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A simple suboptimal moving horizon estimation
scheme with guaranteed robust stability

Julian D. Schiller, Boyang Wu, and Matthias A. Müller

Abstract— We propose a suboptimal moving horizon es-
timation (MHE) scheme for a general class of nonlinear sys-
tems. To this end, we consider an MHE formulation that op-
timizes over the trajectory of a robustly stable observer. As-
suming that the observer admits a Lyapunov function, we
show that this function is an M-step Lyapunov function for
suboptimal MHE. The presented sufficient conditions can
be easily verified in practice. We illustrate the practicability
of the proposed suboptimal MHE scheme with a standard
nonlinear benchmark example. Here, performing a single
iteration is sufficient to significantly improve the observer’s
estimation results under valid theoretical guarantees.

Index Terms— Moving horizon estimation (MHE), nonlin-
ear systems, stability, state estimation.

I. INTRODUCTION

STATE estimation is crucial for many control applications
and hence of high practical relevance. However, designing

suitable estimators is a challenging problem for nonlinear
systems, especially in case of noisy measurements and model
inaccuracies. To this end, moving horizon estimation (MHE)
has proven to be a powerful solution and constitutes an
active area of research with recent results providing sufficient
conditions for robust stability, see, e.g., [1]–[4]. Since MHE
is an optimization-based approach, it is usually computation-
ally demanding; however, the computing power available in
practice is often severely limited. Accordingly, computing the
global optimum at each time step is often not possible in
practice, which, however, renders the theoretical guarantees
invalid (since they crucially depend on this criterion).

Related Work: To simplify the optimization problem, a pre-
estimating MHE scheme for linear systems was proposed in
[5] that utilizes an additional auxiliary observer to replace
the system dynamics as MHE constraint. Since no optimal
disturbance sequence has to be computed, the number of
optimization variables could be significantly reduced. This
idea was transferred to a class of nonlinear systems in [6], and
a major speed improvement compared to the standard MHE
formulation could be shown. However, this scheme relies
on a uniform observability condition and requires optimal
solutions to the MHE problem, the achievement of which
can still hardly be guaranteed within fixed time intervals. To

This work was supported by the German Research Foundation (DFG)
under Grant MU 3929/2-1. (Corresponding author: Julian D. Schiller.)

The authors are with the Leibniz University Hannover, Institute of
Automatic Control, 30167 Hannover, Germany (e-mail: schiller@irt.uni-
hannover.de; mueller@irt.uni-hannover.de).

overcome this, fast MHE methods were developed in, e.g., [7]–
[9], performing only a predetermined number of iterations of
a certain optimization algorithm (e.g., gradient- or Newton-
based). Convergence guarantees could be established under
observability conditions and using (local) contraction proper-
ties of the specific algorithms involved, cf. [8], [9]. In [10], the
combination of a fast MHE scheme and pre-estimation using a
nonlinear Luenberger observer was considered. A suboptimal
proximity-MHE scheme for nonlinear systems was presented
in [11], where nominal stability guarantees could be given
without performing any optimization by employing a pre-
stabilizing observer and a certain gradient-based optimization
method. In contrast, robust guarantees for suboptimal MHE
were established in [12] independent of the horizon length, the
chosen optimization algorithm, and the number of iterations
performed by using an observer-based candidate solution to
the MHE problem.

Contribution: We propose a simple suboptimal MHE scheme
with least squares objective and exponential time-discounting.
Such a discount factor has proven useful in recent works on
nonlinear MHE, compare, e.g., [2], [3], [12]. In contrast to
those works, however, we optimize over the trajectory of a
robustly stable auxiliary observer, similar to the idea proposed
in [5], [6], [10], cf. Section III. Assuming that the observer
admits a Lyapunov function, we show that this directly yields
a novel M -step Lyapunov function for suboptimal MHE,
independent of the chosen optimization algorithm and the
number of iterations performed, cf. Section IV. The stated
sufficient condition on the horizon length M can be easily
verified in practice. We provide good tuning opportunities
and consider modifications which allow for arbitrary horizon
lengths. Moreover, in contrast to [6], [10]–[12], we show
that the theoretical guarantees (both the decrease rate and
disturbance gains) strictly improve with increasing horizon
length and converge (for M → ∞) to those of the auxil-
iary observer (which is the best possible bound given that
we derive guarantees for an arbitrary number of iterations
including zero). We illustrate the applicability of the proposed
suboptimal MHE scheme with a standard nonlinear MHE
benchmark example, cf. Section V. We verify the sufficient
conditions and show that performing only a single iteration
of the optimizer each time step is sufficient to significantly
improve the estimation results from the auxiliary observer
under valid theoretical guarantees.

