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Inner and Outer Approximations of Star-Convex Semialgebraic Sets

James Guthrie

Abstract— We consider the problem of approximating a semi-
algebraic set with a sublevel-set of a polynomial function. In this
setting, it is standard to seek a minimum volume outer approxi-
mation and/or maximum volume inner approximation. As there
is no known relationship between the coefficients of an arbitrary
polynomial and the volume of its sublevel sets, previous works
have proposed heuristics based on the determinant and trace
objectives commonly used in ellipsoidal fitting. For the case
of star-convex semialgebraic sets, we propose a novel objective
which yields both an outer and an inner approximation while
minimizing the ratio of their respective volumes. This objective
is scale-invariant and easily interpreted. Numerical examples
demonstrate that the approximations obtained are often tighter
than those returned by existing heuristics. We also provide
methods for establishing the star-convexity of a semialgebraic
set by finding inner and outer approximations of its kernel.

I. INTRODUCTION

Consider a compact, semialgebraic set X ⊂ R
n given

by the intersection of the 1-sublevel sets of m polynomial

functions gi(x) ∈ R[x]:

X = {x | gi(x) ≤ 1, i ∈ [m]}. (1)

Semialgebraic sets arise naturally in many control appli-

cations. The set of coefficients for which a polynomial is

Schur or Hurwitz stable is given by a semialgebraic set. For

Hurwitz stability, the polynomial inequalities can be derived

from the Routh array. These sets are often complicated and

cumbersome to analyze. As such, it is common to seek sim-

pler representations which closely approximate the set but are

more amenable to further analysis [1]. Examples of “simple”

representations include hyperrectangles and ellipsoids.

A number of publications have explored the use of sum-

of-squares (SOS) optimization for approximating a semial-

gebraic set with a simpler representation [1]–[8]. The most

common parameterization is to seek a SOS polynomial

whose 1-sublevel set F = {x | f(x) ≤ 1} provides either

an inner (F ⊆ X ) or outer (F ⊇ X ) approximation of

the set X . In this formulation, an open question is the

choice of the objective function. For outer (resp. inner)

approximations, a natural objective is to minimize (resp.

maximize) the volume of the 1-sublevel set. For an ellipsoid

E = {x |xTAx + bTx + c ≤ 1} where A � 0, the

volume is proportional to detA−1. Using the logarithmic

transform, ellipsoidal volume minimization can be posed as

the convex objective −logdetA [2]. More generally, in the

case of homogeneous polynomials it is possible to find the

minimum volume outer approximation by solving a hierarchy

of semidefinite programs [9].
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Fig. 1. The kernel is the convex set of points p ∈ X such that the line
segment pq ⊆ X for any q ∈ X (left). It is given by the intersection of all
linearized active constraints gi(xb) = 1 defining ∂X (right).

Ellipsoids and homogeneous polynomials are not ideal

candidates for approximating asymmetric shapes due to their

inherent symmetry. General polynomials offer a more flexi-

ble basis for approximating sets. The caveat is that we lack

expressions for computing the volume of the 1-sublevel set as

a function of the polynomial coefficients. The most common

approach is to mimic the determinant ([2], [4]) or trace [1]

objectives used in ellipsoidal fitting. These objectives often

yield qualitatively good approximations. However, they have

no explicit relationship to the volume beyond upper bounding

it in some cases [1]. Thus it is difficult to infer the quality

of an approximation from the objective value attained.

A. Contributions

This paper makes the following contributions:

• We propose and justify an algorithm based on SOS

optimization for jointly finding an inner and outer

approximation of a semialgebraic set. The algorithm

minimizes the volume of the outer approximation rel-

ative to the volume of the inner approximation. This

objective is easily interpreted and scale-invariant.

• We provide numerical examples showing that our algo-

rithm tends to yield better approximations than existing

methods when applied to star-convex sets.

• We provide algorithms for finding inner and outer

approximations of the kernel of a star-convex set as

shown in Figure 1.

The paper is organized as follows. Section II defines

the problem we address and reviews the notion of star-

convexity. Section III surveys existing volume heuristics for

SOS-based set approximation. Section IV proposes a new

volume heuristic for finding outer and inner approximations.

Section V provides methods for approximating the kernel of

a star-convex set. Section VI provides numerical examples.

Section VII concludes the paper.
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B. Notation

Let i ∈ [k] := {1, . . . , k}. Let Z+ denote the set of posi-

tive integers. Let Sn−1 := {x ∈ R
n | ‖x‖ = 1}. The notation

P � 0 indicates that the symmetric matrix P is positive

semidefinite (PSD). Given a compact set X ⊂ R
n, its volume

(formally, Lebesgue measure) is denoted vol X :=
∫

X
dx.

