phenomena. Their theory is well established and many good

numerical simulation algorithms exist [3]. However, optimal

control of nonsmooth systems is yet not wide spread, mainly

due to the computational difficulty and lack of software. A

notable exception are mixed integer optimization approaches

[4]. However, they become intractable as soon as nonconvex-

ities appear or exact junction times need to be computed. The

open-source software package NOSNOC is designed to reduce

this gap [5]. We regard a nonsmooth OCP of the following

form:

min
x(·),u(·)

∫ T

0

fq(x(t), u(t))dt + fT(x(T )) (1a)

s.t. x0 = s0, (1b)

ẋ(t)=fi(x(t), u(t)), if x∈Ri, i∈I, t ∈ [0,T ], (1c)

0 ≥ Gineq(x(t), u(t)), t ∈ [0, T ], (1d)

0 ≥ GT(x(T )), (1e)
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where fq : Rnx ×R
nu → R is the stage cost and fT : Rnx →

R is the terminal cost, s0 ∈ R
nx is a given parameter. The

path and terminal constraints are collected in the functions

Gineq : R
nx × R

nu → R
ng1 and GT : R

nx → R
ng2 ,

respectively. The ODE (1c) is a piecewise smooth system

(PSS), where I := {1, . . . , nf}. The regions Ri are disjoint,

nonempty, connected and open. The functions fi(·) are smooth

on an open neighborhood of Ri, which denotes the closure of

Ri.

The event of x reaching some boundary ∂Ri is called

a switch. The right-hand side (r.h.s.) of (1c) is in general

discontinuous in x. Several classes of systems with state jumps

can be brought into the form of (1c) via the time-freezing

reformulation [1], [6], [7]. Thus, the focus on PSS enables

a unified treatment of many different kinds of nonsmooth

systems.

One might wonder why not just to apply standard direct

methods and existing software to problem with a smoothed

version of the r.h.s. of (1c)? The necessity for tailored methods

and software follows from two important results from the sem-

inal paper of Stewart and Anitescu [8]. First, in standard direct

approaches for (1c), the numerical sensitivities are wrong

no matter how small the integrator step-size is. This often

yields artificial local minima and impairs the optimization

progress [9]. Second, smoothing delivers correct sensitivi-

ties only if the step-size shrinks faster than the smoothing

parameter. Consequently, even for moderate accuracy, many

optimization variables are needed.

These two difficulties are overcome by the recently in-

troduced Finite Elements with Switch Detection (FESD)

method [2]. In this method, the ODE (1c) is transformed

into a Dynamic Complementarity System (DCS). FESD relies

on Runge-Kutta (RK) discretizations of the DCS, but the

integrator step-sizes are left as degrees of freedom as first pro-

posed by [10]. Additional constraints ensure implicit and exact

switch detection and eliminate spurious degrees of freedom.

The discretization yields Mathematical Programs with Com-

plementarity Constraints (MPCC). They are highly degenerate

and nonsmooth Nonlinear Programs (NLP) [11], [12], but with

suitable reformulations and homotopy procedures they can be

solved efficiently using techniques for smooth NLP, without

any integer variables.

The MATLAB tool NOSNOC [5] aims to automate the whole

tool-chain and to make nonsmooth optimal control problems

solvable for non-experts. In particular, it supports:

• automatic model reformulation of the PSS (1c) into the
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computationally more suitable DCS.

• time-freezing reformulation for systems with state jumps,

reformulations to solve time-optimal control problems

both for PSS and systems with state jumps,

• automatic discretization of the OCP (1) via FESD or RK,

• several algorithms for solving the MPCC with a homo-

topy approach,

• rapid prototyping with different formulations and algo-

rithms for nonsmooth OCP.

It builds on the open-source software packages: CasADi [13]

which is a symbolic framework for nonlinear optimization

and the NLP solver IPOPT [14]. Having these packages as

a back-end enables good computational performance, despite

the fact that all user inputs are provided in MATLAB. All steps

above can be performed in a couple of lines of code without

needing a deep understanding of the numerical methods and

implementation details. In NOSNOC, the user has only to

specify the functions in (1) and the sets Ri via constraint

functions c(x), cf. Section II. The reformulation, discretization

and solution of the nonsmooth OCP is completely automated.