Notation: The set of all integers in an interval [a, b] ⊂ R is
denoted by I[a,b] and the set of integers greater than or equal
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to a by I≥a. Let ‖x‖ denote the Euclidean norm of the vector
x ∈ Rn and ‖x‖2A = x>Ax for a positive definite matrix
A = A>. The minimal (maximal) eigenvalues of A = A> are
denoted by λmin(A) (λmax(A)) and the maximum generalized
eigenvalue w.r.t. a matrix B = B> by λmax(A,B); In ∈
Rn×n represents the identity matrix.

II. SETUP AND PRELIMINARIES

We consider the discrete-time, nonlinear perturbed system

xt+1 = f(xt, ut, wt), (1a)
yt = h(xt, ut, vt), (1b)

with state xt ∈ X ⊆ Rn, control input ut ∈ U ⊆ Rm,
disturbances wt ∈ W ⊆ Rq and vt ∈ V ⊆ Rr, noisy
measurement yt ∈ Y ⊂ Rp, and discrete time t ∈ I≥0. The
nonlinear continuous functions f : Rn ×Rm ×Rq → Rn and
h : Rn × Rm × Rr → Rp constitute the system dynamics
and output equation, respectively. We assume that 0 ∈ V
and denote the nominal (disturbance-free) system equations
as fn(x, u) = f(x, u, 0) and hn(x, u) = h(x, u, 0).

Given some initial guess x̂0 of the true state x0, the overall
goal is, at any time t ∈ I≥0, to provide an estimate x̂t of the
current state xt that satisfies the following stability notion.

Definition 1 (RGES [13, Def. 1]): A state estimator for
system (1) is robustly globally exponentially stable (RGES)
if there exist C1, C2, C3 > 0 and λ1, λ2, λ3 ∈ [0, 1) such that
the resulting state estimate x̂t satisfies

‖xt − x̂t‖ ≤ max
{
C1λ

t
1‖x0 − x̂0‖, (2)

max
j∈I[0,t−1]

C2λ
t−j−1
2 ‖wj‖, max

j∈I[0,t−1]

C3λ
t−j−1
3 ‖vj‖

}
for all t ∈ I≥0, all initial conditions x0, x̂0 ∈ X, and every
trajectory (xt, ut, wt, vt, yt)

∞
t=0 satisfying (1).

This corresponds to an exponential version of the robust sta-
bility property that is often used in the recent MHE literature,
see, e.g., [1]–[4].

Remark 1: A state estimator is RGES as characterized in
Definition 1 if and only if (2) holds with each maximization
operation replaced by summation, cf. [4, Prop. 3.13].

To establish RGES for the suboptimal MHE scheme pre-
sented in Section III below, we require knowledge of an
additional auxiliary observer. To this end, we consider the
following standard form given by a (possibly time-varying)
observer mapping gt : Z×U×Y→ Z with Z ⊆ Rn such that
at any t ∈ I≥0,

zt+1 = gt(zt, ut, yt) (3)

is an estimate of the state xt+1 of system (1) using its current
inputs and outputs (ut, yt) and the estimate zt ∈ Z. We assume
that some observer in the form of (3) is available that satisfies
the following property.

Assumption 1 (RGES observer): There exists a δ-Lyapunov
function Vo : Z × X → R≥0 and some η ∈ [0, 1), symmetric
matrices P1, P2 � 0, and Q,R � 0 such that

‖z − x‖2P1
≤ Vo(z, x) ≤ ‖z − x‖2P2

, (4a)
Vo(g(z, u, h(x, u, v)), f(x, u, w))

≤ ηVo(z, x) + ‖w‖2Q + ‖v‖2R (4b)

for all (z, x, u, w, v) ∈ Z× X× U×W× V.
Such a characterization of an RGES of observer was previ-

ously used in the context of MHE in [14]. Overall, we consider
a rather general class of observers in (3), which represents
an active area of research. In particular, Assumption 1 can
be verified with a quadratically bounded δ-Lyapunov function
Vo by employing the differential dynamics, cf. [15], [16].
Alternatively, we could restrict the design to a quadratic
function Vo, where sufficient conditions can be derived based
on, e.g., incremental quadratic constraints [17] or specific
Lipschitz properties [18]; a quadratic (time-varying) function
Vo arises for Kalman-like observers, cf. [19], [20]. Note that
Assumption 1 is our key assumption and can restrict the class
of systems to which the proposed MHE scheme is applicable.