Let σX (c) := max
x∈X

cTx denote the support function of X

where c ∈ Sn−1. Given sets A,B ⊆ R
n the (bi-directional)

Hausdorff distance is dH(A,B) := max(h(A,B), h(B,A))
where h(A,B) := max

a∈A
min
b∈B
‖a− b‖2.

The α-sublevel set of a function f(x) : Rn → R is {x ∈
R

n | f(x) ≤ α}. For x ∈ R
n, let R[x] denote the set of

polynomials in x with real coefficients. Let Rd[x] denote

the set of all polynomials in R[x] of degree less than or

equal to d. A polynomial p(x) ∈ R[x] is a SOS polynomial

if there exists polynomials qi(x) ∈ R[x], i ∈ [j] such that

p(x) = q21(x) + . . . + q2j (x). We use Σ[x] to denote the

set of SOS polynomials in x. A polynomial of degree 2d
is a SOS polynomial if and only if there exists P � 0 (the

Gram matrix) such that p(x) = z(x)TPz(x) where z(x)
is the vector of all monomials of x up to degree d [10].

Letting m :=
(

n+d
d

)

denote the length of z(x), we have

that P ∈ R
m×m. To minimize notational clutter, we will

sometimes list a polynomial f(x) as a decision variable. It is

implied that a degree is specified and matrix P is introduced

as a decision variable such that f(x) = z(x)TPz(x).

II. PROBLEM STATEMENT

Definition 1 (Star-Convex Set [11]). A set S ⊆ R
n is star-

convex if it has a non-empty kernel. The kernel is

ker S := {x | tx+ (1 − t)y ∈ S ∀ t ∈ [0, 1], y ∈ S}. (2)

The kernel is the set of points in S from which one can

“see” all of S as shown in Figure 1. It is easily shown that

the kernel is convex. If S is convex then kerS = S.

We will be interested in approximating the set (1) for the

case in which it is star-convex with respect to the origin.

Problem 1 (Star-Convex Set Approximation). Given a com-

pact, semialgebraic set X with 0 ∈ intX ∩kerX and d ∈ Z
+

find a polynomial fo(x) ∈ R2d[x] (fi(x) ∈ R2d[x]) whose

1-sublevel set Fo (Fi) is of minimum (maximum) volume

and is an outer (inner) approximation of X :

min
fo(x)∈R2d[x]

vol Fo s.t. X ⊆ Fo

(

max
fi(x)∈R2d[x]

vol Fi s.t. Fi ⊆ X

)

.

To establish star-convexity of X , we seek polytopic ap-

proximations of its kernel.

Problem 2 (Kernel Approximation). Given a semialgebraic

set X ⊂ R
n find a polytopeKo (Ki) of minimum (maximum)

volume that is an outer (inner) approximation of kerX :

min vol Ko s.t. kerX ⊆ Ko

(max vol Ki s.t. Ki ⊆ kerX ) .

III. EXISTING VOLUME HEURISTICS FOR SET

APPROXIMATION

We review existing heuristics for approximating semialge-

braic set X using SOS optimization. Each of these methods

finds an even-degree polynomial f(x) = z(x)TPz(x). The

variations between the methods largely relate to the objective

applied to Gram matrix P . For general polynomials, there is

no known relationship between P and the volume of the

sublevel sets. Thus the following objectives are all heuristics

in some sense.

A. Determinant Maximization (−detP )

In [2], the authors propose maximizing the determinant

of the Hessian ∇2f(x) of SOS polynomials. If f is a poly-

nomial of degree 2, this reduces to the ellipsoidal objective

−detA for E = {x |xTAx + bTx + c ≤ 1}, A � 0. As the

Hessian must be PSD, the outer approximation is convex.

This makes it ill-suited to approximating non-convex shapes.

In [4], the authors propose performing determinant max-

imization directly on the Gram matrix P . The Hessian is

no longer required to be PSD. This allows non-convex outer

approximations to be found.

B. Inverse Trace Minimization (trP−1)

The determinant maximization objective minimizes the

product of the eigenvalues of P−1. In [4], the authors

propose an alternative heuristic of minimizing the sum of

the eigenvalues of P−1. This requires an additional matrix

variable V and constraint V � P−1. Using the Schur

complement this can be written as a block matrix constraint

involving V and P (vice P−1). The objective min trV then

indirectly minimizes the sum of the eigenvalues of P−1.

