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Abstract— In this paper, we present a trajectory track-
ing control law for a class of partially unknown nonlinear
systems that combines backstepping and event-triggered
online learning. We employ Gaussian processes to learn
the unknown system model using measurement data col-
lected online, while the proposed control law is active. Our
approach uses an efficient event-triggered online learning
scheme that exclusively collects informative data to update
the estimated model used for control. The resulting control
law guarantees that the tracking error is globally uniformly
ultimately bounded. The inter-event time is shown to be
lower-bounded by a positive constant. Moreover, we also
discuss how to obtain a trade-off between the cardinality
of the collected training data and the size of the ultimate
tracking error bound. In a simulation example, our approach
is shown to outperform a state-of-the-art offline learning-
based approach both in terms of tracking performance and
data efficiency.

Index Terms— Backstepping, Gaussian processes, non-
linear systems, event-triggered learning, online learning.

I. INTRODUCTION

IN recent years, learning-based methods using Gaussian
processes (GPs) have been successfully applied to a variety

of control problems, including feedback linearization [1],
backstepping [2], and model predictive control [3], to name a
few. As in most GP-based methods, system models are learned
offline with fixed training data sets collected exclusively before
the control design. In such settings, if the collected data lies
far away from the desired trajectory, the model error will
typically be large around the desired trajectory, leading to
potentially poor tracking performance. To remedy this, one
needs to resort either to complex exploration strategies [4]
or multiple iterations of training and control, until the data
required for the desired performance is obtained. However,
both approaches can be time-consuming and might produce
data that is unnecessary for control.

By contrast, online learning-based GP methods collect data
and update the GP model while the proposed control law
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is active. As a result, the collected data points are poten-
tially more beneficial for performance than data collected
offline, since they correspond to states visited during control.
However, due to the adaptive nature of online learning-based
control, formal guarantees are much more difficult to obtain.
Moreover, since GPs scale poorly with the number of training
data points, computationally cheaper approximations might
still be required, e.g., sparse GPs, which typically favor
overall prediction quality over control performance and seldom
yield theoretical guarantees [5]. In spite of these challenges,
a handful of online learning-based control strategies using
GPs are available. In [6], a safe exploration algorithm is
proposed that simultaneously estimates and explores the region
of attraction of a control policy using GPs. An optimal exper-
imental design approach is presented in [7] where information
theoretical quantities are maximized, yielding a faster learning
rate than uniform random sampling. In [8], an uncertainty-
triggered online learning scheme is proposed for obtaining
tracking control laws, and a stability analysis is provided
using stochastic stability theory for switching systems. Event-
triggered methods that use models other than GPs are provided
in [9] and [10], where event-triggered learning is used to
reduce communication for linear stochastic systems. In [11],
an event-triggered online learning approach is proposed where
data points are collected only when a Lyapunov decrease
condition is violated. However, most of these approaches either
provide no guarantees or collect data that is unnecessary for
control, while [11] only considers single input controllable
canonical systems and collects an undetermined amount of
data, narrowing its applicability.

In this work, we present an event-triggered online learning-
based backstepping control method using GPs for a broad
class of partially unknown nonlinear systems. During control,
whenever the GP model is too inaccurate to satisfy a Lyapunov
decrease condition, a new data point is collected and used to
update the GP model. This way, only strictly necessary data is
collected, avoiding the high computational complexity of GPs
with large data sets.

The main contributions of this paper are as follows: (i) We
provide an efficient event-triggered online learning scheme that
updates a GP model for the control law. (ii) We show that
the resulting tracking error is globally uniformly ultimately
bounded and that the inter-event time is lower-bounded by
a positive constant. (iii) We show how to obtain a trade-off
between the cardinality of data collected online and the size



of the ultimate tracking error bound. (iv) Using a simulation
example, we show that our approach outperforms a state-of-
the-art offline learning-based control method, with the added
benefit of requiring less training data to do so. The present
paper extends the result in [11] on single input controllable
canonical systems to a broader class of nonlinear systems,
and also generalizes the results from [2] to accommodate the
event-triggered online learning case.

