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Abstract— This paper addresses a data-driven input recon-
struction problem based on Willems’ Fundamental Lemma
in which unknown input estimators (UIEs) are constructed
directly from historical I/O data. Given only output measure-
ments, the inputs are estimated by the UIE, which is shown
to asymptotically converge to the true input without knowing
the initial conditions. Both open-loop and closed-loop UIEs are
developed based on Lyapunov conditions and the Luenberger-
observer-type feedback, whose convergence properties are stud-
ied. An experimental study is presented demonstrating the
efficacy of the closed-loop UIE for estimating the occupancy of
a building on the EPFL campus via measured carbon dioxide
levels.

I. INTRODUCTION
Input reconstruction estimates unknown inputs based on

the measured states/outputs, which finds broad applications
in system supervision, sensor fault detection, and robust
control [1], [2], [3]. This problem is of particular interest
when the real-time/online measurement of inputs is not af-
fordable or privacy-sensitive. For example, as a critical factor
to indoor temperature behaviors, the number of occupants
can not be measured directly by cameras or Wi-Fi due
to the costs and privacy. Instead, an indirect estimation is
commonly deployed based on the response of indoor CO2
level [4]. The cutting force of the machine tools is another
important example, whose measurement is only feasible with
a dedicated laboratory setup [5].

The input reconstruction problem has been studied in a
model-based setup, and various methods have been proposed
based on unknown input observer (UIO) [6], [7], optimal
filters [8], generalized inverse approach [9] and sliding mode
observers [5]. UIO is of special interest in our study, and
most methods fall into two categories in the model-based
setup. In one way, system states are measured or estimated,
and are further used to reconstruct the unknown input by
matrix inversion [6], matrix pencil decomposition [1]. In the
other category of methods, states and unknown inputs are
estimated concurrently, whose estimate can achieve finite
step convergence [9].

In practice, the model of the targeted system is usually
not available. Instead of running a system identification, the
Willems’ fundamental lemma offers a direct characteriza-
tion of the system responses with an informative historical
dataset [10]. This characterization provides a convenient
interface to data-driven methods, and has been deployed in
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output prediction [11] and in controller design [12], [13],
[14], [15], [16], [17].

This work applies the Willems’ fundamental lemma to
enable the direct input reconstruction with historical data.
A similar setup was studied in [18], where the system states
are assumed to be measured. This work gets rid of the state
measurement and achieves unknown input reconstruction
directly from output measurements. In order to stress this
difference, the approach developed in this work is termed the
unknown input estimator (UIE), instead of the unknown input
observer (UIO). This work proposes two design schemes of
data-driven UIE, whose stability is studied.

In the following, Section II reviews the output prediction
based on the Willems’ Fundamental Lemma, alongside the
statement of the UIE problem. The design of a stable data-
driven open-loop UIE is proposed in Section III, followed by
its closed-loop counterpart in Section IV. The proposed UIEs
are validated in Section V by simulations and an occupancy
estimation experiment in a real-world building, followed by
a conclusion in Section VI.
Notations: In ∈ Rn×n denotes an identity matrix. Re-
garding a matrix M , its numbers of columns and rows
are respectively denoted by nM and mM such that M ∈
RnM×mM . Accordingly, Null(M) denotes its null space.
Mg := {X|MXM = M} is the set of generalized inverse of
matrix M . A strictly positive definite matrix M is denoted
by M � 0. The dimension of a vector s denoted by ns.
Given an ordered sequence of vector {st, st+1, . . . , st+L},
its vectorization is denoted by st:t+L = [s>t , . . . , s

>
t+L]> .

II. PRELIMINARIES

A discrete-time linear time-invariant (LTI) system, dubbed
B(A,B,C,D), is defined by

xt+1 = Axt +But , yt = Cxt +Dut , (1)

whose states, inputs and outputs are denoted by x ∈ Rnx ,
u ∈ Rnu and y ∈ Rny respectively. The order of the
system is defined as n(B(A,B,C,D)) := nx. The lag
of the system l(B(A,B,C,D)) is defined as the small-
est integer ` with which its observability matrix O` :=[
C>, (CA)

>
, . . . ,

(
CA`−1

)>]>
has rank nx. An L-step

I/O trajectory generated by this system concatenates I/O
sequence by [u1:L; y1:L], and the set of all possible L-
step trajectories generated by B(A,B,C,D) is denoted by
BL(A,B,C,D).

