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Abstract— This article regards numerical optimal con-
trol of a class of hybrid systems with hysteresis using
solely techniques from nonlinear optimization, without any
integer variables. Hysteresis is a rate independent memory
effect which often results in severe nonsmoothness in the
dynamics. These systems are not simply Piecewise Smooth
Systems (PSS); they are a more complicated form of hybrid
systems. We introduce a time-freezing reformulation which
transforms these systems into a PSS. From the theoretical
side, this reformulation opens the door to study systems
with hysteresis via the rich tools developed for Filippov
systems. From the practical side, it enables the use of
the recently developed Finite Elements with Switch Detec-
tion [1], which makes high accuracy numerical optimal con-
trol of hybrid systems with hysteresis possible. We provide
a time optimal control problem example and compare our
approach to mixed-integer formulations from the literature.

Index Terms— hybrid systems, optimal control, numeri-
cal algorithms

I. INTRODUCTION

HYSTERESIS occurs in many physical systems, e.g., fer-
romagnetism, plasticity, superconductivity, phase tran-

sitions, but also in feedback control, e.g., thermostats [2],
[3]. Hysteresis effects in dynamic systems are modeled with
nonsmooth differential equations. This paper focuses on trans-
forming some classes of systems with hysteresis into piecewise
smooth system (PSS) and numerically solving optimal control
problems (OCP) with PSS. We leverage recent advances in
numerical optimal control of PSS, namely we use the FESD
method [1].

A hybrid system with hysteresis can be represented as
a finite automaton [3] which has two modes of operation
described by fA(x) and fB(x), cf. Fig. 1(a). If the system
operates in mode A with ẋ = fA(x) and if ψ(x) ≥ 1, it
switches to mode B with ẋ = fB(x). On the other hand,
if it operates in mode B and if ψ(x) ≤ 0, it switches to
mode A. This is a typical hysteresis behavior given by the
characteristic in Fig. 1(b), which is often called the delayed
relay operator [4]. The dynamics of the system depend on the
value of w(t) and the scalar switching function ψ(x). Notably,
for ψ(x) ∈ [0, 1] the function w(t) can be 0 or 1.
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(a) Finite automaton of a hybrid system with hysteresis
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(b) Example hysteresis characteristic (w,ψ(x))

Fig. 1. Hybrid system with hysteresis.

There are several other related characteristics, e.g. the
dashed lines in Fig. 1(b) could be solid, or the resulting
polygon in the middle of the plot might be tilted. In all these
cases the characteristic can be readily represented via a linear
complementarity problem [5] and the nonsmooth dynamic
system recast into a Dynamic Complementarity System (DCS).
However, it is an open question if this DCS is a PSS.

Control of systems with hysteresis relying on Filippov
solutions was studied in, e.g., [6], [7]. In control theory, sys-
tems with hysteresis are often studied via the hybrid systems
framework which uses integer state and control variables [3],
[8], [9]. Hence, in an optimal control context this requires
solving Mixed Integer Optimization Problems (MIOP). They
can be solved efficiently in case of discrete time linear
hybrid systems [8] where MILP or MIQP formulations can
be found. However, as soon as the junction times need to
be determined precisely or non-linearity is present, e.g., in
time optimal control problems, solving MIOP can become
arbitrarily difficult. On the other hand, the nonsmoothness
can be modeled with complementarity constraints [10] and
one must solve only nonsmooth Nonlinear Programs (NLP).
However, standard time-stepping schemes for DCS have only
first order accuracy and result necessarily in wrong numerical
sensitivities and artificial local minima [10], [11].