The outline of this paper is as follows. In Sec. II, we
formulate the backstepping control problem with online data
collection. In Sec. III we review Gaussian process regression.
We then present our event-triggered learning backstepping
approach and discuss the trade-off between the data cardinality
and tracking performance, in Sec. IV. In Sec. V we compare
our approach to a state-of-the-art method with offline learning.
In Sec. VI, we provide a brief conclusion.

II. PROBLEM FORMULATION

We consider a nonlinear system in strict feedback form1

ẋi = fi(wi) + gi(wi)xi+1 + hi(wi), i = 1, . . . , n− 1,

ẋn = fn(wn) + gn(wn)u+ hn(wn),
(1)

where xi ∈ Xi ⊆ R, i = 1, 2, . . . , n are the states, Xi are
compact sets, u ∈ U ⊆ R is the control input, an the vectors
wi = (x1, x2, . . . , xi) ∈ X1 × X2 × . . . × Xi := Wi denote
the concatenation of the states. Many practical systems can be
expressed in the form of (1), e.g., rigid robots and motors [12],
and jet engines [13]. We consider the case where the nonlinear
functions fi : Wi 7→ R and gi : Wi 7→ R are known,
whereas the nonlinear functions hi : Wi 7→ R are unknown,
representing unmodeled nonlinearities. Furthermore, for all
i = 1, 2, . . . , n, we assume that the functions fi(·) vanish at
the origin, which is a common assumption for systems in strict
feedback form [13]. The unknown unmodeled nonlinearities
hi(·) can be due to, e.g., friction [12]. The system (1) is to be
controlled using a backstepping approach. We then make the
following standard assumptions for backstepping control [13].

Assumption 1: For all i = 1, 2, . . . , n, the functions fi(·)
and gi(·) are bounded and n− i continuously differentiable.

Assumption 2: For all i = 1, 2, . . . , n, the functions gi(·)
are invertible within Wi.

Note that, although Assumption 2 might seem restrictive, it
can in some settings be circumvented by exploiting physical
properties of the system [12].

Although the functions hi(·) are unknown, we assume that
we can collect measurements of the system (1) at arbitrary
times to learn models of hi(·), while the control law is active.

Assumption 3: At arbitrary countable time instances tm,
m ∈ N, we can collect noiseless measurements of the system
states w(m)

i := wi(tm), i = 1, . . . , n, and noisy measurements
y
(m)
i = hi(w

(m)
i ) + ε, where ε ∼ N(0, σ2

ε) and σε > 0.

1We denote by R the field of real numbers, R+ the field of real positive
numbers, and N the set of positive integers. The field of n dimensional vectors
over R is denoted by Rn. We use A = [aij ] ∈ Rm×n to denote the matrix
A with the ij-th component being aij . We denote by diag(d1, d2, · · · , dn)
the n× n diagonal matrix with d1, d2, · · · , dn on the diagonal. We use | · |
to denote the absolute value and ∥ · ∥ to denote the Euclidean norm. We use
N(µ, σ2) to denote a Gaussian distribution with mean µ and variance σ2.

The exact measurement of the system state is a common
assumption for backstepping control [14]. Essentially, the
noisy measurements y

(m)
i require noisy observations of the

time derivative of the states ẋi, since fi(·) and gi(·) are known.
In practice, ẋi can be approximated through finite differences.
One can also consider the approximation error as part of the
measurement noise [2].

Using data collected according to Assumption 3, we define,
for every κ ∈ N, the time-varying data sets consisting of the
first κ collected measurements as

Di,κ =
{
w

(m)
i , y

(m)
i

}
m=1,...,κ

, i = 1, 2, . . . , n. (2)

Note that the data sets (2) are updated at time tκ and remain
constant until time tκ+1.