In Section IV, we show that the δ-Lyapunov function Vo

from Assumption 1 serves as an M -step Lyapunov function
for suboptimal MHE. To this end, we additionally require the
following continuity property of h (1b).

Assumption 2 (Lipschitz continuity of h): The function h is
Lipschitz continuous, i.e., there exists some constant Lh > 0
such that

‖h(x, u, v)− h(x̄, ū, v̄)‖ ≤ Lh(‖x− x̄‖+ ‖u− ū‖+ ‖v− v̄‖)

for all (x, x̄) ∈ X× Z, u, ū ∈ U, and v, v̄ ∈ V.

III. SUBOPTIMAL MOVING HORIZON ESTIMATION

Given some finite estimation horizon M ∈ I≥0, the pro-
posed MHE scheme considers at each t ∈ I≥0 the input and
output data (u, y) of system (1) in a moving time window of
length Mt = min{t,M}. The corresponding state estimate x̂t
is then obtained by solving the following nonlinear program
(NLP)

min
x̂t−Mt|t

Jt(x̂t−Mt|t) (5a)

s.t. x̂j+1|t = gj(x̂j|t, uj , yj), j ∈ I[t−Mt,t−1], (5b)
ŷj|t = hn(x̂j|t, uj), j ∈ I[t−Mt,t−1], (5c)
x̂j|t ∈ Z, j ∈ I[t−Mt,t], (5d)

with the observer dynamics gt (3). Given the most recent
input and output sequences {uj}t−1

j=t−Mt
and {yj}t−1

j=t−Mt
of

system (1), the decision variable x̂t−Mt|t (uniquely) defines
a sequence of state estimates {x̂j|t}tj=t−Mt

and a sequence
of output estimates {ŷj|t}t−1

j=t−Mt
under (5b)-(5c). The (time-

varying) cost function Jt : Rn → R≥0 is defined as

Jt(x̂t−Mt|t) = 2‖x̂t−Mt|t − x̂t−Mt
‖2W (6)

+
λmin(P1)

2L2
hλmax(G)

Mt∑
j=1

ηj‖ŷt−j|t − yt−j‖2G,

where x̂t−Mt
is the MHE estimate obtained Mt steps in

the past, η and P1 are from the δ-Lyapunov function Vo

(Assumption 1), and Lh is from the Lipschitz property of h
(Assumption 2). The parameters W,G � 0 with W,G 6= 0
are weighting matrices that can be tuned arbitrarily; their re-
spective influence on the theoretical properties of the resulting
estimator is discussed in detail in Remark 3 below.
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Note that in contrast to most of the literature on nonlinear
MHE, the proposed scheme does not optimize over a distur-
bance sequence {ŵj|t}tj=t−Mt

as is the case in, e.g., [1]–[4],
[12]; instead, we directly employ the observer dynamics (3)
in (5b). This direct coupling between the MHE formulation
and the auxiliary observer allows for using the corresponding
δ-Lyapunov function Vo as M -step Lyapunov function for
(suboptimal) MHE, cf. Section IV below. As a consequence,
the estimated states x̂j|t are restricted to the set Z via con-
straint (5d), i.e., to the domain of the observer (3). If additional
knowledge on the real system state is available (e.g., due to
physical nature) and should be incorporated into the MHE
scheme to improve performance, one could suitably re-design
the auxiliary observer as suggested in [21] or use additional
projections as in [12, Sec. VI].