The time-freezing reformulation transforms systems with
state jumps into PSS and was first introduced in [12], [13].
This paper introduces a time-freezing reformulation to trans-
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form systems represented with the finite automaton in Fig. 1(a)
into PSS. Here, the main idea is to regard w(t) as a continuous
differential state. However, w(t) exhibits jump discontinuities
in time at (0, 1) and (1, 0), which can be interpreted as
a state jump law. As in [12], [13], we introduce auxiliary
dynamic systems and a clock state. The auxiliary dynamic
systems evolve in regions which are prohibited for the initial
system and their trajectory endpoints satisfy the state jump law.
Additionally, the evolution of the clock state is frozen during
the evolution of the auxiliary systems. By regarding only the
parts of w(·) when the clock state was evolving, we recover the
original discontinuous solution. Note that the resulting time-
freezing system is now a PSS, since the only remaining jump
discontinuities are in the system’s dynamics but not in the state
anymore. For high accuracy numerical optimal control of PSS
we use the FESD method [1]. An implementation is available
in the open source software package NOSNOC [14], [15].

Contribution: We present a time-freezing reformulation for
a class of hybrid systems with hysteresis, which transforms
them into PSS. Constructive ways for finding the auxiliary
dynamics needed in time-freezing are provided. Solution
equivalence between the initial hybrid and time-freezing PSS
are proven. From the theoretical side, this contribution enables
one to treat hybrid systems with hysteresis with the tools for
PSS and Filippov systems [16]. From the practical side, the
highlight of this paper is that we can solve OCP with systems
with hysteresis with high accuracy and without the use of
any integer variables. The OCP discretized via FESD result
in Mathematical Programs with Complementarity Constraints
(MPCC). With appropriate reformulations the MPCC can
often be solved by only a few NLP solves [17], i.e., the
highly nonsmooth and nonlinear OCP are solved by purely
derivative based algorithms. A time optimal control problem
of a hybrid system with hysteresis and illustrates theoretical
and algorithmic developments. We compare the continuous
optimization-based FESD method to mixed integer solution
strategies.

Outline: Section II gives some basic definitions on hybrid
systems with hysteresis and PSS. In Section III we develop
the time-freezing reformulation for a class of hybrid systems
with hysteresis and provide a simple tutorial example. Section
IV formalizes the relation between time-freezing PSS and
hysteresis systems. Finally, Section V contains a numerical
example and Section VI concludes the paper.

Notation: For the phyisical time derivative of a function
x(t) we use ẋ(t) := dx

dt (t) and for the numerical time deriva-
tive of y(τ) we use y′(τ) := dy

dτ (τ). The matrix In ∈ Rn×n
is the identity matrix, and 0m,n ∈ Rm×n is the zero matrix.
The concatenation of two column vectors a ∈ Rm, b ∈ Rn is
denoted by (a, b) := [a>, b>]>. The concatenation of several
column vectors is defined in an analogous way. The closure
of a set C is denoted by C, its boundary as ∂C and conv(C)
is its convex hull.

II. BASIC DEFINITIONS: HYBRID SYSTEMS WITH
HYSTERESIS AND FILIPPOV SYSTEMS

In this section we provide some of the basic definitions and
notation for PSS and hybrid systems.

A. PSS and Filippov Systems
We regard PSS of the following form

ẋ = fi(x), if x ∈ Ri ⊂ Rnx , i ∈I :={1, . . . ,m}, (1)

with regions Ri ⊂ Rnx and associated dynamics fi(·), which
are smooth functions on an open neighborhood of Ri and
m is a positive integer. Note that in general the right hand
side (r.h.s.) of (1) is discontinuous in x. We assume that Ri
are disjoint, nonempty, connected and open sets. They have
piecewise-smooth boundaries ∂Ri. Moreover, we assume that⋃
i∈I

Ri = Rnx and that Rnx \
⋃
i∈I

Ri is a set of measure

zero. Note that the dynamics are not defined on ∂Ri and to
have a meaningful solution concept for the PSS (1) we regard
the Filippov convexification of it [16]. The ODE (1) with a
disconitous r.h.s. is replaced by a Differential Inclusion (DI)
whose r.h.s. is a convex and bounded set. Due to the assumed
structure of the sets Ri, if ẋ exists, functions θi(·) which serve
as convex multipliers can be introduced and the Filipov DI for
(1) reads as [1]

ẋ ∈ FF(x) =
{∑
i∈I

fi(x) θi |
∑
i∈I

θi = 1, θi ≥ 0,

0 = θi if x /∈ Ri,∀i ∈ I
}
.