In this paper, we train Gaussian process (GP) models
based on the data (2) to estimate the unknown models hi,
i = 1, 2, . . . , n. To this end, in the following we make an
assumption regarding the reproducing kernel Hilbert space
(RKHS) norm of the unknown functions hi(·), denoted by
∥hi∥ki . An RKHS is a Hilbert space induced by a positive
definite function ki : Wi ×Wi 7→ R, which is called kernel.
In rough terms, the RKHS norm of a function hi(·) measures
its smoothness with respect to ki(·, ·). In the following, we
consider the commonly used squared-exponential kernel

ki(wi,w
′
i) = σ2

hi
exp

(
− 1

2
(wi−w′

i)
⊤L−2

i (wi−w′
i)
)
, (3)

where the matrix of lengthscales Li = diag(li,1, li,2, . . . , li,i),
li,1, li,2, . . . , li,i ∈ R+, and the signal variance σ2

hi
∈ R+,

capture the rate of change and magnitude of the underlying
function, respectively. The corresponding RKHS is extremely
rich, as its elements can approximate uniformly any con-
tinuous function [15]. As such, the following assumption is
considerably less restrictive than assuming a parametric model
for hi(·).

Assumption 4: For all i = 1, 2, . . . , n, the function hi(·)
in (1) has a bounded RKHS norm with respect to a known
squared-exponential kernel ki, and a corresponding upper
bound 0 < Bhi

<∞ with ∥hi∥ki ≤ Bhi
is known.

Since the kernel ki encodes information about hi, Assump-
tion 4, together with the choice of kernel (3), implies that the
functions hi are smooth and bounded. Although typically we
are not able to compute the exact RKHS norm of the unknown
functions hi(·) a priori, in practice we can still choose Bhi

very large, or obtain an estimate for Bhi by using a guess-
and-doubling approach [16].

Our objective is to design a data-efficient event-triggered
online learning-based control scheme, such that the state x1

accurately tracks a desired trajectory xd(t) := xd. We make
the following assumption on the desired trajectory xd, which
is a standard assumption for backstepping control [13].

Assumption 5: The desired trajectory xd ∈ R and its
derivatives with respect to time are bounded.

III. GAUSSIAN PROCESSES

In this section, we briefly review Gaussian process regres-
sion and provide some preliminary theoretical results.



Formally, a GP is a collection of random variables of
which any finite subset obeys a joint normal distribution. It
is fully specified by a prior mean, which we set to zero
in the following without loss of generality, and a positive-
definite kernel ki : Wi × Wi 7→ R. Given an unknown
function hi : Wi ⊆ Ri 7→ R and a corresponding set of
noisy measurements Di,κ, we are able to compute the posterior
mean and variance of the GP at an arbitrary test point w∗

i

conditioned on the data Di,κ as

µi,κ(w
∗
i ) = k⊤

i (Ki + σ2
εIκ)

−1yi, (4a)

σ2
i,κ(w

∗
i ) = k∗i − k⊤

i (Ki + σ2
εIκ)

−1ki, (4b)

where yi = (y
(1)
i , . . . , y

(κ)
i )⊤, k∗i = ki(w

∗
i ,w

∗
i ), ki =

(ki(w
(1)
i ,w∗

i ), . . . , ki(w
(κ)
i ,w∗

i ))
⊤, and Ki = [kabi ] ∈ Rκ×κ,

kabi = ki(w
(a)
i ,w

(b)
i ).

A GP model for the unknown functions hi(·) is then given
by ĥi,κ(·) := µi,κ(·). The following result provides a bound
for the corresponding model error.

Lemma 1: Let Assumption 4 hold. Let ĥi,κ(·) denote the
learned GP models of the unknown functions hi(·) using the
data sets Di,κ. Choose δ ∈ (0, 1). Then, with probability at
least 1− δ, the following holds

|hi(wi)−ĥi,κ(wi)| ≤ βi,κσi,κ(wi), ∀ wi ∈Wi, κ ∈ N, (5)

where σi,κ(wi) is the posterior standard deviation of the
GP in (4b), βi,κ = Bhi + σε

√
2 (γi,κ + 1 + ln (nδ−1)), and

γi,κ = max
w̄

(1)
i ,...,w̄

(κ)
i ∈Wi

1
2 log |Iκ + σ−2

ε K̄i|, where K̄i =

[ki(w̄
(a)
i , w̄

(b)
i )].