Definition 1: A Hankel matrix of depth L constructed by
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a vector-valued signal sequence s := {si}Ti=1, si ∈ Rns is

HL(s) :=


s1 s2 . . . sT−L+1

s2 s3 . . . sT−L+2

...
...

...
sL sL+1 . . . sT

 .

Given a sequence of input-output measurements
{ud,i, yd,i}Ti=1, the input sequence is called persistently
exciting of order L if HL(ud) is full row rank. By building
the following nc-column stacked Hankel matrix

HL(ud, yd) :=

[
HL(ud)
HL(yd)

]
,

we state Willems’ Fundamental Lemma as
Lemma 1: [10, Theorem 1] Consider a controllable linear

system B(A,B,C,D) and assume {ud}Ti=1 is persistently
exciting of order L + n(B(A,B,C,D)). The condition
colspan(HL(ud, yd)) = BL(A,B,C,D) holds.

In the rest of the paper, the subscript d marks a data point
from the training dataset collected offline, and L is reserved
for the length of the system response.

The characterization of system response by Lemma 1 is
used to develop data-driven output prediction [11], [12].
In [11], the Npred-step output prediction ȳt+1:t+Npred

driven
by an Npred-step predicted output ut+1:t+Npred

is given by
the solution to the following equations at time t:HL,init(ud)

HL,init(yd)
HL,pred(ud)

 g =

ut−Ninit+1:t

yt−Ninit+1:t

ut+1:t+Npred

 (2a)

HL,pred(yd) =: ȳt+1:t+Npred
. (2b)

Two sub-Hankel matrices of output are defined by

HL(yd) =

[
HL,init(yd)
HL,pred(yd)

]
, (3)

and each of them of depth Ninit and Npred respectively,
such that Ninit + Npred = L. Similarly, the Hankel matri-
ces HL,init(ud) and HL,pred(ud) are constructed. Last but
not least, the solution to (2) is well-defined if Ninit ≥
l(B(A,B,C,D)). Specifically, this condition implies that
[ut−Ninit+1:t, yt−Ninit+1:t] the Ninit-step input output se-
quences preceding the current point of time can uniquely
determine the underlying state xt. Readers are referred
to [11] for more details.

A. Problem Statement and Inspiration
zt, yt−Ninit+1:t yt+1:t+Nest

ût+1
zt+1

Fig. 1: Diagram of input estimation at time t+1. Input estimate ût+1 can be estimated
after yt+Nest is measured at time t+Nest. Differently, output prediction ȳt+1 is
computed immediately by (2), if given ut+1.

Recall the LTI dynamics (1), we assume that we have an
offline I/O dataset {ud, yd}. During the online operation, the
inputs are not measurable and thus unknown, and this work
studies the recursive estimate of the unknown inputs from
the measured outputs. In particular, the recursive estimate

is generated by an unknown input estimator (UIE), whose
structure is given by

zt+1 = AUIEzt +BUIEdt ,

ût = [0 Inu ]zt ,
(4)

where zt := [û>t−Ninit+1, . . . , û
>
t ]> is vectorized Ninit-

step unknown input estimate, and dt := yt−Ninit+1:t+Nest

is the sequence of output measurements, as depicted in
Figure 1. We leave the discussion about Nest in Section III.
Furthermore, a UIE is stable if lim

t→∞
ût − ut → 0 for any

initial guess z0. Note that zt is the sequence of Ninit-
step unknown input estimate, it is reasonable to design an
observable canonical form based UIE, such that the recursive
estimator only update the lastest unknown input in zt (i.e.
ût), and we term a UIE of this form an open-loop UIE (op-
UIE). Otherwise, it is called a closed-loop UIE (cl-UIE).

The goal of this work is to design the UIE components
(i.e. AUIE and BUIE) directly from data {ud, yd}. Inspired
by the data-driven output prediction (2), it is reasonable to
formulate a similar data-driven input estimation scheme:HL,init(ud)

HL,init(yd)
HL,est(yd)

 g =

ut−Ninit+1:t

yt−Ninit+1:t

yt+1:t+Nest

 (5a)

HL,est(1)(ud)g =: ūt+1 , (5b)

where sub-Hankel matrices HL,init(ud), HL,init(yd),
HL,est(yd), HL,est(ud) follow a similar splitting definition
in (3) such that Nini +Nest = L, and HL,est(1)(ud) denotes
the first nu rows of HL,est(ud). However, this scheme (5)
is numerically not implementable, as input measurements
in (5a) are not available. The key idea of this work is to fit
this scheme (5) into the general UIE structure (4).