(2)

Note that in the interior of the regions Ri the Filippov set
FF(x) is equal to {fi(x)} and on the boundary between
regions we have a convex combination of the neighboring
vector fields. The evolution of x(·) on region boundaries
∂Ri are called sliding modes. The sliding mode dynamics
in Filippov’s setting are implicitly defined by Differential
Algebraic Equations (DAE) [16].

B. Hybrid Systems with Hysteresis
We consider dynamic systems represented with the finite

automaton in Fig. 1(a):

ẋ = f(x,w) =(1− w)fA(x) + wfB(x), (3)

where the (w,ψ(x)) characteristic is illustrated in Fig. 1(b).
For a uniformly continuous function x(t) on t ∈ [0, T ] and
a smooth ψ(·), there can be only finitely many oscillations
between 0 and 1. Consequently, the function w(t) is piecewise
constant and has only finitely many jumps between 0 and 1
[2].

The system in (3) has two modes of operation denoted by A
and B. In order to be able to simulate (3) for t ∈ [0, T ] with a
given x(0) = x0 we must know w(0) as well. This property is
typical for systems with hysteresis. Furthermore, w(·) jumps
between 0 and 1, hence we can describe it by an ODE with
the state vector z := (x,w) ∈ Rnx+1 which is associated with
a state jump law.

ż = (f(x,w), 0), (4)

accompanied by a state-jump law for w(·) at time-point ts
which covers two scenarios:

1) if w(t−s ) = 0 and ψ(x(t−s )) = 1, then x(t+s ) = x(t−s )
and w(t+s ) = 1,



2) if w(t−s ) = 1 and ψ(x(t−s )) = 0, then x(t+s ) = x(t−s )
and w(t+s ) = 0.

Clearly, due to the state jump law the ODE (4) is not simply a
PSS as (1). Throughout the paper we assume, given x(0) and
w(0) that there exists a solution to the Initial Value Problem
(IVP) associated with (4). A way to define a meaningful notion
of solution for hybrid system as (4) is given in e.g., [3, Section
5.4] and sufficient conditions for well-posedness are provided
[3, Theorem 5.4].

III. THE TIME-FREEZING REFORMULATION FOR HYBRID
SYSTEMS WITH HYSTERESIS

This section introduces the time-freezing reformulation for
the system (4). We define step-by-step the corresponding
regions Ri of the time-freezing PSS and give constructive
ways to find vector fields associated to them. The section
finishes with a tutorial example.

A. The Time-Freezing System
The main idea is to transform the state w(t) which is a

piecewise constant function of time into a continuous differ-
ential state on a different time domain. We call this new time
domain the numerical time and denote it by τ . Instead of t as in
(1), τ will now be the time of the time-freezing PSS. Moreover,
we introduce a clock state t(τ) in the time-freezing PSS which
we call physical time. It grows whenever the systems evolves
according to fA(x) or fB(x), i.e., dt

dτ (τ) = 1. Otherwise the
physical time is frozen, i.e., dt

dτ (τ) = 0. In other words, the
time is frozen whenever w /∈ {0, 1}. Consequently, the w(·)
takes only discrete values in physical time, i.e., when t(τ) is
evolving.

The time-freezing PSS has the following state vector y :=
(x,w, t) ∈ Rny , ny = nx + 2. In the sequel, we define its
regions Ri ⊂ Rny and the associated vector fields fi(y).
Some key observations can be made from Fig 1(b). First,
everything except the solid curve is prohibited for the system
(4) in the (ψ,w)− plane. We use this prohibited part of the
state space to define auxiliary dynamics. Second, the evolution
happens in a lower-dimensional subspace since ẇ = 0. This
corresponds in Filippov’s setting to sliding modes. Hence, we
define the regions such that the evolution of the initial system
(4) corresponds to sliding modes of the time-freezing PSS,
i.e., it happens on region boundaries ∂Ri.

