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Abstract— We propose a distributed Quantum State To-
mography (QST) protocol, named Local Stochastic Factored
Gradient Descent (Local SFGD), to learn the low-rank factor
of a density matrix over a set of local machines. QST is the
canonical procedure to characterize the state of a quantum
system, which we formulate as a stochastic nonconvex smooth
optimization problem. Physically, the estimation of a low-
rank density matrix helps characterizing the amount of noise
introduced by quantum computation. Theoretically, we prove
the local convergence of Local SFGD for a general class of
restricted strongly convex/smooth loss functions. Local SFGD
converges locally to a small neighborhood of the global optimum
at a linear rate with a constant step size, while it locally
converges exactly at a sub-linear rate with diminishing step
sizes. With a proper initialization, local convergence results
imply global convergence. We validate our theoretical findings
with numerical simulations of QST on the Greenberger-Horne-
Zeilinger (GHZ) state.

I. INTRODUCTION

A fully-functional fault-tolerant quantum computer faces
many technical hurdles. For instance, using superconduct-
ing materials technology, quantum computers must remain
cooled at a very low temperature—almost absolute zero—
to preserve coherence [1]. Moreover, environmental noise
from the electronics controlling the quantum system can
disrupt the coherence of its qubits. Thus, the behavior of
current quantum computer implementations needs to be
characterized, verified, and rigorously certified, before their
widespread commercial use [2].

Quantum State Tomography (QST) is the canonical proce-
dure to characterize the state of a quantum system at various
steps of a given computation [3]. In particular, experimental
quantum physicists design quantum circuits that in theory
lead to a specific target pure state; then, they compare the
prepared (input) state and the reconstructed (output) state.
To do so, measurements are taken on independently prepared
copies of the state of a quantum system, and then used to
estimate the unknown state by post-processing the data [3].
However, the description complexity of a quantum state
grows exponentially with the number of qubits, leading to
challenging data acquisition, processing, and storage. There-
fore, as the number of qubits and quantum gates increases,
so does the need for efficient, robust, and experimentally-
accessible protocols to benchmark quantum information pro-
cessors.
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A quantum state can be represented by a density matrix
ρ which is a complex, positive semi-definite (PSD) matrix
with unit trace. The goal of QST is to design protocols that
estimate ρ. For an n-qubit mixed state1 Ψ ∈ C2n , its density
matrix can be written as a mixture of r pure states: ρ =∑r
k pkΨkΨ†k ∈ C2n×2n , where (·)† denotes the complex

conjugate operator. Here, pk is the probability of finding ρ
in the pure state Ψk. Given these definitions, QST can be
formulated as the estimation of a low-rank density matrix
ρ? ∈ Cd×d on an n-qubit Hilbert space with dimension d =
2n, through the following `2-norm optimization problem:

min
ρ∈Cd×d

F (ρ) := 1
2m‖A(ρ)− y‖22

subject to ρ � 0, rank(ρ) 6 r,
(1)

where A : C2n×2n → Rm is the linear sensing map such
that A(ρ)k = Tr(Akρ), for k = 1, . . . ,m. The sensing map
used in QST has a particular structure: it is the Kronecker
product of Pauli matrices Ak, and is closely related to how
quantum computers take measurements in practice [4].

The exponential dependency on the number of qubits
implies that ρ has more than a trillion entries for a 20-
qubit system. Storing this matrix demands tens of terabytes
of memory, which is only available as distributed memory in
sizable clusters. Analogously, a quantum system with more
than 30 qubits would demand 100× more memory than the
one present in the world’s fastest supercomputer.

To alleviate these challenges, we study the following
distributed optimization problem to be jointly solved over
a set of M machines:

min
X∈Rd×d

{
f(X) =

1

M

M∑
i=1

fi(X)

}
subject to X � 0, rank(X) 6 r,

(2)

In (2), fi(X) := Ej∼Di

[
f ji (X)

]
, and f ji (X) is the loss

function evaluated at the j-th observation of the locally
stored dataset of machine i, which follows the distribution
Di.2 The function fi : Rd×d → R is a (restricted) strongly
convex/smooth differentiable function, and X � 0 is the set
of positive semi-definite matrices with rank(X) 6 r.3

To solve (2), we introduce the Local Stochastic Factored
Gradient Descent (Local SFGD) algorithm, and prove its
convergence. To the best of our knowledge, this is the first
work that studies Local SGD in the non-convex factorized

1Mixed states are the most general way to express a quantum state.
2We assume the homogeneous data case where Di = D for all i.
3We provide theory for the real case; extensions to complex domains can

be obtained with complex conversions and Wirtinger derivatives [5].
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objective, and provides convergence in terms of the distance
to the optimal model parameter. Our contributions can be
summarized as:

• We introduce a distributed problem setup for QST as an
instance of (2).

• We propose Local SFGD, a distributed algorithm that uses
matrix factorization and utilizes local stochastic gradient
steps for the minimization of a non-convex function.

• We provide local convergence guarantees for Local SFGD
for restricted strongly convex/smooth losses, which is of
independent interest, and subsumes the QST problem as a
special case.

• We corroborate our theoretical findings with numerical
simulations of QST for the Greenberger-Horne-Zeilinger
(GHZ) state.

This paper is organized as follows. Section II reviews the
QST protocol, and sets up the non-convex distributed ob-
jective. Section III introduces the Local SFGD algorithm,
followed by Section IV where we provide the main theoret-
ical results along with the proofs. Lastly, in Section V, we
use Local SFGD for the reconstruction of the GHZ state.