Notation: The complementarity conditions for two vectors

a, b ∈ R
n read as 0 ≤ a ⊥ b ≥ 0, where a ⊥ b means a⊤b =

0. The so-called C-functions Φ : Rn × R
n → R

n have the

property Φ(a, b) = 0 ⇐⇒ 0 ≤ a ⊥ b ≥ 0, e.g., Φ(a, b) =
min(a, b). The concatenation of two column vectors a ∈ R

na ,

b ∈ R
nb is denoted by (a, b) := [a⊤, b⊤]⊤, the concatenation

of several column vectors is defined in an analogous way. A

column vector with all ones is denoted by e = (1, 1, . . . , 1) ∈
R

n, its dimensions is clear from the context. The closure of

a set C is denoted by C , its boundary as ∂C. Given a matrix

M ∈ R
n×m, its i-th row is denoted by Mi,• and its j-th

column is denoted by M•,j .
Outline: Section II describes the reformulation of PSS

into DCS. Section III describes the discretization methods

in NOSNOC with a focus on FESD. In Section IV, solution

strategies for the discrete-time OCP are discussed. Section V

provides two tutorials for the use of NOSNOC and a numerical

benchmark. Section VI outlines some future developments.

II. PROBLEM REFORMULATION

System with state jumps do not fit in the form of (1c).

However, we use the time-freezing reformulation [1], [6], [7]

to automatically reformulate them into the from of (1c). An

example is given in Section V-C.

In this section, we detail how to compactly represent the

systems (1c) and a how to transform them into a Dynamic

Complementarity System (DCS) via Stewart’s approach [15].

It is assumed that
⋃

i∈I

Ri = R
n and that Rn \

⋃

i∈I

Ri is a set

of measure zero. Moreover, we assume that Ri are defined via

the zero level sets of the components of the smooth function

c : Rnx → R
nc . We use a sign matrix S ∈ R

nf×nc with non

repeating rows for a compact representations as follows:

S =









1 1 . . . 1 1
1 1 . . . 1 −1
...

... . . .
...

−1 −1 . . . −1 −1









, (2a)

Ri = {x ∈ R
nx | diag(Si,•)c(x) > 0}. (2b)

For example, for the sets R1 = {x ∈ R | x > 0} and R2 =

{x ∈ R | x < 0}, we have c(x) = x and S =
[

1 −1
]⊤

.

The dynamics are not defined on ∂Ri and to have a

meaningful notion of solution for the PSS (1c) we use the

Filippov convexification and define the following differential

inclusion [16]:

ẋ ∈ FF(x, u) =
{

F (x)θ |
∑

i∈I

θi = 1, θi ≥ 0, θi = 0

if x /∈ Ri, ∀i ∈ I
}

,

(3)

where θ = (θ1, . . . , θnf
) ∈ R

nf and F (x) :=
[f1(x), . . . , fnf

(x)] ∈ R
nx×nf . Note that in the interior of a

set Ri we have FF(x) = {fi(x)} and on the boundary between

some regions the resulting vector field is a convex combination

of the neighboring vector fields. To have a computationally

useful representation of the Filippov system (3), we transform

it into a DCS via Stewart’s reformulation [15]. In this refor-

mulation, it is assumed that the sets Ri are represented via the

discriminant functions gi(·):

Ri = {x ∈ R
nx | gi(x) < min

j∈I, j 6=i
gj(x)}. (4)

Given the more intuitive representation via the sign matrix S
in Eq. (2), it can be shown that the function g : Rnx → R

nf

whose components are gi(x) can be found as [2]:

g(x) = −Sc(x). (5)

With this representation, the convex multipliers in the r.h.s. of

(3) can be found as a solution of a suitable Linear Program

(LP) [15], and (3) is equivalent to

ẋ = F (x, u)θ(x), (6a)

θ(x) ∈ arg min
θ̃∈R

nf

g(x)⊤ θ̃ s.t. e⊤θ̃ = 1, θ̃ ≥ 0. (6b)

We use a C-function Φ(·, ·) for the complementarity conditions

and write the KKT conditions of the LP (6b) as a nonsmooth

equation

GLP(x, θ, λ, µ) :=





g(x)− λ− µe
1− e⊤θ
Φ(θ, λ)



 = 0, (7)

where λ ∈ R
nf

≥0 and µ ∈ R are the Lagrange multipliers

associated with the constraints of the LP (6b). Note that µ =
minj∈I gj(x). Finally, the Filippov system is equivalent to

the following DCS, which can be interpreted as a nonsmooth

differential algebraic equation:

ẋ = F (x, u)θ, 0 = GLP(x, θ, λ, µ). (8)

A fundamental property of the multipliers λ(·) and µ(·) is their

continuity in time [2, Lemma 5], whereas θ(·) is in general a

discontinuous function in time.