A proof of Lemma 1 can be given by following the lines
of the proof in [2, Lemma 1].

Remark 1: In the case of unknown lengthscales and signal
variance for the kernel (3), a result similar to Lemma 1
holds if the lengthscales are underestimated and βi,κ is scaled
appropriately [17]. Furthermore, in practice, in the case of
a piecewise continuous function, it is reasonable to expect
that Lemma 1 holds for portions of the state space where the
function is continuous.

IV. EVENT-TRIGGERED ONLINE LEARNING-BASED
BACKSTEPPING USING GPS

In this section, we develop an efficient event-triggered
online learning scheme that collects data (2) to update the
estimated GP models and yields a backstepping control law
such that the system state x1 accurately tracks the desired tra-
jectory xd. We then discuss how to obtain a trade-off between
tracking performance and maximal data set cardinality.

A. Event-triggered online learning
In the sequel, unless stated otherwise, we omit the argu-

ments of the system dynamics as fi := fi(wi), gi := gi(wi)
and hi := hi(wi). We then introduce the virtual control signals
and control input

α1 = g1
−1

(
−k1e1 + ẋd − f1 − ĥ1,κ

)
, i = 2, . . . , n,

αi = gi
−1

(
−kiei + α̇i−1 − gi−1ei−1 − fi − ĥi,κ

)
,

(6)

u = αn, for t ∈ [tκ, tκ+1), (7)

Algorithm 1 Backstepping with event-triggered learning

1: initialize κ = 0, Di,κ = { }, ĥi,κ = 0, for i = 1, 2, . . . , n
2: while simulation time not exceeded do
3: while t < tκ+1 do
4: run controller u in (7)
5: end while
6: set κ← κ+ 1
7: measure w

(κ)
i = wi(tκ) and y

(κ)
i = hi(w

(κ)
i ) + ε

(κ)
i

8: update data sets Di,κ = Di,κ−1 ∪ {(w(κ)
i , y

(κ)
i )}

9: update GP models ĥi,κ in (6)
10: end while

where e1 = x1 − xd and ei = xi − αi−1 for i = 2, . . . , n are
the tracking errors, and ĥi,κ is the estimate of hi, learned using
GPs based on the data (2) collected up to time tκ, κ ∈ N.

By substituting the control law (7) and the virtual signals (6)
into (1), the tracking error dynamics become

ė1 = −k1e1 + g1e2 + (h1 − ĥ1,κ), i = 2, . . . , n− 1,

ėi = −kiei + giei+1 − gi−1ei−1 + (hi − ĥi,κ),

ėn = −knen − gn−1en−1 + (hn − ĥn,κ), t ∈ [tκ, tκ+1).

(8)

Denote e = (e1, e2, . . . , en)
⊤ ∈ Rn. The error dynamics (8)

can then be written in compact form as

ė = (−K +G)e+∆hκ
, t ∈ [tκ, tκ+1), (9)

where K = diag(k1, k2, . . . , kn), ∆hκ
=

(∆h1,κ ∆h2,κ . . . ∆hn,κ)
⊤ with ∆hi,κ = hi − ĥi,κ,

and

G =



0 g1 0 . . . 0
−g1 0 g2 . . . 0
0 −g2 0 . . . 0
...

...
. . .

...
...

0 0 . . . 0 gn−1

0 0 . . . −gn−1 0

 . (10)

According to Lemma 1, the variance function (4b) of a GP
bounds the maximum error with high probability. It is therefore
a suitable indicator for choosing when to add new data points.
Based on this observation, we propose the following event for
collecting a new data point and updating the GP models:

tκ+1 = inf

{
t > tκ

∣∣∣∣∥βκ∥ ∥σκ∥ ≥ min
i=1,2,...,n

ki||e||, ||e|| ̸∈ Bκ

}
,

(11)
where βκ = (β1,κ, β2,κ, . . . , βn,κ)

⊤ with βi,κ defined as in
Lemma 1, σκ = (σ1,κ, σ2,κ, . . . , σn,κ)

⊤ with σi,κ the standard
deviation posterior function using data up to time tκ, and