C. l1 Minimization

In [1] the authors propose minimizing the l1 norm of a

polynomial evaluated over a bounding box B ⊇ X . This

approach was first introduced in [12] for approximating

the volume of semialgebraic sets. Using hyperrectangles as

bounding boxes, one can integrate the polynomial over B.

The resulting objective l1(f(x)) :=
∫

B
f(x) dx is linear

in terms of P . The outer approximation consists of the

intersection of the 1-superlevel set of f(x) and B:

X ⊆ (B ∩ {x | f(x) ≥ 1}). (3)

This differs from other objectives which do not rely on

bounding boxes as part of the set approximation.1 In this

setting, f(x) is approximating the indicator function of X
over a compact set B. Convergence of f(x) to the true indi-

cator function in the limit (as degree d→∞) can be shown

by leveraging the Stone-Weierstrass theorem. The asymptotic

rate of convergence is at least O(1/log log d) [13]. Inner

approximations can be found by outer approximating the

complement of X .

1One application of approximating semialgebraic sets is to yield a single
sufficient condition for ensuring x 6∈ X , which can be incorporated into a
nonlinear optimization problem (e.g. obstacle avoidance in motion planning
[7]). The presence of the bounding box in the resulting set description would
require logical constraints to represent (f(x) < 1 ∨ x 6∈ B) =⇒ x 6∈ X
which are generally unsupported in nonlinear optimization solvers.



IV. INNER AND OUTER APPROXIMATIONS OF

STAR-CONVEX SETS

We propose a new volume heuristic for solving Problem

1. Our heuristic is inspired by the following two lemmas.

Lemma 1. Let X ,F be compact sets in R
n such that F ⊆

X . Let 0 ∈ int F . Then there exists a scaling s ≥ 1 such

that X ⊆ sF .

Lemma 2. Let X ⊂ R
n. Let sX = {sx |x ∈ X} denote the

scaled set where s ≥ 0. Then vol sX = sn · volX .

Thus given an inner approximation F , we can obtain an

outer approximation sF for some s ≥ 1 with relation

vol sF

vol F
= sn. (4)

By minimizing s we minimize the ratio of the outer approx-

imation volume to the inner approximation volume. Figure

2 visualizes this intuitive heuristic for approximating a set.

We seek a polynomial f : Rn → R whose 1-sublevel set

F = {x | f(x) ≤ 1} is an inner approximation of X . We

turn this into a condition involving the complement of X :

F ⊆ X ⇐⇒ f(x) > 1 ∀x ∈ X c. (5)

Optimization methods require non-strict inequalities. We

approximate the strict inequality by introducing a small con-

stant ǫ > 0 and working with the closure of the complement

of X . Define the following:

X̄ =
⋃

i∈[m]

{x | gi(x) ≥ 1}. (6)

We then use the following approximation of (5):

F ⊂ intX ⇐ f(x) ≥ 1 + ǫ ∀x ∈ X̄ . (7)

Next, we scale the set F by a scaling variable s > 1 to

obtain an outer approximation:

sF ⊇ X ⇐⇒ f(x
s
) ≤ 1 ∀x ∈ X . (8)

Combining the above we arrive at the following:

min
f(x), s

s

s.t.

f(x) ≥ 1 + ǫ ∀x ∈ X̄ ,

f(x
s
) ≤ 1 ∀x ∈ X .

(9)

Remark 1. Our scaling heuristic is applicable to approxi-

mating any compact set containing the origin in its interior.

However, it is best suited to approximating star-convex sets in

which 0 ∈ intX ∩kerX as visualized in Figure 2. Otherwise

there exists a lower bound slb such that 1 < slb ≤ s in (9).

Lemma 3. Let X and F be compact sets in R
n. Let F ⊆

X ⊆ s⋆F for some s⋆ > 1. Let 0 ∈ int F . Let x, sx ∈ X
and tx 6∈ X ∀ t ∈ (1, s) for some s > 1, x 6= 0. Then s⋆ ≥ s.

Proof. See appendix.
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Fig. 2. 4th-order approximations of star-convex set (left) and non-star-
convex set (right) found by minimizing scaling term s. The non-star-convex
set has a lower bound slb > 1 on the achievable approximation scaling s.

We let slb denote the greatest lower bound given by

Lemma 3. This imposes a minimum volume ratio between

the inner and outer approximation. Figure 2 (right) visualizes

this result. The set is not star-convex and therefore 0 6∈ kerX .