Remark 1: In the rest of the paper, ūt+1 indicates the
input estimate by (5) given the actual previous input sequence
ut−Ninit+1:t. ût+1 denotes the input estimate by (4) and
zt+1.

III. DATA-DRIVEN OP-UIE

The key idea of this section is to substitute the
ut−Ninit+1:t in (5a) by its recursive input estimate
ût−Ninit+1:t =: zt in the UIE (4). For the sake of clarity,
the notations in (5) are simplified by

H :=

HL,init(ud)

HL,init(yd)

HL,est(ud)

 , b :=

ut−Ninit+1:t

yt−Ninit+1:t

yt+1:t+Nest

 , Hu := HL,est(1)(ud)

Assumption 1: The historical input signals {ud}Ti=1

are persistently exciting of order Ninit + Nest +
n(B(A,B,C,D)).

Under this assumption, the Hankel matrices H constructed
by {ud, yd} is informative enough, such that Lemma 1
guarantees that b ∈ colspan(H). Therefore, the solution set
to Hg = b is non-empty, which can be characterize by

T (b) := {g|g = Gb+ ν, G ∈ Hg, ν ∈ Null(H)} . (6)



Accordingly, ût+1 in (5b) is given by

ūt+1 = {Hug|g ∈ T (b)} . (7)

However, the solution set (6) is not a singleton and therefore
ût+1 is not necessarily unique. To ensure uniqueness, we
give the following lemma

Lemma 2: Let Assumption 1 holds, the set (7) is a sin-
gleton if and only if

Null(H) ⊆ Null(Hu) . (8)
Proof: (⇒) For any solutions g1, g2 ∈ T (b) to Hg =

b, we have Hg1 −Hg2 = H(g1 − g2) = 0, which indicates
(g1 − g2) ∈ Null(H) Therefore, by Null(H) ⊆ Null(Hu),
Hug1 − Hug2 = 0. Due the arbitrariness of g1 and g2, ut
defined in (7) is a singleton. (⇐) For any G ∈ Hg , ν ∈
Null(H), Hu(Gb + ν) − HuGb = 0 because ût by (7) is
a singleton. This indicates Huν = 0,∀ν ∈ Null(H) and
therefore Null(H) ⊆ Null(Hu).

If the condition (8) holds, the effect of null space
Null(H) in T (b) can be neglected. Next, by substituting the
ut−Ninit+1:t in (7) by zt, we have:

ût+1 = HuG[z>t d
>
t ]> (9)

, and we state the set of data-driven op-UIE candidates by

Uop :=


AUIE

BUIE

∣∣∣∣∣∣∣∣∣∣
AUIE =

[
0 I

HuGu

]

BUIE =

[
0

HuGy

] , ∀ [Gu, Gy ] = G ∈ Hg

 (10)

where Gu and Gy partitions any generalized inverse G,
and respectively consists of Ninitnu and (Ninit + Nest)ny
columns. Note that an element in set Uop (10) is not nec-
essarily stable, therefore, choosing a G ∈ Hg such that the
resulting data-driven op-UIE is stable is the key ingredient
in a data-driven op-UIE design procedure, which will be
discussed in the next subsection III-A.

Remark 2: The choices of Nest for output measurement
depends on the properties of matrices {B,C,D} in the
dynamics (1), which intuitively reflects how soon all the
entries of inputs can affect the output. For example, if D
is full column rank, the effect from the input to output is
instantaneous and thus Nest can set to 1. A model-based
discussion about Nest can be found in [6] and [19]. The
condition (8) in Lemma 2 gives a data-driven criterion of
Nest selection, which intuitively states that the variation in
input will always change the output, as any g /∈ Null(Hu)
is not in Null(H), and therefore reflected as variation in the
output measurements.

A. Design of data-driven op-UIE

To find the stable UIE within set Uop, we first characterize
its stability by the following lemma

Lemma 3: Let Assumption 1 and condition (8) holds, a
UIE in Uop is stable if and only if AUIE is Schur.

Proof: Under Assumption 1 and condition (8) holds,
Lemma 1 and 2 guarantee that ūt+1 = ut+1 in (7). Therefore

∀ AUIE , BUIE ∈ Uop, (7) is equivalent to

ut−Ninit+2:t+1 = AUIEut−Ninit+1:t +BUIEdt ,

ut = [0 Inu ]ut−Ninit+1:t .