A suitable partition of the (ψ,w)− plane can be achieved
with Voronoi regions. The regions are defined as Ri = {z |
‖z − zi‖2 < ‖z − zj‖2, j = 1, . . . , 4, j 6= i}, z = (ψ(x), w)
with the points: z1 = ( 1

4 ,−
1
4 ), z2 = ( 1

4 ,
1
4 ), z3 = ( 3

4 ,
3
4 ) and

z4 = ( 3
4 ,

5
4 ). An illustration of the regions is given in Fig.

2, where the black solid lines denote the region boundaries.
This choice of zi defines regions such that their boundaries
correspond to the feasible set of the original system (4).
Moreover, the space is split by the diagonal line between R2

and R3 such that we can define different auxiliary dynamics
for the state jumps in both directions. One can make other
choices for the points zi with the exact same properties. The
proposed choice partitions the space symmetrically, cf. Fig.
2. The figure illustrates also the vector fields in the regions

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-0.5

0

0.5

1

1.5

Fig. 2. Illustration of the partitioning of the state space in (ψ(x), w)-
plane for the time-freezing PSS via Voronoi regions with the correspond-
ing auxiliary and DAE-forming dynamic’s vector fields. The Voronoi
points zi, i = 1, . . . , 4, are marked by the crosses.

Ri whose meaning is detailed below. It is important to note
that the original system can only evolve at region boundaries
RA := {y ∈ Rny | w = 0, ψ(x) ≤ 1} = ∂R1 ∩ ∂R2 and
RB := {y ∈ Rny | w = 1, ψ(x) ≥ 0} = ∂R3 ∩ ∂R4.

We exploit the interior of the regions Ri, i = 1, . . . , 4
to define the needed auxiliary ODE. In what follows, in the
regions R2 and R3 we define auxiliary dynamic systems whose
trajectory endpoints satisfy the state jump law of (4). In the
regions R1 and R4 we will define so-called DAE-forming
ODE [13], which make sure that we obtain appropriate sliding
modes on RA and RB, which are described by index 2 DAE
[16] and witch match the dynamics of the original system.
The next definition formalizes the desired proprieties of an
auxiliary ODE.

Definition 1 (Auxiliary ODE). The auxiliary ODE in regions
R2 and R3 are denoted by y′ = faux,A(y) and y′ =
faux,B(y), respectively. For every initial value y(τs) = ys
such that (w(τs), ψ(x(τs)) = (1, 0), for ys ∈ RB, (and
(w(τs), ψ(x(τs)) = (0, 1) for ys ∈ RA, respectively) and for
every well-defined and finite time interval Tjump := (τs, τr)
with the length τjump := τr − τs, the auxiliary ODE satisfy
the following properties: (i) w(τ) ∈ (0, 1), ∀τ ∈ Tjump, (ii)
x(τs) = x(τr), and (iii) w(τr) = 0 (or w(τr) = 1).

In other words, we define an ODE whose trajectory end-
points on T jump satisfy the state jump law associated with
Eq. (4), cf. Fig. 2. The next proposition provides a constructive
way to find an ODE with the above described properties.

Proposition 2 (Auxiliary ODE). Given an initial value
y(τs) = ys such that w(τs) = 1 and ψ(x(τs)) = 0, the ODE
given by

y′(τ) = faux,A(y) := (0nx,1,−γ(ψ(x)− 1), 0), (5)

where γ : R→ R and γ(x) = ax2

1+x2 with a > 0, is an auxiliary
ODE defined in R2. Similarly, for y(τs) = ys with w(τs) = 0
and ψ(x(τs)) = 1, the ODE

y′(τ) = faux,B(y) := (0nx,1, γ(ψ(x)), 0). (6)

is an auxiliary ODE in R3. In both cases τjump = 1
γ(−1) .