The black line segment connecting the origin to point slbx is

not contained in X . This point imposes a lower bound on s,

preventing the inner and outer approximations from coming

closer together.

We introduce SOS polynomials λi(x), µi(x), i ∈ [m]
and replace the set-containment conditions in (9) with SOS

conditions.2 If s is left as a decision variable, we would

have bilinear terms involving the coefficients of f(x) and s.

Instead we perform a bisection over s, solving a feasibility

problem at each iteration as given by (10). Algorithm 1

details the bisection method.

Optimization Problem: FindApprox(s, gi)

min
f(x), λi(x), µi(x)

0

s.t.

f(x) − (1 + ǫ)− λi(x)(gi(x)− 1) ∈ Σ[x], i ∈ [m],

1− f(x
s
)−

m
∑

i=1

µi(x)(1 − gi(x)) ∈ Σ[x],

λi(x), µi(x) ∈ Σ[x], i ∈ [m].

(10)

Remark 2. The objective is scale-invariant. Let solution

(f∗(x), s∗) define an outer and inner approximation of X .

Scale X by α > 0, replacing constraints gi(x) with gi(
x
α
).

Then the solution pair (f∗( x
α
), s∗) defines the new approx-

imation, where the objective value remains unchanged. The

objective is not translation-invariant however. For exam-

ple, assume we approximate a star-convex set exactly with

(f⋆(x), s⋆ = 1). Translate X by t ∈ X \ kerX , replacing

gi(x) with gi(x − t). Then 0 6∈ kerX and s⋆ > 1 for any

approximation by Lemma 3.

Remark 3. If F is convex we can relate the scaling s to the

Hausdorff distance between the approximations.

2For the outer approximation of the compact set X , the SOS conditions
are necessary and sufficient by Putinar’s Positivstellensatz when µi(x)
is of high-enough degree and the defining polynomials gi satisfy the
Archimedean assumption [14]. The inner approximation constraint involves
an unbounded set. The associated SOS reformulation utilizes the generalized
S-procedure which is only sufficient [10].



Algorithm 1 Inner and Outer Approximation of X

Input: X = {x ∈ R
n | gi(x) ≤ 1, i ∈ [m]}, stol > 0

Output: F , sF s.t. F ⊆ X ⊆ sF
sub ← 1 + stol, slb ← 1
while FindApprox(sub, gi) = Infeasible do

slb ← sub
sub ← 2sub

while sub − slb > stol do

stry ← 0.5(sub + slb)
if FindApprox(stry, gi) = Infeasible then

slb ← stry
else

sub ← stry
return FindApprox(sub, gi)

Lemma 4. Let F ⊂ R
n be a convex, compact set and s ≥ 1.

Then the following holds:

dH(sF ,F) = (s− 1) ·max
x∈F
‖x‖2. (11)

Proof. See appendix.

V. SAMPLING-BASED APPROXIMATIONS OF THE KERNEL

Algorithm 1 assumed the set X contained the origin in its

kernel. If this does not hold, but there exists a point x⋆ ∈
kerX ∩ intX we can apply Algorithm 1 to the translated

set {x− x∗ |x ∈ X}. As our objective is not invariant with

respect to translation, it is useful to approximate the kernel to

establish possible choices for x⋆.3 In this section we provide

algorithms for finding polytopic approximations of kerX .

It will be convenient to represent the boundary of X in

terms of the inequality that is active. Define the following:

∂Xi = {x | gi(x) = 1, gj(x) ≤ 1, j ∈ [m] \ i}. (12)

The boundary of X is given by the union

∂X =
⋃

i∈[m]

∂Xi. (13)

Lemma 5. Let X be a semialgebraic set as defined in (1).

Let ∇gi(xb) 6= 0 ∀xb ∈ ∂Xi, i ∈ [m]. The kernel of X is

given by the following semialgebraic set:

kerX = {xk | ∇gi(xb)
T (xk − xb) ≤ 0 ∀xb ∈ ∂Xi, i ∈ [m]}.

Proof. See appendix.

Remark. From Lemma 5 we see that the kernel of X is

defined by cutting-planes tangent to the active constraint

gi(xb) = 1, xb ∈ ∂X as shown in Figure 1.

Remark. Lemma 5 assumes the gradient of an active

constraint is non-zero. While restrictive, we note that this

assumption is typically satisfied in sets of practical interest.

We provide sampling-based algorithms for finding outer

and inner approximations of this set. If the outer approxi-

mation is empty, this is sufficient to conclude that the set X

3A practical heuristic is to let x⋆ be the Chebyshev center of kerX .

is not star-convex. Conversely, if the inner approximation is

not empty this is sufficient to establish that X is star-convex.