Thus, we have

lim
t→∞

ût − ut = lim
t→∞

[0 Inu ]AUIE(zt−1 − ut−Ninit:t−1)

= lim
t→∞

[0 Inu
]AtUIE(z0 − u−Ninit+1:0).

The above equation converges to 0 if and only if AUIE is
Schur stable, and we conclude the proof.

The Schur stability criterion can be validated via a
semidefinite programming [20, Chapter 3.3] as

AUIE
SCHUR STABLE ⇐⇒


∃W � 0[

W AUIEW

WA′UIE W

]
� 0

(11)

hence, the design of a data-driven op-UIE is reduced to a
feasibility problem:

minimize
W�0,AUIE ,BUIE

0

subject to

AUIE , BUIE ∈ Uop (12a)[
W AUIEW

WA>UIE W

]
� 0 . (12b)

This optimization problem is NP-hard due to the bilinear
matrix (BMI) inequality (12b) [21]. In the rest of this section,
we will tighten this BMI into a tractable linear matrix
inequality (LMI) [22] and characterize the set of generalized
inverse Hg in Uop via singular value decomposition (SVD).

1) Characterization of Generalized Inverse: Denote the

SVD of matrix H by H = U

[
S 0
0 0

]
V >, with S ∈

RnS×nS containing all the positive singular values. Then the
generalized inverse is characterized by

Hg =

G
∣∣∣∣∣∣∣∣
V

([
S−1 0

0 0

]
+ F

)
U>

F ∈ RmH×nH , [InS
0]F

[
InS

0

]
= 0

 , (13)

where F is a any matrix of shape H whose upper-left
block of size nS × nS is zeros. For the sake of clarity, we
characterize an element in Hg by G(F ) such that

G(F ) := V

([
S−1 0

0 0

]
+ F

)
U>

Additionally, the set (13) is indeed the set of generalized
inverse as

HG(F )H = U

[
S 0
0 0

]([
S−1 0

0 0

]
+ F

)[
S 0
0 0

]
V >

= U

[
S 0
0 0

]
V > = H



2) LMI Tightening: Before going into details, we would
first intuitively explain the idea behind the design procedure.
Recall the idea behind Lemma 2, we can see that the design
of the AUIE lie in the selection of the null space of the
matrix H such that the set (7) is still unique, and the matrix
AUIE is Schur stable. Hence, we only need to focus on
the null space of H , which motivates the following LMI
reformulation. Based on the characterization of Hg in (13),
any AUIE in our feasible set Uop is accordingly parametrized
by matrix F such that

AUIE(F ) =

 0 I(Ninit−1)nu

HuV (

[
S−1 0

0 0

]
+ F )U>

[
INinitnu

0

]
= N1 +N2FN3,

N2 : =

[
0

Inu

]
HuV, N3 = U>

[
INinitnu

0

]

N1 : =

[
0 I(Ninit−1)nu

0

]
+N2

[
S−1 0

0 0

]
N3 ,

(14)

To enable the LMI reformulation, we define

T1 = [0 InH−ns ] ∈ R(nH−ns)×nH , (15)

and we denote r = rank(T1N3). Regarding the definition
of generalized inverse and (14), the operation T1N3 select
the components in U related to Null(H). Followed by this,
we define T2 = [Ir 0]E ∈ Rr×(nH−ns), where E is the
multiplication of elementary operations to execute Gauss-
Jordan Elimination for T1N3. In summary, the operation
T2T1N3 generates the subspace of U related to the Null(H),
and based on the aforementioned discussion, the design of
AUIE lies within this space, which leads to the following
LMI tightening.

Lemma 4: The BMI constraint (12b) is satisfied if ∃ N ∈
RmH×r,M ∈ Rr×r and W ∈ RNinitnu×Ninitnu � 0 such
that F = NM−1T2T1 and

 W
N1W+

N2NT2T1N3

WN ′1+
(N2NT2T1N3)′

W

 � 0 (16a)

T2T1N3W = MT2T1N3 (16b)
Proof: The first nS column of F are zeros, because

F = NM−1T2T1 and T1 = [0 InH−nS
]. Hence, F

satisfies (13) and gives a generalized inverse G(F ).
The idea of the rest proof comes from [22, Theorem 1].

By definition of T2, matrix T2T1N3 is full row rank. The
left-hand-sied of condition (16b) is therefore full rank as
W � 0, which further ensures that M is also full rank.
Therefore, M−1 exists and T2T1N3 = M−1T2T1N3W .
Then we get (12a) from (16a) by

N1W +N2NT2T1N3 = N1W +N2NM
−1T2T1N3W

(a)
= N1W +N2FN3W = AUIE(F )W ,

where (a) follows F = NM−1T2T1, and we summarize the
proof.