We consider the following suboptimal estimator.
Definition 2 (Suboptimal estimator): Let t ∈ I≥0, M ∈

I≥1, the past estimate x̂t−Mt
, and the input/output sequence

(uj , yj)
t−1
j=t−Mt

of system (1) be given and let x̃t−Mt|t ∈ Z
denote a feasible candidate solution to the MHE problem (5).
Then, the corresponding suboptimal solution of (5) is defined
as any estimate x̂t−Mt|t ∈ Z such that 1) the MHE constraints
(5b)-(5d) and 2) the cost decrease condition

Jt(x̂t−Mt|t) ≤ Jt(x̃t−Mt|t) (7)

are satisfied. The (suboptimal) state estimate at time t ∈ I≥0

is defined as x̂t = x̂t|t.
We consider the following choice of the candidate solution

x̃t−Mt|t = x̂t−Mt . (8)

This candidate solution1 is much simpler in contrast to our
recent result [12], in which the auxiliary observer needed to be
re-initialized, re-simulated, and transformed into a trajectory of
system (1). In the next section, we derive practical conditions
for robust stablity of suboptimal MHE, simply by exploiting
the coupling between the MHE problem (5) and the RGES
observer (3) satisfying Assumption 1.

IV. M -STEP LYAPUNOV FUNCTION FOR
SUBOPTIMAL MHE

In order to show that Vo is an M -step Lyapunov function for
suboptimal MHE, we require the following auxiliary lemma
that provides a bound on the cost of the candidate solution
J̃t := J(x̃t−Mt|t).

Lemma 1: Let Assumptions 1 and 2 hold and x̂0 ∈ Z. Then,
the cost function (6) evaluated at the candidate solution (8)
satisfies for all t ∈ I≥0

J̃t ≤ Mtη
MtVo(x̂t−Mt

, xt−Mt
) +Mt

Mt∑
j=1

ηj−1‖wt−j‖2Q

+

(
η
λmin(P1)

λmin(R)
+Mt

) Mt∑
j=1

ηj−1‖vt−j‖2R. (9)

1Note that (8) does not restrict the warm start of the particular algorithm
used to solve (5); a practical choice is, e.g., x̂t−Mt|t−1, i.e., the most recent
MHE estimate, compare also [12, Rem. 4].

Proof: First, note that the candidate solution (8) repre-
sents a feasible choice, which follows from the definition of
the observer (3) and constraint (5d) since x̂0 ∈ Z; the corre-
sponding state and output sequences generated from (5b)-(5c)
are denoted as {x̃j|t}tj=t−Mt

and {ỹj|t}t−1
j=t−Mt

, respectively.
From the cost function (6), we have that

J̃t ≤
λmin(P1)

2L2
hλmax(G)

Mt∑
j=1

ηj‖ỹt−j|t − yt−j‖2G (10)

since x̃t−Mt|t = x̂t−Mt
due to (8). Using Assumption 2 (and,

for brevity, omitting indices in the following step) leads to

‖ỹ − y‖2G ≤ λmax(G)‖h(x̃, u, 0)− h(x, u, v)‖2

≤ λmax(G)2L2
h(‖x̃− x‖2 + ‖v‖2)

≤ 2L2
h

(
λmax(G)

λmin(P1)
‖x̃− x‖2P1

+
λmax(G)

λmin(R)
‖v‖2R

)
. (11)

By combining (10), (11), and (4a), we therefore obtain

J̃t ≤
Mt∑
j=1

ηj
(
Vo(x̃t−j|t, xt−j) +

λmin(P1)

λmin(R)
‖vt−j‖2R

)
(12)

and, since {x̃j|t}tj=t−Mt
is a state trajectory of the observer (3)

via (5d), we can invoke Assumption 1 and apply the dissipation
inequality (4b) for each j ∈ I[1,Mt] (Mt− j) times. This leads
to

ηjVo(x̃t−j|t, xt−j) ≤ ηj
(
ηMt−jVo(x̃t−Mt|t, xt−Mt

)

+

Mt∑
i=j+1

ηi−j−1
(
‖wt−i‖2Q + ‖vt−i‖2R

))
for each j ∈ I[1,Mt]. Summing up over all j ∈ I[1,Mt] yields

Mt∑
j=1

ηjVo(x̃t−j|t, xt−j) ≤Mtη
MtVo(x̃t−Mt|, xt−Mt)

+Mt

Mt∑
j=1

ηj−1
(
‖wt−j‖2Q + ‖vt−j‖2R

)
. (13)

Combining (12) and (13) and recalling that x̃t−Mt|t = x̂t−Mt

by (8) leads to (9), which hence concludes this proof.
In the following, we show that Vo is an M -step Lyapunov

function for suboptimal MHE.
Theorem 1: Let Assumptions 1 and 2 hold and x̂0 ∈ Z.