III. THE STANDARD AND FESD DISCRETIZATIONS FOR A

SINGLE CONTROL INTERVAL

This section describes the discretization of a single control

interval in NOSNOC via standard RK methods and FESD.

We start with a standard RK method for the DCS (8). We

subsequently introduce step-by-step the additional constraints

which lead to FESD.



A. Standard Runge-Kutta Discretization

We consider a single control interval [0, T ] with a given

constant control input q and a given initial value x0 = s0.

We divide the control interval into NFE finite elements (i.e.,

integration intervals) [tn, tn+1] via the grid points 0 = t0 <
t1 < . . . < tNFE

= T . On each of these intervals, we apply an

ns-stage RK scheme, which is defined by its Butcher tableau

entries ai,j , bi, ci, i, j ∈ {1, . . . , ns} [17]. We denote the

step-size as hn = tn+1 − tn, n = 0, . . . , NFE − 1. The

approximation of the state at the grid points tn is denoted

by xn ≈ x(tn). The time derivative of the state at the stage

points tn + cihn, i = 1, . . . , ns, for a single finite element

are collected in the vector Vn := (vn,1, . . . , vn,ns
) ∈ R

ns·nx .

The stage values for the algebraic variable θ(·) are collected in

Θn := (θn,1, . . . , θn,ns
) ∈ R

ns·nf . The vectors Λn ∈ R
ns·nf

and Mn ∈ R
ns are defined accordingly. Let xnext

n denote the

value at the next time step tn+1, which is obtained after a

single RK step.

Now we can write the RK equations for the DCS (8) in

a compact differential form. We summarize all RK equations

of a finite element in Grk(x
next
n , Zn, hn, q) = 0, where Zn =

(xn,Θn,Λn,Mn, Vn) collects all internal variables, and define

Grk(x
next
n , Zn, hn, q) :=

























vn,1−F (xn + hn

∑ns

j=1 a1,jvn,j , q)θn,1
...

vn,ns
−F (xn + hn

∑ns

j=1 ans,jvn,j , q)θn,ns

GLP(xn + hn

∑ns

j=1 a1,jvn,j , θn,1, λn,1, µn,1)
...

GLP(xn + hn

∑ns

j=1 ans,jvn,j , θn,ns
, λn,ns

, µn,ns
)

xnext
n − xn − hn

∑ns

i=1 bivn,i

























.

To summarize all conditions for a single control interval

in a compact way, we introduce some new notation. The

variables for all finite elements of a single control interval are

collected in the following vectors x = (x0, x
next
0 , . . . , xNFE

) ∈
R

(2NFE+1)nx , V = (V0, . . . , VNFE−1) ∈ R
NFEnsnx and h :=

(h0, . . . , hNFE−1) ∈ R
NFE . The vectors Θ ∈ R

NFEnsnf ,

Λ ∈ R
NFEnsnf and M ∈ R

NFEns are defined analogously. The

vector Z = (x,Θ,Λ,M,V) collects all internal variables.

Finally, we can summarize all computations over a single

control interval and interpret it as a discrete-time nonsmooth

system:
s1=Fstd(Z), 0=Gstd(Z,h, s0, q) (9)

with Fstd(Z) = xNFE
and

Gstd(Z,h, s0, q) :=



















x0 − s0
Grk(x

next
0 , Z0, h0, q)
x1 − xnext

0
...

Grk(x
next
NFE−1, ZNFE−1, hNFE−1, q)

xNFE
− xnext

NFE−1



















.

Note that we keep a dependency on hn in (9), but hn is

implicitly given by the chosen discretization grid. This also

means that for a standard RK scheme for DCS, higher order

accuracy can be achieved only if the grid points tn coincide

with all switching points, which is in practice impossible to

achieve.

B. Cross-Complementarity

In FESD, the step-sizes hn are left as degrees of freedom

such that the grid points tn can coincide with the switching

times. Consequently, the switches should not happen on the

stages inside a finite element. To exploit the additional degrees

of freedom and to achieve these two effects we introduce

additional conditions to the RK equations (9) called cross

complementaries. A key assumption, of course, is that there

are more grid points in the interior of the grid than switching

points.