Proof. We prove the assertion for (5), since the second part
follows similar lines. Since x′(τ) = 0nx,1 and t′(τ) = 0
these two variables do not change their value, thus ψ(x(τ)) =
ψ(x(τs)) = 0 and t(τ) = t(τs) for τ ≥ τs. Hence, we have
w′(τ) = −γ(−1) < 0. By explicitly solving the ODE we
obtain w(τr) = 0 for τr = τs + τjump, where τjump = 1

γ(−1) .
All conditions of Definition 1 are satisfied thus the proof is
complete.

We briefly discuss some of the proprieties of such an
auxiliary ODE, since the are several ways to construct similar
ODE. Loosely speaking, in Fig. 2 in R2 the vector field should
point in the negative w-detection and in R3 in the positive
w-direction, and be zero in all other directions. Note that
for ψ(x) ∈ (0, 1) the vector fields of the auxiliary ODE in
both cases point away from the manifold defined M = {y ∈
Rny | w + ψ(x)− 1 = 0}. In such scenarios, there is usually
locally no unique solution to the associated Filippov DI, as the
trajectory can leave M at any point in time [16]. However,
the system should never be initialized in this region, since this
state is infeasible for the original system. We show later that it
can never reach this undesired state if initialized appropriately.
Furthermore, the auxiliary ODE from Proposition 2 have by
construction the favorable property that they do not point away
in both directions from M at the junction points (0, 1) and
(1, 0). This is why the function γ(·) was introduced in the
auxiliary ODE. Another favorable property is, if the system is
initialized with the wrong value for w(·) for ψ(x) /∈ (0, 1) the
auxiliary ODE will automatically reinitialize w(·) while the
physical time is frozen, cf. Fig 2.

We still need to define DAE-forming vector fields for
the regions R1 and R4. These vector fields should be such
that, together with the auxiliary dynamics in their respective
regions, they results in sliding modes on RA and RB which
match the dynamics of the initial system (4).

In a general PSS the vector fields are not defined on the
region boundaries, thus we use Filippov’s convexification [16]
as defined in Eq. (2), and denote the Filippov set associated to
the time-freezing PSS by FTF(·). The next proposition gives
a constructive way to find the desired vector fields.

Proposition 3 (DAE-forming ODE). Suppose the regions R2

and R3 are equipped with the vector fields faux,A(·) and
faux,B(·) from Proposition 2, respectively. Let the region R1

be equipped with the ODE

y′ = fDF,A(y) := 2(fA(x), 0, 1)− faux,A(y), (7)

then for y ∈ RA it holds that (fA(x), 0, 1) ∈ FTF(y) =
conv{faux,A(y), fDF,A(y)}. Similarly, let the region R4 be
equipped with the following ODE

y′ = fDF,B(y) := 2(fB(x), 0, 1)− faux,B(y), (8)

then for y ∈ RB it holds that (fB(x), 0, 1) ∈ FTF(y) =
conv{faux,B(y), fDF,B(y)}.

Proof. We prove the assertion for Eq. (7) and the second part
follows similar lines. Note that for y ∈ RA = {y | c(y) :=
w = 0, ψ(x) < 1} we have that ∇c(y)>faux,A(y) < 0 and
∇c(y)>fDF,A(y) > 0. Hence, we have a sliding mode on
w = 0 with dw

dτ = 0 [16]. From (2) we have that FTF(y) =
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Fig. 3. Trajectories of the time-freezing PSS for a thermostat example
in numerical time τ (left plot) and physical time t (right plot).

{θ1(2(fA(x), 0, 1) − faux,A(y)) + θ2faux,A(y) | θ1 + θ2 =
1, θ1, θ2 ≥ 0}. From this relation and w′ = 0 we obtain that
θ1− θ2 = 0. Thus we can solve for θ1 and θ2, i.e., θ1 = θ2 =
1
2 , which yields (fA(x), 0, 1) ∈ FTF(y). This completes the
proof.