Then, the suboptimal state estimate x̂t satisfies

Vo(x̂t, xt) ≤ γ1(Mt)Vo(x̂t−Mt
, xt−Mt

) (14)

+

Mt∑
j=1

ηj−1(γ2(Mt)‖wt−j‖2Q + γ3(Mt)‖vt−j‖2R)

for all t ∈ I≥0, where

γ1(k, r, s) :=2λmax(P2, P1)ηs+λmax(P2,W )kηr+s, (15a)
γ2(k, r) :=1 + λmax(P2,W )kηr, (15b)

γ3(k, r) :=1 + λmax(P2,W )

(
η
λmin(P1)

λmin(R)
+ k

)
ηr, (15c)
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with2 γ1(r) := γ1(r, r, r), and γi(r) := γi(r, r), i = {2, 3}.
Proof: At any t ∈ I≥0, constraint (5b) ensures that the

estimated suboptimal trajectory {x̂j|t}tj=t−Mt
is a trajectory

of the observer (3), which by Assumption 1 admits the δ-
Lyapunov function Vo(x̃, x). Hence, we can apply the dissi-
pation inequality (4b) for Mt times, which leads to

Vo(x̂t, xt) ≤ ηMtVo(x̂t−Mt|t, xt−Mt
) (16)

+

Mt∑
j=1

ηj−1
(
‖wt−j‖2Q + ‖vt−j‖2R

)
.

Using (4a) with Cauchy-Schwarz and Young’s inequality, we
further have that

Vo(x̂t−Mt|t, xt−Mt) ≤ ‖x̂t−Mt|t − xt−Mt‖2P2

≤ 2‖x̂t−Mt|t − x̂t−Mt‖2P2
+ 2‖xt−Mt − x̂t−Mt‖2P2

. (17)

The second term of the right-hand side in (17) can be bounded
by exploiting (4a) according to

2‖x̂t−Mt
− xt−Mt

‖2P2
≤ 2λmax(P2, P1)Vo(x̂t−Mt

, xt−Mt
).

(18)
Using a similar reasoning, the first term of the right-hand side
in (17) satisfies

2‖x̂t−Mt|t − x̂t−Mt
‖2P2
≤ λmax(P2,W )Jt(x̂t−Mt|t), (19)

which follows from the definition (and non-negativity) of the
cost function (6). Now recall that Jt(x̂t−Mt|t) ≤ J̃t due
to (7); consequently, we can invoke Lemma 1, and thus, the
combination of (16) and (17)-(19) leads to (14), which hence
concludes this proof.

Provided that M ∈ I≥1 is chosen such that

ρM := γ1(M) < 1 (20)

holds, Theorem 1 directly implies that

Vo(x̂t, xt) ≤ ρMVo(x̂t−Mt
, xt−Mt

)

+

M∑
j=1

ηj−1
(
γ2(M)‖wt−j‖2Q + γ3(M)‖vt−j‖2R

)
for t ∈ I≥M . Consequently, Vo is an M -step Lyapunov func-
tion for suboptimal MHE, compare [2, Thm. 1] for standard
MHE (without auxiliary observer). We can straightforwardly
deduce RGES as shown in the following corollary.

Corollary 1: Let Assumptions 1 and 2 hold, x̂0 ∈ Z, and
M ∈ I≥0 satisfy (20). Then, the suboptimal moving horizon
estimator from Definition 2 is RGES.

Proof: The proof is straightforward: applying standard
Lyapunov arguments to (14) under (20) and exploiting Re-
mark 1 yields the desired result.

Some remarks are in order.
Remark 2 (Condition on the horizon length): By standard

properties of the exponential function, one can easily verify
specific properties of γ1 : R≥0 → R≥0 on the open interval
[0,∞) — namely, that γ1 is continuous, has one (global)
maximum, and limM→∞ γ1(M) = 0. Consequently, there

2We define the functions γi in (15) as functions of three (two) separate
variables, since this will be convenient for various extensions/adaptations
discussed in Remark 6 and Section V.

exists some M ∈ I≥1 such that (20) holds for all M ∈ I≥M .
In practice, a sufficiently large M can be easily obtained by
solving (20) numerically.