For ease of exposition, we focus on the case where the

right-boundary point of a finite element is also an RK-stage

point, i.e., cns
= 1 and tn+1 = tn + cns

hn. Extensions

can be found in [2]. To achieve implicit and exact switch

detection at the boundaries of [tn, tn+1] and to avoid switching

inside an element we exploit the fact that λ(·) and µ(·)
are continuous functions. We need their values at tn and

tn+1 which are denoted by λn,0, µn,0 and λn,ns
, µn,ns

,

respectively. Due to continuity, we impose that λn,ns
= λn+1,0

and µn,ns
= µn+1,0 and use only the right boundary points

of the finite elements (λn,ns
and µn,ns

) in the sequel. To

achieve the effects described above, we introduce the cross

complementarity conditions which read as [2]:

0=Gcross(Θ,Λ):=









∑ns

i=1

∑ns

j=1,j 6=i θ
⊤
1,iλ1,j

...
∑ns

i=1

∑ns

j=0,
j 6=i

θ⊤NFE−1,i
λNFE−1,j









. (10)

This additional constraint ensures two very important proper-

ties: (i) we have the same active-set in (9) in Φ(θn,m, λn,m) for

all m and changes can happen only for different n, i.e., at grid

points tn, (ii) whenever the active-sets for two neighboring

finite elements differ in the i-th and j-th components of

Φ(θn,m, λn,m), then these two components of λn,ns
must be

zero [2]. This will implicitly result in the constraint 0 =
gi(xn+1)− gj(xn+1) (which comes from (7) and the fact that

µn,ns
= minj gj(xn+1)). This defines the boundary between

regions and Ri and Rj , cf. (4). Thus, it implicitly forces hn

to adapt for exact switch detection.

C. Step-Equilibration

If no switches occur then also no active-set changes happen,

hence the constraints (10) are trivially satisfied. Consequently,

the step-size hn can vary in a possibly undesired way and

the optimizer can play with the discretization accuracy. To

remove the spurious degrees of freedom we introduce an

indicator function η(·) evaluated at the inner grid points

tn, n = 1, . . . , NFE − 1 and its value at tn is denoted by

ηn. It has the following property: if a switch happens at tn
its value is zero, otherwise it is strictly positive. We omit the

details on how a function η(·) is derived and refer to [2]. The

discrete-time function η(·) depends on the values of Θn and

Λn of neighboring finite elements and we define

ηn(Θ,Λ) := η(Θn−1,Λn−1,Θn,Λn).



Thus, the constraint 0 = Geq(h,Θ,Λ) removes the possible

spurious degrees of freedom in hn, where:

Geq(h,Θ,Λ):=







(h1 − h0)η1(Θ,Λ)
...

(hNFE−1 − hNFE−2)ηNFE−1(Θ,Λ)






. (11)

We call the condition (11) step-equilibration. A consequence

of (11) are locally equidistant state discretization grids be-

tween switching point, within a single control interval. Since

this constraint can be quite nonlinear, NOSNOC offers several

reformulations and heuristics that help numerical convergence.

D. Finite Elements with Switch Detection

We now use the ingredients explained above to state the

FESD method. Similar to the standard RK scheme (9), we

summarize all computations over a single control interval

and interpret it as a discrete-time nonsmooth system where

internally exact switch detection is happening. The next step

is computed by

s1=Ffesd(Z), 0=Gfesd(Z,h, s0, q, T ), (12)

and Ffesd(Z) = xNFE
renders the state transition map and

the equation 0 = Gfesd(x,Z, q) collects all other internal

computations including all RK steps within the regarded

control interval:

Gfesd(Z,h, s0, q, T ) :=









Gstd(Z,h, s0, q)
Gcross(Θ,Λ)
Geq(h,Θ,Λ)

∑NFE−1
n=0 hn − T









.

The last condition ensures that the length of the considered

time-interval is unaltered. In contrast to (9), hn are now

degrees of freedom, s0, q and T are given parameters. The

formulation (12) can be used as an integrator with exact

switch detection for PSS (1c). This feature is implemented

in NOSNOC via the function integrator fesd(). It can

automatically handle all kinds of switching cases such as:

crossing a discontinuity, sliding mode, leaving a sliding mode

or spontaneous switches [16].