In the case that the outer approximation is not empty and the

inner approximation is empty we cannot conclude anything

about the star-convexity of the set.

A. Outer Approximation

We assume the existence of an oracle Sample(∂X ) which

allows us to randomly sample points xb ∈ ∂X and identify

the set of active constraints I = {i | i ⊆ [m], gi(xb) = 1}.4

From Lemma 5, each sample defines a cutting plane satisfied

by kerX . We collect these constraints to form an outer

approximation Ko ⊇ kerX . If at any point, Ko = ∅ (which

can be determined using Farkas’ Lemma) we terminate as

this implies kerX = ∅. Algorithm 2 summarizes the method.

Algorithm 2 Outer Approximation of kerX

Input: X = {x ∈ R
n | gi(x) ≤ 1, i ∈ [m]}, ns ≥ 1

Output: Outer Approximation Ko ⊇ kerX
Ko ← R

n

for j = 1 to ns do

xb, I ← Sample(∂X )
Ko ← Ko

⋂

{x | ∇gTi (xb)(x− xb) ≤ 0, i ∈ I}
if (Ko = ∅) then

return Ko

return Ko

B. Inner Approximation

Consider finding a point xk ∈ kerX that maximizes a

linear cost cTxk where c ∈ Sn−1 (i.e. the support function

of kerX ). From Lemma 5, the resulting convex optimization

problem requires set containment constraints:

max
xk

cTxk

s.t.

−∇gi(x)
T (xk − x) ≥ 0 ∀x ∈ ∂Xi, i ∈ [m].

(14)

We replace the set containment conditions with SOS

conditions using Putinar’s Positivstellensatz [14].

Optimization Problem: FindSupport(c, gi)

max
xk, λ

(i)
j (x)

cTxk

s.t.

−∇gi(x)
T (xk− x)−

m
∑

j=1

λ
(i)
j (x)(1−gj(x)) ∈ Σ[x], i ∈ [m]

λ
(i)
j (x) ∈ Σ[x], i ∈ [m], j ∈ [m] \ i.

(15)

For a given direction c ∈ Sn−1 this program lower

bounds the support function of kerX . The lower bound

monotonically increases with deg(λ
(i)
j ). If the problem is

feasible, the maximizing argument xk belongs to kerX and

therefore X is star-convex. If infeasible we cannot make any

4Starting from a point in the interior of X , one can choose a direction
and find a boundary point via bisection. Alternatively, nonlinear optimization
methods may be leveraged to find boundary points.



conclusions about the star-convexity of X . By solving for

random directions ci ∈ Sn−1, i ∈ [ns] the convex hull of

points xk provides an inner approximation of the kernel as

given by Algorithm 3.

Algorithm 3 Inner Approximation of kerX

Input: X ={x∈Rn|gi(x)≤1, i∈ [m]}, {ci}⊂Sn−1, i∈ [ns]
Output: Inner Approximation Ki ⊆ kerX
Ki ← ∅
for j = 1 to ns do

xk ← FindSupport(cj , gi)
if FindSupport(cj , gi) = Infeasible then

return Ki = ∅
Ki ← conv(Ki, xk)

return Ki

C. Kernel of Unions and Intersections

Given sets A,B ⊆ R
n and their kernels, we can find inner

approximations of the kernel of their intersection and union

using the following lemma.

Lemma 6. Let A,B ⊆ R
n. Then the following holds:

ker(A ∩ B) ⊇ kerA∩ kerB (16)

ker(A ∪ B) ⊇ kerA∩ kerB. (17)

Proof. See appendix.

Thus if A,B are star-convex and have kernels that inter-

sect, their union and intersection is also star-convex. This

is useful for establishing star-convexity without resorting to

numerical algorithms.

VI. EXAMPLES

We evaluate Algorithm 1 on various examples and com-

pare the results to the existing heuristics reviewed in Section

III.5 We focus our comparison on outer approximations as

more heuristics apply to this case. We use percent error as our

metric, calculated as 100× volFo−volX
volX

where Fo is the outer

approximation of X . We first consider approximating two

examples from the literature with polynomials of increasing

degree. In all instances, our algorithm yielded the tightest

outer approximation as shown in Figure 3.6 Next we consider

100 randomly generated convex polytopes in R
2. In the

majority of cases, our heuristic yielded the tightest outer

approximation as shown in Table I. Lastly, we approximate

a set that is not star-convex. Our heuristic degrades with

increasing lower bound slb as suggested by Lemma 3.