Bκ =

{
e ∈ Rn

∣∣∣∣ ||e|| ≤ ∥βκ∥
√
nσε

min
i=1,2,...,n

ki

}
. (12)

The reasoning behind (11) and (12) is as follows. The
inequality ∥βκ∥ ∥σκ∥ ≥ mini=1,2,...,n ki||e|| indicates that a
Lyapunov decrease condition is violated, which will become
clear later on from the proof of Theorem 2. Furthermore, noise
corrupts data to the point that a significant improvement in
predictive performance cannot be guaranteed if we collect data
within the ball (12). Hence, if the tracking error is outside the
ball (12) and ∥βκ∥ ∥σκ∥ ≥ mini=1,2,...,n ki||e|| holds, an



event is triggered, and a new data point is added to update the
GP models. Whenever the tracking error is inside the ball (12),
there is no trigger.

The steps for updating the control law (7) are given in
Algorithm 1. Using (11) as a trigger to update the GP models
ĥi,κ in the control law (7), we have the following result.

Theorem 2: Consider the system (1) and the desired trajec-
tory xd. Let Assumptions 1–5 hold. For i = 1, 2, . . . , n, let
ĥi,κ be the learned GP models of the unknown functions hi,
based on the time-varying data sets (2). Choose δ ∈ (0, 1). Let
the control gains be ki > 0 and let ĥi,κ be updated at time tκ,
where tκ is chosen according to (11). Then, with probability
at least 1− δ, the resulting control law (7) guarantees that the
tracking error is globally uniformly ultimately bounded to the
ball (12). Furthermore, the inter-event time is lower-bounded
by a positive constant.

Proof: Consider the Lyapunov function V = 1
2

∑n
i=1 e

2
i .

Since we aim to show that the error is globally ultimately
bounded to the ball (12), we only need to show that the time
derivative of V is negative outside (12). First, provided that
the error is outside (12) and no trigger takes place, the time
derivative of V with respect to time along (9) satisfies

V̇ =
1

2
(ė⊤e+ e⊤ė) < ∥e∥

(
− min

i=1,...,n
ki||e||+ ∥βκ∥ ∥σκ∥

)
< 0,

for all t ∈ (tκ, tκ+1), where we obtain the first inequality
by applying the Cauchy-Schwarz inequality to Lemma 1.
Hence, the Lyapunov function is strictly decreasing between
two consecutive events.

Next, note that the posterior variance at an arbitrary test
point decreases every time a new training data point is
added [11]. In addition, according to [1, Lemma 4], the poste-
rior variance immediately after collecting the measurement at
wi(tκ) is upper bounded by the posterior variance conditioned
only on the measurement at wi(tκ) . Using (4b), we then have

σ2
i,κ ≤ σ2

hi
−

σ4
hi

σ2
hi

+ σ2
ε
=

σ2
ε

1 + σ2
ε/σ

2
hi

< σ2
ε , (13)

where we employ k
i
(wi(tκ),wi(tκ)) = σ2

hi
. It then follows

from (13), Lemma 1 and the event (11) that ∥∆hκ
∥ <

∥βκ∥
√
nσε. Using (12), it can be shown that, immediately

after the data collection at the event time tκ, since the error
is still outside the ball (12), we have

V̇ < ∥e∥
(
− min

i=1,2,...,n
ki||e||+ ∥βκ∥

√
nσε

)
< 0.

Hence, the time derivative of V is strictly negative immediately
after each data collection. Since the event guarantees that the
time derivative of V remains negative, the tracking error e
converges to Bκ.