Remark 3 (Parameterization of the cost function): The
matrices W and G in (6) are arbitrary tuning parameters.
The choice of G has no impact on the theoretical guarantees
(note that G does not appear in (14)), since the stage cost is
normalized by its largest eigenvalue λmax(G). Consequently,
G can be used to scale the output estimates differently in case
p > 1. In contrast, W has a direct influence on all functions
γ1, γ2, γ3 (15) via the generalized eigenvalue λmax(P2,W ).
This can be exploited to adjust the degree of confidence in the
observer’s estimates by specifying how much the estimated
trajectory {x̂j|t}tt−M may (λmax(P2,W ) � 1) or may not
(λmax(P2,W ) � 1) deviate from the observer trajectory
initialized at x̂t−Mt

. For small values of λmax(P2,W ), the
minimum horizon length is dominated by the first factor in
(15a) and the functions γ2, γ3 in (15b)-(15c) become closer
to that of the observer, cf. (4b). Conversely, the further one
deviates from the stabilizing observer by choosing large
values of λmax(P2,W ) in (15), the worse the guarantees
become and the larger the horizons must be chosen; on
the other hand, this choice typically leads to good results
in practice, since the estimate from the auxiliary observer
can (potentially significantly) be improved with only a few
iterations, compare also the simulation example in Section V.

Remark 4 (Asymptotic behavior for large M ): Similar
properties as discussed in Remark 2 for the function γ1

also apply to γ2 and γ3. In particular, both these functions
are monotonically decreasing in M for M large enough,
and limM→∞ γ2(M) = limM→∞ γ3(M) = 1. Together
with limM→∞ γ1(M) = 0 (cf. Remark 2), this implies
the appealing theoretical feature that for M → ∞, the
bound from Theorem 1 converges to the bound given by
the δ-Lyapunov function Vo (4), regardless of how the cost
function (6) is parameterized. This is generally not the case
in [12], where the guarantees for suboptimal MHE are strictly
worse than those from the auxiliary observer.

Remark 5 (Alternative Lyapunov function): The recent re-
sult [2] uses a δ-IOSS Lyapunov function (which characterizes
the detectability of the system) as M -step Lyapunov function
for (standard) MHE. In contrast, we use the δ-Lyapunov func-
tion Vo (which characterizes robust stability of the auxiliary
observer) as M -step Lyapunov function for suboptimal MHE.
A natural alternative could be to use the δ-IOSS Lyapunov
function also for suboptimal MHE, which becomes possible
by combining the new Lyapunov approach from [2] with the
suboptimal MHE scheme from [12]. This results in the more
standard MHE formulation where (5b)-(5d) is replaced accord-
ing to the system dynamics (1) and one additionally optimizes
over a disturbance and noise sequence, cf. [2]. However, due to
the mismatch between the MHE constraints and the dynamics
of the auxiliary observer (3) used to construct the candidate
solution, the overall guarantees that can be established for
suboptimal MHE become more conservative in this case.

Remark 6 (Alternative candidate solution): For M ∈ I≥1

arbitrarily fixed, we could also apply the re-initialization
procedure that was suggested in [12] and derive a T -step
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Lyapunov function for a sufficiently large T ∈ I≥M , thus
ensuring robust stability of suboptimal MHE for an arbitrary
horizon length M . However, the candidate solution becomes
more intricate. In particular, at each t ∈ I≥0, we need to
re-initialize the auxiliary observer Tt := min{t, T} steps
in the past using zt−Tt|t = x̂t−Tt

and perform a forward
simulation for Tt −Mt steps to obtain the candidate solution
x̃t−Mt|t = zt−Mt|t; in addition, x̂t−Mt needs to be replaced
by zt−Mt|t in (6), compare [12]. Then, by suitably modifying
the proofs of Lemma 1 and Theorem 1, we can derive (14)-
(15) with functions γ1(Mt,Mt, Tt), γ2(Mt), γ3(Mt), where
1 is replaced by 2λmax(P2, P1) in (15b)-(15c). Condition (20)
(with γ1(M) replaced by γ1(M,M,T )) can then be easily
solved for a sufficient T , compare the example in Section V.