A. Polynomial matrix inequality [3]

X = {x ∈ R
2 |

[

1− 16x1x2 x1

x1 1− x2
1 − x2

2

]

� 0}.

Using Algorithms 2 and 3 we find the kernel (Ko = Ki =
conv{±(−0.1752, 0.3335),±(0.1268, 0.2213)}) as shown in

5For the bounding box B required by the l1 objective, we used the
smallest hyperrectangle B ⊇ X unless noted otherwise.

6We forego comparing 2nd-order polynomials as the determinant maxi-
mization objective exactly minimizes volume in this case.
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Fig. 3. Approximation percent error and solve times for examples A and B.
Solve times shown for objective s are for one FindApprox(s, gi) iteration.

TABLE I

INSTANCES IN WHICH OBJECTIVE OBTAINED SMALLEST ERROR

Deg. # Trials s −detP trP−1 l1
4 100 73 13 0 14
6 100 98 0 0 2

Figure 1. Figure 2 (left) shows the 4th-order approximation

obtained with Algorithm 1. Figure 3 shows the percent error

as we increase the degree. Although each objective value (not

shown) decreases monotonically with increasing degree, the

percent error occasionally increases. This demonstrates the

heuristic nature of the objectives for minimizing volume.

B. Discrete-time stabilizability region [3],[1]

X = {x ∈ R
2 | 1 + 2x2 ≥ 0, 2− 4x1 − 3x2 ≥ 0,

10− 28x1 − 5x2 − 24x1x2 − 18x2
2 ≥ 0,

1− x2 − 8x2
1 − 2x1x2 − x2

2 − 8x2
1x2 − 6x1x

2
2 ≥ 0}.

The set contains the origin in its kernel. Figure 3 shows the

percent error for increasing degree. Figure 4 shows the 6th-

order approximations obtained with each objective. For the

l1 approximation we also show the bounding box from [1].

C. Convex Polytopes

We generate 100 random convex polytopes in R
2 with

their Chebyshev center at the origin. We find outer ap-

proximations using the different objectives. Table I lists the

number of times each objective obtained the smallest percent

error relative to the other objectives for a given polytope.

D. Non-Star-Convex Set

X = {x ∈ R
2 | r2 ≤ (x1 − c)2 + x2

2 ≤ 1, x1 ≤ c}.

Let 0 < r < c < 1 so the origin is in the interior of the set.

Figure 2 shows the set for the case in which c = 0.9 and

r = 0.4. Points (c,±r) ∈ ∂X yield cutting planes x2 ≥ r
and x2 ≤ −r such that kerX = ∅. Table II gives the outer

approximation error for c = 0.9 and varying r.7 For the

scaling objective, we also report the objective value s⋆ and its

7The l1 objective failed to improve upon the bounding box B supplied.
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Fig. 4. 6th-order outer approximations of example B

TABLE II

PERCENT ERROR OF OUTER APPROXIMATIONS OF EXAMPLE E

r Degree s(s⋆/slb) −detP trP−1

0.1 4 12.0 (1.096 / 1.025) 13.0 11.8
0.2 4 13.6 (1.104 / 1.104) 16.1 14.0
0.3 4 35.1 (1.250 / 1.250) 18.5 17.8
0.4 4 81.7 (1.492 / 1.492) 17.3 22.9

lower bound slb.
8 As slb increases the percent error increases,

confirming our heuristic is best suited to star-convex sets.

E. Solver Performance

Figure 3 shows the solve times for the various objectives

on a logarithmic scale. Applied to a matrix P ∈ R
m×m,

the −detP and trP−1 objectives introduce a PSD matrix

H ∈ R
2m×2m due to reformulations involving the expo-

nential cone [15] and Schur complement [4] respectively. In

contrast, the scaling (s) and l1 objectives work directly with

P , yielding smaller semidefinite programs. The l1 objective

has the best computational performance. Due to the use of

bisection, the total solve time for the scaling objective is an

integer multiple of the time shown in Figure 3. Accounting

for this, the scaling objective still remains competitive with

the −detP and trP−1 objectives.

F. Implementation Details

YALMIP [16] and MOSEK [15] were used to solve

the SOS programs.9 Volumes of non-star-convex sets were

approximated by evaluating the indicator function over a

discrete grid. Volumes of star-convex sets were approximated

using numerical integration in polar coordinates.