Next, we show that the inter-event time is lower-bounded
by a positive constant. Since for e ∈ Bκ, no event is triggered,
only the case e ̸∈ Bκ needs to be analyzed. To show that the
inter-event time is lower-bounded, we first define the Lipschitz
constant Lσκ

> 0 such that σ̇κ ≤ Lσκ
ė, which exists due to

the differentiability of σκ with respect to e. Then, following

the lines of [11], [18], we have

d

dt

∥σκ∥
∥e∥

=
d

dt

(σ⊤
κ σκ)

1
2

(e⊤e)
1
2

=
(σ⊤

κ σκ)
− 1

2 (σ⊤
κ σ̇κ)(e

⊤e)
1
2 − (e⊤e)−

1
2 (e⊤ė)(σ⊤

κ σκ)
1
2

e⊤e

≤ Lσκ
∥σκ∥ ∥−Ke+∆hκ

∥
∥σκ∥ ∥e∥

+
∥e∥ ∥σκ∥ ∥−Ke+∆hκ

∥
∥e∥3

≤ Lσκ
∥K∥+ ∥K∥ ∥σκ∥

∥e∥
+ Lσκ

∥∆hκ
∥

∥e∥
+
∥σκ∥
∥e∥

∥∆hκ
∥

∥e∥
.

Now, using (5) in Lemma 1 for i = 1, 2, . . . , n and Cauchy-
Schwarz inequality, we have

P
{
∥∆hκ∥ ≤ ∥βκ∥ ∥σκ∥ , ∀ e ∈ Rn

}
≥ 1− δ.

Subsequently, we have

P

{
d

dt

∥σκ∥
∥e∥ ≤ Lσκ ∥K∥+ ∥K∥ ∥σκ∥

∥e∥ + Lσκ ∥βκ∥
∥σκ∥
∥e∥

+ ∥βκ∥
(
∥σκ∥
∥e∥

)2

, ∀ e ∈ Rn
}

≥ 1− δ.

Denote y = ∥σκ∥
∥e∥ , with probability 1− δ, we have

ẏ ≤ ∥βκ∥ y2 + (Lσκ
∥βκ∥+ ∥K∥)y + Lσκ

∥K∥ ,

and it holds that y(t) ≤ ϕ(t, ϕ(tκ)), where ϕ(t, ϕ(tκ)) is the
solution of the differential equation

ϕ̇ = ∥βκ∥ϕ2 + (Lσκ ∥βκ∥+ ∥K∥)ϕ+ Lσκ ∥K∥ (14)

with the initial condition ϕ(tκ). Using (13), ϕ(tκ) is upper
bounded by ϕ(tκ) <

√
nσϵ

∥e∥ := ϕ0. By design, the event is

triggered at ϕ(tκ+1) =
mini=1,2,...,n ki

∥βκ∥ . Now, since e ̸∈ Bκ,
it follows from (12) that ϕ(tκ) < ϕ0 < ϕ(tκ+1). Then the
inter-event time is lower-bounded by the time it takes for ϕ
from ϕ0 to ϕ(tκ+1). According to WolframAlpha, the solution
of (14) is given by

ϕ(t) =

c2 tan

(
tan−1

(
2c1ϕ0+c3

c2

)
+ 1

2 (t− tκ)c2

)
− c3

2c1
,

where c1 = ∥βκ∥, c2 =
√

4 ∥βκ∥ ∥K∥Lσκ
− c23, and c3 =

Lσκ
∥βκ∥ + ∥K∥. The lower bound on the inter-event time

is ∆κ+1 := tκ+1 − tκ = 1
c4

ln
(

c4+c5
c4−c5

· c4−c6
c4+c6

)
> 0, where

c4 =
∣∣Lσκ

∥βκ∥− ∥K∥
∣∣, c5 = 2 ∥βκ∥ϕ0 + ∥βκ∥Lσκ

+ ∥K∥
and c6 = 2mini=1,2,...,n ki+∥βκ∥Lσκ

+∥K∥. Therefore, the
inter-event time is lower-bounded by a positive constant.