IV. DISCRETIZING AND SOLVING A NONSMOOTH

OPTIMAL CONTROL PROBLEM

This section outlines how a nonsmooth OCP is discretized

in NOSNOC and how the resulting MPCC is solved.

A. Multiple Shooting-Type Discretization with FESD

One of the main goals of NOSNOC is to numerically solve

a discretized version of the OCP (1). We consider Nstg ≥ 1
control intervals of equal length, indexed by k, with piece-

wise constant controls collected in q = (q0, . . . , qNstg−1) ∈
R

Nstgnu . All internal variables are additionally equipped with

an index k. On every control interval k, we apply an FESD

discretization (12) with NFE internal finite elements. The

state values at the control interval boundaries are collected

in s = (s0, . . . , sNstg
) ∈ R

(Nstg+1)nx . The vector Z =
(Z0, . . . ,ZNstg−1) collects all internal variables and H =

(h0, . . . ,hNstg−1) all step-sizes. Finally the discretized OCP

reads as:

min
s,q,Z,H

Nstg−1
∑

k=0

f̂q(sk,xk, qk) + f̂T(sNstg
) (13a)

s.t. s0 = x̄0, (13b)

sk+1 = Ffesd(xk), k = 0, . . . , Nstg−1, (13c)

0 = Gfesd(xk,Zk, qk), k = 0, . . . , Nstg−1, (13d)

0 ≥ Gineq(sk, qk), k = 0, . . . , Nstg − 1, (13e)

0 ≥ GT(sNstg
), (13f)

where f̂q : R
nx ×R

(NFE+1)nsnx ×R
nu → R and f̂T : Rnx →

R are the discrteized stage and terminal costs, respectively.

B. Reformulating and Solving MPCC

The discrete-time OCP (13) is an MPCC. It can be written

more compactly as

min
w

f(w) (14a)

s.t. 0 ≤ h(w), (14b)

0 ≤ w1 ⊥ w2 ≥ 0, (14c)

where w = (w0, w1, w2) ∈ R
nw is a given decomposition

of the problem variables. MPCC are difficult nonsmooth NLP

which violate e.g., the MFCQ at all feasible points [12]. Fortu-

nately, they can often be solved efficiently via reformulations

and homotopy approaches [11], [12]. We briefly discuss the

different ways of solving MPCC that are implemented in

NOSNOC. They differ in how Eq. (14c) is handled. In all

cases, w1, w2 ≥ 0 is kept unaltered and the bilinear constraint

w⊤
1 w2 = 0 is treated differently.

In a homotopy procedure, we solve a sequence of more

regular, relaxed NLP related to (14) and parameterized by a

homotopy parameter σi ∈ R≥0. Every new NLP is initialized

with the solution of the previous one. In all approaches the

homotopy parameter is updated via the rule: σi+1 = κσi, κ ∈
(0, 1), σ0 > 0, where i is the index of the NLP in the

homotopy. In the limit as σi → 0 (or often even for a finite i
and σi) the solution of the relaxed NLP matches a solution of

(14). NOSNOC supports the following approaches:

Smoothing and Relaxation: In smoothing the bilinear term

is replaced by the simpler constraint w⊤
1 w2 = σi and in

relaxation by w⊤
1 w2 ≤ σi. Under certain assumptions for

σi → 0 a solution of the initial MPCC (14) is obtained [11].

ℓ1-Penalty: In this approach, the bilinear constraint is

discarded and the term 1
σi
w⊤

1 w2 is added to the objective,

which is a penalized ℓ1 norm of the complementarity residual.

When the penalty 1
σi

exceeds a certain (often finite) threshold

we have w⊤
1 w2 = 0 and the solution of such an NLP is a

solution to (14) [12].

Elastic Mode: In elastic mode (sometimes called ℓ∞-

approach) [12], a bounded scalar slack variable γ ∈ [0, γ̄] is

introduced. The relaxed bilinear constraint reads as w⊤
1 w2 ≤ γ

and we add to the objective 1
σi
γ. Variants with w⊤

1 w2 = γ and

−γ ≤ w⊤
1 w2 ≤ γ are supported as well. Once the penalty 1

σi

exceeds a certain (often finite) threshold, we have γ = 0 and

we recover a solution of (14) [12].