Finally, we summarize the design of data-driven op-UIE
into the following LMI feasibility problem:

minimize
W�0,M,N

0

subject to[
W AUIEW

WA′UIE W

]
� 0, T2T1N3W = MT2T1N3[

W (WN1 +N2NT2T1N3)
(WN1 +N2NT2T1N3)> W

]
� 0

The AUIE , BUIE ∈ Uop is reconstructed by setting G ∈ Hg

to G(F ) with F = NM−1T2T1.

IV. DATA-DRIVEN CL-UIE

Recall that an op-UIE only updates the most recent
unknown input in zt+1, i.e. ût+1. Similar to the concept
used in Luenberger observer [23], the key idea behind a
data-driven cl-UIE is to enable the correction update of the
ût−Ninit+2:t+1 estimate, i.e. zt+1, by the error between the
actual measurement of yt+1 and its data-driven predictive
estimate ŷt+1.

Recall the data-driven prediction problem in Section II,
we define following matrices for the sake of clarity,

Ĥ :=

 HL,init(ud)
HL,est(1)(ud)
HL,init(yd)

 , Hy := HL,est(1)(yd)

b̂ :=

ût−Ninit+1:t

ût+1

yt−Ninit+1:t

 (a)
=

 zt
Hu(Guzt +Gydt)

[Iny×Ninit
0]dt


=

 I 0
HuGu HuGy

0 [Iny×Ninit 0]


︸ ︷︷ ︸

P (G)

[
zt
dt

]
, ∀ [Gu Gy] = G ∈ Hg

where (a) follows (9) and P (G) is introduced for the sake of
compactness. Then, similar to (9), the corresponding output
prediction ŷt+1 is defined by

∀ Ĝ ∈ Ĥg, ŷt+1 :=HyĜb̂

=HyĜP (G)

[
zt
dt

] (19)

Under the Assumption 1 and condition (8), the Fundamental
Lemma 1 and Lemma 2 guarantees this equality holds for
the actual output yt+1 with respect to the actual but unknown
previous inputs sequence ut−Ninit+1:t

∀ Ĝ ∈ Ĥg, yt+1 = HyĜP (G)

[
ut−Ninit+1:t

dt

]
(20)

Following a Luenberger observer style design, the observer
will have the following structure with ÂUIE , B̂UIE ∈ Uop:

zt+1 = ÂUIEzt + B̂UIEdt + L(yt+1 − ŷt+1) ,



where ŷt+1 is given in (19) and yt+1 is always an entry of
dt as Nest ≥ 1 with

yt+1 =

Ty︷ ︸︸ ︷
[ 0︸︷︷︸

(a)

Iny 0︸︷︷︸
(b)

] dt ,

where term (a) is of Ninitny columns and term (b) is of
(Nest − 1)ny columns, and this linear mapping is denoted
by Ty . Hence, ∀ ÂUIE , B̂UIE ∈ Uop, Ĝ ∈ Ĥg, G ∈ Hg ,
the components of an data-driven cl-UIE can be written as:

AUIE = ÂUIE − LHyĜP (G)

[
Iny×Ninit

0

]
(21a)

BUIE = B̂UIE + Ty − LHyĜP (G)

[
0

Iny×(Ninit+Nest)

]
(21b)

The following Theorem summarizes the stability of a data-
driven cl-UIE.

Theorem 1 (Stability of cl-UIE ): Let Assumption 1 and
condition (2) holds, for any ÂUIE , B̂UIE ∈ Uop, Ĝ ∈
Ĥg, G ∈ Hg , the data-driven cl-UIE in (21) is stable if

ÂUIE − LHyĜP (G)

[
Iny×Ninit

0

]
is Schur stable.

Proof: Similar to the proof of Lemma (3), the actual
unknown input sequence satisfies the dynamics

ut−Ninit+2:t+1 = ÂUIEut−Ninit+1:t + B̂UIEdt ,

ut = [0 Inu ]ut−Ninit+1:t ,

Therefore, we have

lim
t→∞

ût − ut

(a)
= lim

t→∞
[0 Inu ]AUIE(zt−1 − ut−Ninit:t−1)

= lim
t→∞

[0 Inu ]A
t
UIE(z0 − u−Ninit+1:0) ,

where (a) follows the equations (20) and (21). The above
equation converges to 0 if and only if AUIE is Schur stable,
and we conclude the proof.