8The line segments connecting (0, 0) to (c,±r) define the maximum

lower bound on s in Lemma 3. It can be shown that slb =
‖p2‖
‖p1‖

where

p2 = (c, r), p1 = (c+ r cosφ, r sinφ) and φ = π
2
+ 2arctan r

c
.

9Supporting code will be released upon publication.

VII. CONCLUSIONS

An algorithm for finding approximations of semialgebraic

sets using sum-of-squares optimization was proposed. The

algorithm relies on a novel objective which minimizes the

scaling necessary to transform an inner approximation into

an outer approximation of the set. Numerical examples

demonstrated this objective often finds tighter approxima-

tions compared to existing heuristics when applied to star-

convex sets. Applied to non-star-convex sets, our proposed

heuristic performs poorly. A promising direction to address

this is through star-convex decompositions [17]. We leave

this exploring this option for future work.
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APPENDIX

A. Proof of Lemma 3

Proof. Assume 1 < s⋆ < s satisfies F ⊆ X ⊆ s⋆F . Let

x, sx ∈ X , x 6= 0 such that tx 6∈ X ∀ t ∈ (1, s). Given

sx ∈ X =⇒ sx ∈ s⋆F =⇒ s
s⋆
x ∈ F . However,

1 < s
s⋆

< s =⇒ s
s⋆
x 6∈ F , a contradiction. Thus s⋆ ≥ s.

B. Proof of Lemma 4

Proof. Recall the Hausdorff distance between two compact,

convex sets can be written in terms of their support functions.

dH(sF ,F) = max
c∈Sn−1

|σsF (c)− σF (c)| (18)

= max
c∈Sn−1

|sσF (c)− σF (c)| (19)

= (s− 1) · max
c∈Sn−1

σF (c) (20)

= (s− 1) ·max
x∈F
‖x‖2. (21)

C. Proof of Lemma 6

1) ker(A ∩ B) ⊇ kerA ∩ kerB: Let l(x, y) = {λx+ (1−
λ)y |λ ∈ [0, 1]} for some x ∈ kerA ∩ kerB and y ∈ A ∩ B.

As x ∈ kerA, y ∈ A =⇒ l(x, y) ⊆ A and similarly, x ∈
kerB, y ∈ B =⇒ l(x, y) ⊆ B, we see that x ∈ ker(A∩B).

2) ker(A ∪ B) ⊇ kerA ∩ kerB: Let l(x, y) = {λx+ (1−
λ)y |λ ∈ [0, 1]} for some x ∈ kerA ∩ kerB and y ∈ A ∪ B.

For the case when y ∈ A, then x ∈ kerA =⇒ l(x, y) ⊆
A =⇒ l(x, y) ⊆ A∪B. Similarly, for the case when y ∈ B,

then x ∈ kerB =⇒ l(x, y) ∈ B =⇒ l(x, y) ⊆ A ∪ B.

Therefore x ∈ ker(A ∪ B).

Remark. Note that there is no relation between ker(A∩B)
and ker(A∪B) in general. We gives examples in which one

set is a subset of the other.

ker(A ∪ B) ⊃ ker(A ∩ B): Let A \ B 6= ∅ and B \ A 6= ∅.
Let A ∪ B be a convex set. Then ker(A ∪ B) = A ∪ B ⊃
(A ∩ B) ⊇ ker(A ∩ B).
ker(A∪B) ⊂ ker(A∩B): Let A be a compact set that is not

star-convex with non-empty interior. Let B be a non-empty

convex set satisfying B ⊂ A. Then ker(A ∩ B) = B ⊃ ∅ =
ker(A ∪ B).



D. Proof of Lemma 5

Proof. For convenience, define the following:

H := {p | ∇gi(q)
T (p− q) ≤ 0 ∀ q ∈ ∂Xi, i ∈ [m]}.

We show that kerX ⊆ H and kerX ⊇ H and therefore

kerX = H.

⇒ (kerX ⊆ H): Assume p ∈ kerX but there exists a point

q ∈ ∂Xi for some i ∈ [m] such that ∇gi(q)T (p − q) > 0.

Recall the definition of the directional derivative:

lim
t→0

gi(tp+ (1 − t)q)− gi(q)

t
= ∇gi(q)

T (p− q).

Given gi(q) = 1 and ∇gi(q)T (p − q) > 0 implies there

exists an open interval t ∈ (0, α), α > 0 in which gi(tp +
(1− t)q) > 1. The line segment over this open interval does

not belong to X . Thus p 6∈ kerX , a contradiction.