V. NOSNOC TUTORIALS AND A BENCHMARK

In this section, we provide two short tutorials on the use

of NOSNOC. A numerical benchmark where we compare our

software to conventional approaches is presented as well.

A. Solving a Time-Optimal Control Problem

We regard a time-optimal control problem of a double-

integrator car model with a normal and turbo mode. The state

vector x = (q, v) ∈ R
2 consists of the car’s position q and

velocity v. The PSS reads as

ẋ =

{

(v, u), if v < v̄

(v, 3u), if v > v̄
. (15)

Following Section II, we have f1(x, u) = (q, u) (nominal),

f2(x, u) = (q, 3u) (turbo). The two regions R1 and R2

described by c(x) = v − v̄ and S =
[

−1 1
]⊤

. The car

should reach the state xgoal = (200, 0) in optimal time T .

Additionally, we have constraints on the velocity |v| ≤ vmax

and control |u| ≤ umax. The parameters are vmax = 25,

umax = 5 and v̄ = 10. This OCP is formulated and solved

with NOSNOC using the code:

1 [settings] = default_settings_nosnoc();

2 settings.time_optimal_problem = 1;

3 settings.n_s = 2;

4 model.N_stg = 10; model.N_FE = 3; model.T = 1;

5 q = MX.sym(’q’); v = MX.sym(’v’);

6 model.x = [q;v]; model.x0 = [0;0];

7 model.lbx = [-inf;-25]; model.ubx = [inf;25];

8 u = SX.sym(’u’); model.u = u;

9 model.lbu = -5; model.ubu = 5;

10 f_1 = [v;u]; f_2 = [v;3*u];

11 model.F = [f_1 f_2];

12 model.c = v-10; model.S = [-1;1];

13 model.g_terminal = [q-200;v-0];

14 [results,stats,model,settings] = nosnoc_solver(

model,settings);

The function default settings nosnoc() returns a

MATLAB struct with default values for all possible tuning

parameters. The needed time-transformations are automated by

the flag settings.time optimal problem = 1. For

the FESD-RK method we keep the default choice of a Radau

II-A, hence we have with ns = 2 an accuracy order of

3 [17]. The MATLAB struct named model stores user

input data, given in lines 4 to 13, which defines the OCP (1).

NOSNOC automates all definitions, reformulations and updates

the model with all CasADi expressions for the DCS (8).

Moreover, possible inconsistencies in the provided settings

are refined. Finally, in line 14 we solve the discretized OCP

with a homotopy as described in Section IV-B. The solution

trajectory is given in Fig. 1. The user has access to all tuning

parameters, intermediate results for all homotopy iterations

and to all CasADi symbolic expressions and Function

objects. This facilitates rapid prototyping and detailed analysis

of solutions.

B. Numerical Benchmark

We solve the OCP from the last section with four different

approaches. We use NOSNOC with the FESD discretization

(12) and NOSNOC with the standard discretization (9). The

Fig. 1. The position of the car q(t) is shown in the left plot, the velocity
v(t) in the middle plot. Note the increase in acceleration in the turbo
mode for v > v̄. The right plots shows the optimal control u(t).

Fig. 2. Comparison of NOSNOC to mixed integer formulations. The left
plot show CPU time as function of number of control intervals Nstg. The
right plot show the solution accuracy as function of CPU time in a Pareto
plot.

latter approach is closely related to the smoothing approach in

[8] and [9]. For the MPCC, we use in both cases the relaxation

approach as it is usually the most robust one. Additionally,

we make a big M reformulation of the PSS (15) and solve

a mixed integer nonlinear program (MINLP). Switches are

allowed only at the control interval boundaries, hence we have

two binary variables per control interval. We solve the MINLP

with the dedicated solver Bonmin [18]. Moreover, since the

only non-linearity is in time T , we fix it and make a bisection-

type search in T . For every fixed T we solve a MILP with

Gurobi. The MILP with the smallest T that is still feasible

delivers the optimal solution. We vary Nstg from 10 to 80 with

steps of 5. The computations are aborted if the time-limit of

10 minutes is exceeded.

The results of the benchmark are depicted in Fig. 2.

NOSNOC-FESD is slightly slower than NOSNOC-Std, since it

has NstgNFE more variables, as hn are degrees of freedom.