Remark 2: Note that, in (12), the tracking error bound can
be made arbitrarily small by choosing high control gains
ki > 0, albeit at the cost of potentially very high control
inputs. Note also that, given ki > 0, the radius of (12)
for event-triggered online learning is proportional to σϵ. As
a result, if σϵ is small, then the proposed online learning
scheme always guarantees a small tracking error bound. By
contrast, given ki > 0, the radius of the ultimate error bound
for offline learning is proportional to the maximal posterior
standard deviation, which is large when the state space is
not sufficiently covered by the training data [2]. This is a
major advantage of event-triggered online learning over offline
learning.

https://www.wolframalpha.com/


B. Obtaining a trade-off between data cardinality and
tracking performance

Although the results from Subsection IV-A guarantee ul-
timate boundedness of the tracking error with efficient data
collection, the number of data points required to achieve
the corresponding performance might still be prohibitive in
some settings due to the poor scalability of GPs. To address
this issue, in this section we discuss the trade-off between
the cardinality of online collected training data and the size
of the ultimate tracking error bound. To this end, we con-
sider a modified version of the event (11) that requires only
an arbitrarily small amount of online learning events and,
subsequently, a small number of training data points, while
potentially sacrificing tracking performance. More specifically,
we consider again the event (11) where the corresponding
ultimate ball is now given by

B′
κ =

{
e ∈ Rn

∣∣∣∣ ||e|| ≤ η
∥βκ∥

√
nσε

min
i=1,2,...,n

ki

}
, (15)

where η ≥ 1 is a design parameter that provides a trade-off
between tracking accuracy and amount of required data. Note
that the ball (15) is potentially larger than (12), due to the
design parameter η. The associated algorithm for updating the
control law (7) is given in Algorithm 1.

Theorem 3: Consider the system (1) and the desired trajec-
tory xd. Let Assumptions 1–5 hold. For i = 1, 2, . . . , n, let
ĥi,κ be the GP models of the unknown functions hi, based
on the time-varying data sets (2). Choose δ ∈ (0, 1). Let the
control gains be ki > 0 and let ĥi,κ be updated at time tκ,
where tκ is chosen according to (11). Then, with probability
at least 1− δ, the resulting control law (7) guarantees that the
tracking error is globally uniformly ultimately bounded to the
ball (15) and that the inter-event time is lower-bounded by a
positive constant. Moreover, for every T ∈ N, there exists an
η ≥ 1, such that Algorithm 1 stops collecting data after T
events and the tracking error is globally ultimately bounded
to the ball (15) with κ = T and η as a scaling factor.

Proof: It follows directly from Theorem 2 that, with
probability at least 1 − δ, the resulting control law (7) guar-
antees that the tracking error is globally uniformly ultimately
bounded to the ball (15), and the inter-event time is lower-
bounded by a positive constant.

Next, we show that, for every T ∈ N, there exists an η ≥ 1,
such that Algorithm 1 stops collecting data after T events. We
prove this by contradiction. Assume that the contrary is true,
i.e., the number of events T goes to infinity for all η ≥ 1.
It then follows from the proofs of [16, Lemma 5.4] and [16,
Theorem 5] that, for T ≥ 1, there exists a positive constant
C > 0, such that

∑T
κ=1 ∥σT ∥2 ≤ C(log(T ))n+1 holds.

Hence, since the event is only triggered when the inequality
in (11) holds with equality and ||e|| /∈ Bκ, and the number of
events T goes to infinity, we have that, for any fixed T ≥ 1
and the corresponding constant C > 0,

TABLE I
LOWER DECILE/MEDIAN/UPPER DECILE OF L2 ERROR OF ROBOTIC

MANIPULATOR SIMULATION USING OUR APPROACH AND THE OFFLINE

LEARNING-BASED APPROACH FROM [2].

Lower decile Median Upper decile
Our approach 13.0 71.2 167.3
Offline learning [2] 86.8 155.8 370.1

TABLE II
AMOUNT OF COLLECTED DATA THROUGH EVENT-TRIGGERED LEARNING

AT THE END OF SIMULATION.

Lower decile Median Upper decile
Collected data 250 296 347

∥βT ∥C(log(T ))n+1 ≥
T∑

κ=1

∥βκ∥ ∥σκ∥ =

T∑
κ=1

(
min

i=1,...,n
ki||e(tκ)||

)2

≥
T∑

κ=1

(
min

i=1,...,n
kiη

∥βκ∥
√
nσε

mini=1,...,n ki

)2

≥ nTη2σ2
ε ∥β1∥2 .

However, this does not hold for all η ≥ 1, which is a
contradiction.