V. NUMERICAL EXAMPLE

We consider the following system

x+
1 = x1 + t∆(−2k1x

2
1 + 2k2x2) + w1, (21a)

x+
2 = x2 + t∆(k1x

2
1 − k2x2) + w2, (21b)

y = x1 + x2 + v, (21c)

with k1 = 0.16, k2 = 0.0064, which corresponds to the dis-
cretized nonlinear chemical reactor process from [22, Sec. 5]
using the sampling time t∆ = 0.1. This constitutes a standard
benchmark example in the context of nonlinear MHE, and as
is usually done in this setting, we choose x0 = [3, 1]> and
the poor initial estimate x̂0 = [0.1, 4.5]>. The disturbances w
and v are modeled as uniformly distributed random variables
sampled from W = {w ∈ R2 : |wi| ≤ 2 · 10−3, i = {1, 2}}
and V = {v ∈ R : |v| ≤ 10−2} during the simulation.

For system (21), we design a Luenberger observer with
g(z, y) = fn(z) +L(hn(z)− y) in (3). The constant observer
gain L ∈ Rn×p is computed based on the differential dynam-
ics, where a sufficient linear matrix inequality (LMI) analo-
gous to the dual (i.e., control) problem [23] can be derived. By
imposing a quadratic Lyapunov function Vo(z, x) = ‖z−x‖2P ,
we can verify3 Assumption 1 on Z = {z ∈ Rn : 0.1 ≤
z1 ≤ 6} with gain L = [7.999,−9.997]>, P =

[
1.537 1.380
1.380 1.254

]
,

η = 0.955, Q = 103 · I2, and R = 100.
Proposed Suboptimal MHE: We choose G = 1 and W =

aP2 with a > 0 in (6), which implies that λmax(P2,W ) =
1/a; in the first simulation, we consider two different values
of a to illustrate Remark 3. As a performance benchmark,
we additionally consider the standard (i.e., fully optimized
w.r.t. the system dynamics) MHE formulation from [2] and
parameterize its cost function for the sake of comparability by
verifying [2, Cor. 2] with Vo as δ-IOSS Lyapunov4 function.
We implement each estimator in the filtering5 form of MHE,

3LMIs were solved in Matlab using the toolbox YALMIP [24] and the
semidefinit programm solver MOSEK [25].

4Note that using a different (worse conditioned) matrix P allows for
choosing a smaller horizon length, compare [2, Sec. V].

5The results derived in Section IV (and [2]) for the prediction form of MHE
(i.e., neglecting the current measurement yt) can be easily extended to the
filtering form of MHE (i.e., including yt), albeit with a (significantly) more
cumbersome notation, compare also [1, Sec. 4.2]; this yields (14)-(15) with
γ1(Mt + 1,Mt,Mt), γ2(Mt + 1,Mt), and γ3(Mt + 1,Mt)/η.

TABLE I: Performance of the proposed MHE scheme compared to [2].

Setup a = 102, M=16 a = 10−3, M=128 [2], M=30

iter. i 0 1 ∗ 0 1 ∗ ∗
SSE 42.87 42.86 42.85 42.94 3.48 3.47 0.67

τmax [ms] 3.70 4.72 4.86 3.77 5.00 7.41 14.59

Average values over 100 simulations of length tsim = 200; asterisks
represent fully converged optimization problems.

since this is generally beneficial in practice. The respective
horizon lengths M ensuring condition (20) are shown in the
upper part of Table I. We simulate6 each estimator using
M = M , so that valid theoretical guarantees are obtained
in each case. Table I shows the sum-of-squares error SSE =∑tsim
t=0 ‖x̂t−xt‖2 and the maximum computation time τmax per

sample for different numbers of iterations i. Here, we require
small values of a to improve the estimates from the Luenberger
observer. In line with Remark 3, this requires larger horizons
in order to satisfy condition (20). However, we find that
already i = 1 iteration is sufficient to significantly improve
the estimates of the auxiliary observer (i = 0), reducing the
computational complexity (i.e., τmax) compared to standard
MHE by ≈ 66 %.