We compare also the solution quality by making a high-

accuracy simulation xsim(t) of (15) with the obtained optimal

controls q. We compare the terminal constraint satisfaction

E(T ) = ‖xsim(T )−xgoal‖. Due to the exact switch detection

property, NOSNOC-FESD has by far the most accurate solu-

tions. The outlier where NOSNOC-Std achieves high accuracy

corresponds to a local minima without switches. We see that

even a simple nonsmooth OCP is difficult to solve with

conventional approaches, whereas NOSNOC-FESD provides

faster and several orders of magnitude more accurate solu-

tions. Further detailed comparisons of FESD to the standard

approach can be found in [2].

C. An Example with State Jumps and Time-Freezing

In this subsection we illustrate how to use NOSNOC with

systems with state jumps. We consider a planar bouncing ball

with elastic impacts. The state vector is defined as x = (q, v) ∈



R
4 with q = (q1, q2) ∈ R

2 and v = (v1, v2) ∈ R
2 being the

ball’s position and velocity, respectively. The initial state is

x(0) = (0, 0.5, 0, 0) and the ball is controlled with some force

u ∈ R
2. The ODE with state jumps reads as:

q̇ = v, v̇ = u− (0, g), (16a)

v2(t
+) = −ev2(t

−), if q2(t) = 0 and v2(t) < 0. (16b)

where e ∈ (0, 1] is the coefficient of restitution and determines

the post impact velocity. The goal is to reach qf = (4, 0.5) with

a minimal quadratic control effort modeled with the stage cost

fq(x, u) = u⊤u and a minimal terminal velocity expressed

via fT(x) = 100v⊤v, with T = 4. The control force is

bounded such that it is weaker than the gravitational force, i.e.,

u⊤u ≤ u2
max. The chosen parameters are e = 0.9, g = 9.81,

umax = 9. The following NOSNOC code solves the described

nonsmooth OCP with state jump:

1 [settings] = default_settings_fesd();

2 settings.time_freezing = 1; settings.n_s = 3;

3 model.T = 4; model.N_stg = 20; model.N_FE = 3;

4 q = MX.sym(’q’,2); v = MX.sym(’v’,2);

5 model.x = [q;v]; model.x0 = [0;0.5;0;0];

6 u = MX.sym(’u’,2); model.u = u;

7 model.c = q(2); model.e = 0.9;

8 model.f = [v;u-[0;9.81]];

9 model.f_q = u’*u; model.f_q_T = 100*v’*v;

10 model.g_ineq = u’*u-9ˆ2;

11 model.g_terminal = q-[4;0.5];

12 [results,stats,model,settings] = nosnoc_solver(

model,settings);

The flag settings.time freezing = 1 ensures that

system with state jumps (16) is transformed into a PSS of

the form of (1c) via the time-freezing reformulation [1]. A

solution trajectory is given in Figure 3, note the state jumps

in v2(t) in the middle plot.

Many more settings can be changed by the user, for exam-

ple, one can choose between different MPCC reformulations

via mpcc mode, control the sparsity of the cross comple-

mentarities cross complementarity mode and so on. A

few more examples and a detailed user manual are available

NOSNOC’s repository [5].

VI. CONCLUSION AND OUTLOOK

In this letter we presented NOSNOC, an open-source soft-

ware package for nonsmooth numerical optimal control. With

the help of the Finite Elements with Switch Detection (FESD)

method and the time-freezing reformulation, it enables prac-

tical and high accuracy optimal control of several different

classes of nonsmooth system in a unified way. The discretized

OCP are solved with techniques solely from continuous op-

timization, without the need for any integer variables. All

reformulations and details are hidden but accessible such that

a convenient use for users with different knowledge levels of

the field is ensured.

In future work, we aim to implement a python version

of NOSNOC. Moreover, further algorithmic developments in

FESD, e.g., different reformulations of PSS into DCS, support

for time-freezing for other classes of hybrid systems will be

implemented.

Fig. 3. The illustration of the optimal solution q(t) is shown in the left
plot. The middle plot shows the optimal velocities v(t) as a function of
the physical time t, where the state jumps are recovered. The right plot
shows the optimal controls u(t).
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[1] A. Nurkanović, T. Sartor, S. Albrecht, and M. Diehl, “A Time-Freezing
Approach for Numerical Optimal Control of Nonsmooth Differential
Equations with State Jumps,” IEEE Control Systems Letters, vol. 5, no. 2,
pp. 439–444, 2021.
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