Remark 3: The design methods by Lyapunov condi-
tion (12), LMI formulation (16) and cl-UIE in Theorem (21)
do not guarantee the existence of a data-driven UIE for any
system. The existence problem of a UIE has been explored
in a model-based setup, which shows that the existence
is related to the system dynamic B(A,B,C,D) [1], [6].
However, the existence problem within a data-driven setup
is still unclear and remains for future work.

Remark 4: In comparison with the data-driven op-UIE,
we observed that the data-driven cl-UIE is more resistant
to the measurement noise within the data, because it does
not require any construction of the null space, which may
be sensitive to the measurement noise [24].

In conclusion, the design process and operation of op-UIE
and cl-UIE are summarized in Algorithm 1.

Algorithm 1 Design a data-driven UIE
Given historical signals {ud,i, yd,i}Ti=1.

1) Choose a large Ninit, try Nest = 1, 2, ...,maxNest

until the condition (8) holds.
2) Build the UIE in the form (4) by either:

a) op-UIE: Compute G by either (12) or (16). Com-
pute the components in (10).

b) cl-UIE: Choose any G ∈ Hg, Ĝ ∈ Ĥg . Design
L such that the stability condition in Theorem 1
holds. Compute the components in (21).

3) From t = 0, choose arbitrary z0 and repeatedly
compute (4) to output ût.

V. SIMULATION AND EXPERIMENTAL VALIDATION

A. Simulation

We consider the following unstable LTI dynamics:

[
A B

C D

]
=


0.9 1.4 0.2

0.5 1.5 1.5

1.6 0.6 0.4

 0.5 1.0

0.9 0.3

0.4 0.3


[
1.5 1.0 1.4

0.6 0.3 0.3

]
γ

[
2.0 0.8

1.4 1.4

]


Recall remark 2, different γ results Nest, and we consider
γ = 1 with Nest = 1 and γ = 0 with Nest = 2. We
set Ninit = 5, and the historical I/O data are generated by
a 50-step trajectory excited by random inputs. Setting the
initial guess to z0 = [0 0 . . . 0 0]>, the results of ût(i) by
op-UIE are plotted in Figure 2(a) and the estimation error
dut(i) = ut(i)− ût(i) is given in Figure 2(b) and (c), where
both proposed design schemes show fast convergence in the
estimate even though the underlying dynamics is unstable.

B. Experiment

This experiment is carried out on a whole building,
named Polydome, on the EPFL campus, and we estimate
the number of occupants by the indoor CO2 level measure-
ment. Although the building dynamics is nonlinear due to
the ventilation system, it has a good linear approximation
when the ventilation flow rate is constant [25]. Under the
assumption that the CO2 generation rate per person doing
office work is relatively constant, the proposed schemes in
this work are feasible. The offline dataset contains indoor
temperature, weather condition, heat pump power, CO2 level,
and occupant number recorded by manual headcount (i.e.,
online measurement is not affordable). The indoor CO2 level
is measured as the averaged value from four air quality
sensors, whose installation locations are shown in Figure 3.
Data from five weekdays are used to build the Hankel
matrix, and the proposed data-driven cl-UIE1 is compared
with linear regression (LR) and Gaussian process regression
(GR). Note that the building is empty outside the office hour,
i.e., between 7 : 00 PM and 7 : 00 AM, we enforce ût = 0

1The op-UIE does not give good performance in this experiment due to
the measurement noise within the data and the nonlinearity of the underlying
dynamics.
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Fig. 2: Simulation: input estimation by op-UIE and cl-UIE. (a): op-UIE, γ = 1, input ut(1). (b): two UIEs: γ = 1. (c): two UIEs: γ = 0.

within this time interval to improve the estimate. The results
are plotted in Figure 4, from which one can see that the
proposed cl-UIE scheme is better than LR and slightly worse
than GR in terms of mean absolute error (MAE). However,
the UIE better tracks the occupancy trajectory while GR
shows significant fluctuations in its estimates.

Fig. 3: Position of Air quality sensors in the Polydome
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Fig. 4: Comparison of occupant number estimation by the data-driven UIE, LR and
GPR. Mean absolute error (MAE) is computed for the data during the work time.

VI. CONCLUSIONS

This work proposes two data-driven UIE design schemes
based on the Lyapunov condition and the Luenberger-
observer-type feedback. The stability of the proposed
schemes is discussed, and their efficacy is validated by
numerical simulations and a real-world experiment of oc-
cupancy estimation.
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