Note that by construction the two sliding modes on RA and
RB agree with the r.h.s. of Eq. (4) augmented by the dynamics
of the clock state. Now we have defined vector fields in all
regions of the time-freezing PSS which corresponds to the
original system (4). Another favorable property of the chosen
auxiliary and DAE forming ODE is: since w′(τ) is bounded
by a > 0 it cannot make the sliding mode DAE arbitrarily
stiff, especially if constraint drift happens.

B. A Tutorial Example

To illustrate the theoretical development we construct a
time-freezing PSS for a thermostat system with hysteresis. The
source code of the example is available in the repository of
NOSNOC [15]. The system has a single state x(·) which models
the temperature of a room which should stay inside the interval
x ∈ [18, 20]. As soon as the temperature drops below x = 18
the heater is switched on and when the temperature grows
above x = 20 it is switched off. The two modes of operation
are given by ẋ = fA(x) = −0.2x + 5 when the heater is on
and ẋ = fB(x) = −0.2x when the heater is off. One can
see that for ψ(x) = 0.5(x − 18) we have a hybrid system
that maches the finite automaton in Fig. 1(a). For a time-
freezing PSS we define the regions Ri via the Voronoi points
as in the last section. The auxiliary ODE’s r.h.s. according to
Proposition 2 read as faux,A(y) = (0,−γ(0.5(x−18)−1), 0)
and faux,B(y) = (0, γ(0.5(x − 18), 0) with a = 1. Similarly,
the DAE-forming ODE r.h.s. according to Proposition 3 read
as fDF,A(y) = (−0.4x + 10, γ(0.5(x − 18) − 1), 2) and
faux,B(y) = (−0.4x,−γ(0.5(x− 18)), 2).

We simulate now the time-freezing PSS with a FESD
Radau-IIA integrator of order 3 [1] with x(0) = 15 and
w(0) = 0. The left plot in Fig. 3 illustrates the evolution
of the time-freezing PSS in numerical time. The red shaded
areas indicate the phases when the auxiliary ODE is active with
w /∈ {0, 1} while the time is frozen, cf. bottom left plot. In
the middle left plot we can see that w(τ) is now a continuous
function in numerical time. The right plot in Fig. 3 shows the



differential state in physical time t(τ). Clearly, in the middle
right plot w(t(τ)) is now a discontinuous function, hence the
state jumps are successfully recovered in physical time.

IV. SOLUTION EQUIVALENCE

From the developments in the last section, the solution
equivalence is nearly apparent. We formalize it in the next
theorem.

Theorem 4. Regard the IVP corresponding to: (i) the Filippov
DI of the time-freezing PSS equipped with the vector fields
from Proposition 2 and 3 with a initial value y(0) = (z0, 0)
with z0 = (x0, w0) and w0 ∈ {0, 1}, on a time interval [0, τf ],
(ii) the ODE with state jumps from Eq. (4) with z(0) = z0 on
a time interval [0, tf ] = [0, t(τf)]. Suppose solutions exist to
both IVP.

Then the solutions of the two IVPs z(t; z0) and y(τ ; y0)

fulfill at any
dt

dτ
= t′(τ) 6= 0:

z(t(τ); z0) =My(t(τ); y0), withM=
[
Inx+1 0nx+1,1

]
. (9)

Proof. Denote the solution of IVP (i) by y1(τ ; y0) for τ ∈
(0, τ̂) and for (ii) and t(τ) ∈ (0, t(τ̂)) by z1(t(τ); z0). For
a given w(0) = 0 (or 1) we have from Proposition 3 that
y′ = (fA(x), 0, 1) (or y′ = (fB(x), 0, 1)). Note that if there
is no τs ∈ (0, τ̂) for the IVP (i) such that an auxiliary ODE
becomes active, then t(τ) =

∫ τ
0

dτ1 = τ . Since (fA(x), 0) =
M(fA(x), 0, 1), (fB(x), 0) = M(fB(x), 0, 1) and z0 = My0
by setting τ̂ = τf, it follows that (9) holds.