⇐ (kerX ⊇ H): Let p ∈ H. Assume p 6∈ kerX =⇒ ∃ q ∈
X such that l(t) 6∈ X for some t ∈ (0, 1] where l(t) :=
tp+(1−t)q. 10 As X is compact, l(t) 6∈ X =⇒ gi(l(t)) > 1
for some i ∈ [m] and open interval t ∈ (a, b) satisfying

0 ≤ a < b with a < 1. Without loss of generality, let a = 0
such that q ∈ ∂Xi and gi(l(0)) = 1. Applying the definition

of the directional derivative yields:

lim
t→0

gi(l(t))− gi(l(0))

t
= ∇gi(q)

T (p− q).

The left-hand side of this relation is non-negative. The right-

hand side is non-positive per the definition of H. Thus both

sides must equal zero. As ∇gi(q) 6= 0, this implies

(p− q) ⊥ ∇gi(q). (22)

Assume w.l.o.g. that ∇gi(q) is aligned with coordinate n:

∇gi(q) =
[

0Tn−1 r
]T

, r > 0. (23)

If this does not hold we can introduce an appropriate change

of variables. Together, (22) and (23) =⇒ (pn − qn)r =
0 =⇒ ln(t) = qn. From this we have

l(t) =

[

tp[n−1] + (1− t)q[n−1]

qn

]

. (24)

Define the following parameterized curve φ : R → R
n

which moves along the boundary gi(x) = 1, starting from p:

φ(t) =

[

tp[n−1] + (1− t)q[n−1]

h(tp[n−1] + (1− t)q[n−1])

]

. (25)

Given ∂gi
∂xn

(q) 6= 0, from the implicit function theorem

there exists an open set U ⊂ R
n−1 with q[n−1] ∈ U

and C1 function h : U → R such that h(q[n−1]) = qn
and gi(x[n−1], h(x[n−1])) = 1 for all x[n−1] ∈ U . Here

we are restricting coordinates x[n−1] to the line segment

parameterized by t. Thus gi(φ(t)) = 1 for all t such that

φ[n−1](t) ∈ U . Let t ∈ (−c, d), c > 0, d > 0 denote

this interval. The line l(t) and curve φ(t) only differ in

coordinate n. Given gi(l(t)) > 1, t ∈ (0, b) and gi(φ(t)) =
1, t ∈ (−c, d) =⇒ qn 6= φn(t)∀ t ∈ (0,min(b, d)). Given

10We have not yet shown that H ⊆ X so we are not assuming p ∈ X .

∂gi
∂xn

(q) > 0 =⇒ ∂gi
∂xn

> 0 for some open ball around

q as gi is smooth. Assuming φn(t) > qn =⇒ gi(φ(t)) >
gi(l(t)) > 1 for points sufficiently close to q, a contradiction.

Thus φn(t) < qn for some interval t ∈ (0, e), e > 0. From

this we have

∂gi(φ(t))

∂xn

(qn − φn(t)) > 0, ∀t ∈ (0, e). (26)

Given qn = φn(0) > φn(t) for some interval t ∈ (0, e),
by the mean value theorem there exists t⋆ ∈ (0, e) such that
dφn

dt
(t⋆) < 0. This yields the following relation:

∂gi(φ(t⋆))

∂xn

dφn(t⋆)

dt
< 0. (27)

Given gi(φ(t)) = 1 ∀ t ∈ (−c, d) =⇒ dgi
dt

(φ(t)) = 0. We

expand this at the point t⋆ obtaining

0 =
∂gi(φ(t⋆))

∂x[n−1]

T dφ[n−1](t⋆)

dt
+

∂gi(φ(t⋆))

∂xn

dφn(t⋆)

dt

=
∂gi(φ(t⋆))

∂x[n−1]

T

(p[n−1] − q[n−1]) +
∂gi(φ(t⋆))

∂xn

dφn(t⋆)

dt
.

(28)

From equations (27) and (28) we obtain

∂gi(φ(t⋆))

∂x[n−1]

T

(p[n−1] − q[n−1]) > 0. (29)

Finally, we evaluate the stated constraint on p ∈ H at the

boundary point φ(t⋆) giving

∇gi(φ(t⋆))
T (p− φ(t⋆)) =

∂gi(φ(t⋆))

∂xn

(pn − φn(t⋆))+

∂gi(φ(t⋆))

∂x[n−1]

T

(p[n−1] − q[n−1])(1− t⋆).

(30)

From (26) and (28) and noting that (1−t⋆) > 0 and qn = pn
gives

∇gi(φ(t⋆))
T (p− φ(t⋆)) > 0. (31)

Thus p 6∈ H, a contradiction.
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