Comparison with the Literature: We compare the proposed
MHE framework to suboptimal MHE from [12] and to the
fast MHE schemes from [7] and [8]. For comparison reasons,
we fix the horizon length to M = 3, and thus, consider
the modifications from Remark 6. Motivated by the findings
from Table I, we choose W = 10−3P2, and correspond-
ingly, T =T = 178, which ensures satisfaction of (20) with
γ1 replaced by γ1(M + 1,M, T ), compare Remark 6 and
Footnote 5. For suboptimal MHE [12], we use the observer-
based candidate solution with a quadratic cost function based
on the δ-IOSS Lyapunov function Wδ , which yields T = 302,
cf. [12, Thm. 3]; the cost function used in [7] is parameterized
analogously (the framework from [8] does not provide tuning
possibilities). Since [7] and [8] both rely on the generalized
Gauß-Newton (GGN) algorithm, we implement the suboptimal
MHE schemes in a similar fashion. To this end, we must
change the initial estimate to x̂ = [2.3, 1.5]>, since the
GGN algorithm does not converge using the setup from
above, illustrating its local nature, compare [8]. As additional
benchmark, we again consider the standard MHE scheme
from [2], although the corresponding guarantees do not hold
anymore since M = 3 < M = 30.

Figure 1 shows the estimation error in Lyapunov coordi-
nates for all estimators under study, which reveals a slightly
improved transient behavior of the proposed suboptimal MHE
scheme compared to those from [7], [8], [12], and the auxiliary
observer. From the computation times shown in Table II,
we observe that the proposed scheme is slightly faster than
suboptimal MHE [12], which mainly is due to the fact that less
decision variables are used in the optimization problem (5).
Second, the proposed scheme (and suboptimal MHE [12])
is slower than the fast MHE schemes, since the forward

6The simulations were performed on a standard PC (Intel Core i7 with 2.6
GHz, 12 MB cache, and 16 GB RAM under Ubuntu Linux 20.04) in Matlab
with CasADi [26] and the NLP solver IPOPT [27].
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Fig. 1: Estimation error in Lyapunov coordinates for the proposed suboptimal
MHE scheme (with modifications from Remark 6) and comparable methods
from the literature (suboptimal MHE [12], fast MHE [7], [8]) after performing
i = 1 GGN iteration compared to the Luenberger observer and the (fully
optimized) MHE [2] using a fixed estimation horizon M = 3.

TABLE II: Maximum computation time τmax per sample for the proposed
suboptimal scheme compared to similar methods from the literature and [2].

MHE scheme proposed (Rem. 6) [12] [7] [8] [2]
τmax [ms] 2.39 2.83 1.08 0.90 14.31

Average values over 100 simulations of length tsim = 400.

simulation of the auxiliary observer becomes computationally
more significant for large T , cf. Remark 6. Overall, we note
that the proposed framework reduces the overall computation
time per sample compared to standard MHE [2] by ≈ 83 %.
In addition, the proposed framework is generally more flexible
compared to [7] and [8] (in particular, since arbitrary optimiza-
tion algorithms can be used), and achieves good performance
both in terms of accuracy and computation time under valid
theoretical guarantees.

VI. CONCLUSION

We presented a simple suboptimal MHE framework and
provided practical sufficient conditions for guaranteed robust
stability. Given an auxiliary observer that admits a Lyapunov
function, we showed that this function directly serves as
M -step Lyapunov function for suboptimal MHE if M is
suitably chosen. The derived guarantees are independent of
the optimization algorithm, hold for an arbitrary number of
solver iterations, improve as M increases, and asymptotically
approach those from the auxiliary observer, i.e., the theoret-
ically best possible result. The simulation example revealed
that with only one iteration of the optimizer, we were able
to achieve good performance in terms of both accuracy and
computation time under valid theoretical guarantees.
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[24] J. Löfberg, “Yalmip : A toolbox for modeling and optimization in
matlab,” in 2004 IEEE Int. Conf. Robot. Autom., 2004, pp. 284–289.

[25] MOSEK ApS, The MOSEK optimization toolbox for
MATLAB manual. Version 9.0., 2019, [Online]. Available:
http://docs.mosek.com/9.0/toolbox/index.html.

[26] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi: a software framework for nonlinear optimization and optimal
control,” Math. Program. Comput., vol. 11, no. 1, pp. 1–36, 2018.
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