Suppose now that we have a τs ∈ (0, τf) such that for
w(τs) = 1 the auxiliary ODE y′ = faux,A(y) becomes
active (or similarly for w(τs) = 0, y′ = faux,B(y) becomes
active). From the first part of the proof we have that (9)
holds for τ ∈ (0, τs) and hence for all t(τ) ∈ (0, t−s ), where
t−s = t(τs). From Proposition 2 we have that the solution
satisfies x(τs) = x(τr) and w(τr) = 0 (or w(τr) = 1) with
t′(τ) = 0 for τ ∈ [τs, τr]. Hence, we have also t(τr) = t+s =
t(τs). Denote by ys = (x(τr), w(τr), t(τr)). Using this we
have y1(τ − τr, ys) = y(τ, y0) for τ ∈ (τr, τ̃) and denoting
zs = Mys we see that z1(t(τ) − ts; zs) = x(t(τ), z0) for
t(τ) ∈ (t+s , τ̃). Assume that a single activation of an auxiliary
ODE takes place and set τ̃ = τf . Since the intervals (ts, tf)
and (τr, τf) have the same length and zs = Mys from the
definitions of the corresponding IVP, we conclude that relation
(9) holds. If the auxiliary ODE becomes active multiple times
we simply apply the same argument on the corresponding sub-
intervals. This completes the proof.

The last theorem opens the door to study the regarded hybrid
system with hysteresis as a Filippov system and to apply
their rich theory e.g., solution existence results [16]. From
the practical side, we can use numerical methods for Filippov
systems which allows us to avoid the use of integer variables.

V. NUMERICAL EXAMPLE: TIME OPTIMAL PROBLEM OF
A CAR WITH TURBO CHARGER

In this section we apply the theoretical developments in a
numerical example of a time optimal control problem of a car
with turbo from [9]. We consider a double-integrator car model

equipped with a turbo accelerator which follows a hysteresis
characteristic as in Fig. 1(b). This makes the seemingly simple
model severely nonlinear and nonsmooth.

The car is described by its position q(t), velocity v(t) and
turbo charger state w(t) ∈ {0, 1}. The control variable is the
car acceleration u(t). The turbo accelerator is activated when
the velocity exceeds v ≥ 15 and is deactivated when it falls
below v ≤ 10. When it is on, it makes the nominal acceleration
u(t) three times greater. One can see that ψ(x) = v−10

5 . In
summary, the state vector reads as z = (q, v, w) ∈ R3 with
two modes of operation described by fA(z) = (v, u, 0) and
fB(z) = (v, 3u, 0). The acceleration is bounded by |u| ≤ ū,
ū = 5 and the velocity by |v| ≤ v̄, v̄ = 25.

In the OCP we consider the time-freezing PSS associated to
the car model on a numerical time interval τ ∈ [0, τf ]. The car
should reach the goal q(t(τf))= qf = 150 with v(t(τf))= vf =
0, whereby z(0) = z0 = 03,1. The auxiliary and DAE-forming
dynamics are chosen according to Propositions 2 (with a = 1)
and 3, respectively. The OCP reads as:

min
y(·),u(·),s(·)

t(τf) (10a)

s.t. y(0) = (z0, 0), (10b)
y′(τ)∈s(τ)FTF(y(τ),u(τ)), τ ∈ [0, τf ], (10c)
− ū ≤ u(τ) ≤ ū, τ ∈ [0, τf ], (10d)

s̄−1 ≤ s(τ) ≤ s̄, τ ∈ [0, τf ], (10e)
− v̄ ≤ v(τ) ≤ v̄, τ ∈ [0, τf ], (10f)
(q(τf), v(τf)) = (qf , vf). (10g)

The objective consist of minimizing the final physical
time. Since a time optimal control problem is considered, we
introduce the scalar speed-of-time control variable s(·) which
introduces a time-transformation and enables to have a variable
terminal physical time Tf = t(τf). It is bounded by (10e)
with s̄ = 10. NOSNOC ensures equidistant control grids in
numerical and physical time τ .