Here, the role of η ≥ 1 is primarily to limit the amount of
collected data, as opposed to improving control performance.
As a result, we are able to limit the total number of collected
data points by increasing the radius of the ball B′

κ. This is
intuitive, since it implies that the size of the region where
data has to be collected decreases, reducing the amount of
information needed for model-learning.

Remark 3: Although specific formulas for choosing η as a
function of T can be obtained, here we refrain from computing
them, as they will typically be very conservative. In the
simulation section, we present convincing evidence that a good
trade-off between performance and data set size T is already
obtained for small η.

V. SIMULATION EXAMPLE

We now use a simulation example to illustrate
our approach and compare it to the state-of-the art
offline learning-based backstepping approach from [2].
The code for the simulation can be obtained from
https://github.com/aCapone1/event trig backstepping. The
simulated environment consists of a one-link planar
manipulator with motor dynamics, as presented in [12].
The known and unknown components of the dynamics are
the same as in [2], and the desired trajectory xd consists of
a sinusoidal signal. The GP hyperparameters were chosen
by taking prior knowledge of the system into account. In
practice, the values for βκ in Lemma 1 can be conservative.
Hence, we follow [16] by choosing ∥βκ∥ = 2, aiming also
to show that a non-conservative estimate for βκ is not of
disadvantage in practice. When employing our approach, the
GPs used for the control law start off with N = 0 data points
and collect data according to the proposed event trigger (11)
using (15) and η = 1. The offline learning-based approach
employs N = 400 data points that were collected using a
backstepping control law without training data. We run the

https://github.com/aCapone1/event_trig_backstepping
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Fig. 1. Tracking error with our approach, in blue, and control law from
[2], in red. Our control law collects a total of 319 data points within the
first 3.5 seconds, which are informative enough to obtain an ultimate
error bound of less than 1, whereas the approach in [2] yields a very
high error due to the lack of informative data.
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Fig. 2. GP variance divided by tracking error and event times. Events
during which online learning takes place (blue circles). In total, 319 data
points were gathered, all within the first four seconds of the simulation.

simulation 100 times using initial conditions drawn from a
Gaussian distribution with mean zero and standard deviation
of 10.

The median, lower and upper deciles of the L2-norm of
the tracking errors can be seen in Table I. For the number
of training data required by our approach, the median, lower
and upper deciles are listed in Table II. In more than 90%
of the cases our approach required less data than the offline
learning-based approach while yielding better performance,
as seen in Table I. The plots of the tracking errors with
the offline learning-based method from [2] and with event-
triggered learning for a sample simulation can be seen in Fig.
1. The corresponding events in the event-triggered case are
depicted in Fig. 2. As can be seen, our approach leads to
a drastic improvement in control performance compared to
the method from [2] while simultaneously requiring less data.
This is because the data collected online using our approach
always contributes to a significant reduction of the maximum
model error, which in turn reduces the time-derivative of
the Lyapunov function and improves control performance. By
contrast, the data used to train the GPs for the offline learning-
based approach was collected using a pre-defined control law,
which does not guarantee that the collected data is useful for
control.

In Fig. 2, it can be seen that model uncertainty in the
event-triggered case is highest during the first 3 seconds of
the simulation, which sets off the event trigger multiple times,
leading to online model updates. Afterwards model uncertainty
is fairly low and no additional learning takes place. This is to
be expected due to Theorem 3. In total, 319 data points were
collected during the simulation, i.e., our approach yields better
performance than [2] while requiring less data.

VI. CONCLUSION

In this paper, we have studied the backstepping tracking
control problem with event-triggered online learning for a class
of partially unknown nonlinear systems. The unknown system
models are learned using GPs based on data that is collected
online, while the proposed control law is active. The estimated
GP models and the control law are updated in an event-
triggered fashion, where the event is triggered by a condition
depending on the model uncertainty. We have shown that the
proposed event-triggered learning scheme guarantees that the
tracking error is globally uniformly ultimately bounded and
the inter-event time is lower-bounded by a positive constant.
In addition, we have discussed the trade-off between the car-
dinality of online collected data and the tracking performance.
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