The OCP is discretized with a FESD Radau-IIA scheme of
order 3 with N = 10 control intervals and Nfe = 3 additional
integration steps on every control interval, with τf = 5. The
controls are taken to be piecewise constant over the control
intervals. The OCP discretization and MPCC homotopy is
carried out via the open source tool NOSNOC, which has
IPOPT [18] and CasADi [19] as a back-end.

Additionally, we compare our approach to the mixed integer
formulation of [9]. We take the same control and state dis-
cretization as in NOSNOC which results 56 binary variables.
Switches in the integer formulation are allowed only at the
control interval boundaries, as a switch detection formulation
requires significantly more integer variables and introduces
more nonlinearity.

The problem is solved with the dedicated mixed integer
nonlinear programming (MINLP) solver Bonmin [20]. Note
that the only nonlinearity in the MINLP is due to the time-
transformation for the optimal time Tf . Therefore, in a second
experiment we fix Tf and solve the resulting MILP with the
commercial solver Gurobi. We make a bisection-type search
in Tf . The MILP with the smallest Tf that is still feasible,
delivers the optimal time Tf . In this experiment 22 MILP were
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Fig. 4. Solutions of the OCP (10) in physical time. The top left and
right plots show the velocity v(t) and optimal controlsu(t), respectively.
The bottom left and right plots show the hysteresis state w(t) and the
solution trajectory in the (v,w)-plane, respectively.

solved for an accuracy of 10−6. To determine the solution
quality, we additionally perform a high accuracy solution with
the computed optimal controls and obtain xsim(t). We compare
the terminal constraint satisfactions: E(Tf) = ‖xsim(Tf) −
(qf , vf)‖2. The source core for the simulation and the two
MIOP approaches are provided in the NOSNOC repository [15].

The results are summarized in Table I. All three approaches
provide a similar objective value. Gurobi is the fastest solver,
NOSNOC is only slightly slower and Bonmin is significantly
slower. The smallest terminal error is achieved via NOSNOC.
This is due to the underlying FESD discretization, cf. [1].
Gurobi and Bonmin have the same discretization without
switch detection and result in the same terminal error. On
the other hand, Gurobi provides the most robust approach,
as NOSNOC (i.e., IPOPT as underlying NLP solver) fails to
converge in some variations of the discretization.

The results computed by NOSNOC is depicted in Fig. 4. One
can see an intuitive behavior as the car uses the turbo accel-
erator as much as possible to reach the goal time optimally,
with Tf = 10.26.

VI. CONCLUSION

In this paper we introduced a novel time-freezing reformula-
tion for a class of hybrid systems with hysteresis. It transforms
the systems with state jumps into PSS for which we leverage
the recently developed FESD method which enables high
accuracy optimal control by solving only smooth NLP. Thus,
we can avoid use of computationally expensive mixed integer
strategies in numerical optimal control and obtain quickly
good and accurate nonsmooth solutions. In the theoretical
part, constructive ways to find auxiliary and DAE-forming
ODE are provided and solution equivalence is proven. In
future time-freezing for other types of finite automaton and
hysteresis systems, as e.g., described in the introduction should
be investigated as well.
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TABLE I
COMPARISON OF NOSNOC TO MIXED INTEGER FORMULATIONS.

Solver Tf CPU Time [s] E(Tf)
NOSNOC 10.26 8.87 9.49e-02

Gurobi with bisection 11.21 5.31 7.88e+01
Bonmin 11.28 1481.58 7.88e+01
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