II. PRELIMINARIES

Classically, the sample complexity m for reconstructing
ρ? ∈ Cd×d is O(d2), where d itself grows exponen-
tially with n. To address such large sample complexity
requirements, we use low-rankness as prior, as many lab-
constructed density matrices have low-rank structure, includ-
ing the maximally-entangled Greenberger-Horne-Zeilinger
(GHZ) state [6]. While the low-rank constraint is non-
convex, it provides a significant reduction in the sample
complexity. Under appropriate assumptions, a rank-r density
matrix can be reconstructed with m = O(r · d · poly log(d))
measurements, instead of m = O(d2) [7].

We propose to solve a factorized version of (1) to effi-
ciently handle its low-rank constraint, following [8], [9]:

min
U∈Cd×r

G(U) := F (UU†) = 1
2m‖A(UU†)− y‖22. (3)

In (3), we parametrize the low-rank density matrix ρ by
its factor U ∈ Cd×r. By rewriting ρ = UU†, both the
PSD and the low-rank constraints are automatically satisfied,
leading to the unconstrained non-convex formulation in (3).
Moreover, working in the factored space improves time
and space complexities [8]–[10]. However, even with the
reduced sample complexity m = O(r ·d ·poly log(d)), linear
dependency on d = 2n makes computation infeasible, e.g.,
for n = 20 and rank r = 100, the reduced sample complexity
still reaches 2.02× 1010.

To handle this explosion of data, we consider the setting
where the measurements y ∈ Rm and the sensing matrices
A : Cd×d → Rm from a central quantum computer are
locally stored across M different classical machines. These
classical machines perform some local operations based on
their local data, and communicate back and forth with the
central quantum server to reconstruct a density matrix.

The distributed QST problem can be written as:

min
U∈Cd×r

{
g(U) =

1

M

M∑
i=1

gi(U)
}
,

where gi(U) := Ej∼Di‖A
j
i (UU

†)− yji ‖
2
2,

(4)

with j being a random variable that follows a distribution
Di for machine i. In the next section, we introduce our
approach to solve (4), which can be more generally applied
to (2).

III. ALGORITHMS

We now introduce the Local Stochastic Factored Gradient
Descent (Local SFGD) algorithm. We review the Factored
Gradient Descent (FGD) algorithm [8]–[10] and its stochas-
tic variant [11], on which the Local SFGD is based.
� Factored Gradient Descent (FGD). A common approach
to solve the factorized non-convex objective in (3) in cen-
tralized settings is to use gradient descent on the factor U :

Ut+1 = Ut − ηt∇G(Ut) = Ut − ηt∇F (UtU
†
t ) · Ut

= Ut −
ηt
m

( m∑
k=1

{
Tr(AkUtU

†
t )− yk

}
Ak

)
· Ut, (5)

where ηt > 0 is the step size. From (5), we can see that a
pass over full data is required to compute the gradient on
every iteration. This can be computationally challenging or
even infeasible when m is large, which is almost always the
case for QST, even for moderate number of qubits n.
� Stochastic Factored Gradient Descent (SFGD). A simple
and effective way to mitigate this burden is to use Stochastic
Factored Gradient Descent (SFGD), which replaces the true
gradient ∇G with an unbiased estimator H . For instance,
one can use the following SFGD update:

Ut+1 = Ut − ηt ·H(Ut)

= Ut −
ηt
b

( b∑
k=1

{
Tr(AkUtU

†
t )− yk

}
Ak

)
· Ut, (6)

which simply uses b measurements instead of m � b to
approximate ∇G, where the hyperparameter b is the batch
size. In [11], the convergence of SFGD was shown for
(restricted) strongly convex/smooth functions.

From (6), one can see that SFGD is amenable to paral-
lelization, simply by replacing H(Ut) with an average of
stochastic gradients that are computed independently from
the local machines. This scheme is often the state-of-the-
art in distributed learning problems [12], [13]. However, it
exhibits a major drawback: on every iteration, each machine
has to send the local (stochastic) gradient to the server, and
receive back the aggregated model parameter. Such com-
munication is much more expensive than—typically about
3 orders of magnitude—the local computations that each
machine has to perform [14].
� Our approach: Local SFGD. There are two main
approaches to resolve the aforementioned communication
overhead. One is to reduce the number of transmitted bits
via gradient compression schemes, such as quantization [15]



Algorithm 1 Local SFGD
1: Set number of iterations T > 0, synchronization time

steps t1, t2, . . . , and initialize U i0 = U0 as below:

U i0 = SVD
(
−

M∑
i=1

mi

m ∇fi(0)
)
∀i ∈ [M ], (7)

where SVD denotes the singular value decomposition.
2: for each round t = 0, . . . T do
3: for in parallel for i ∈ [M ] do
4: Sample jt uniformly at random from [mi].
5: if t = tp for some p ∈ N then
6: U it+1 = 1

M

∑M
i=1

(
U it − ηt∇g

jt
i (U it )

)
7: else
8: U it+1 = U it − ηt∇g

jt
i (U it )

9: end if
10: end for
11: end for
12: return ÛT+1 := 1

M

∑M
i=1 U

i
T+1.

or sparsification [16]. The other is to increase the amount
of local iterations performed on each machine, in order to
reduce the total communication rounds. The latter approach
is called Local SGD, and was shown to outperform (parallel)
SGD in some settings [17]–[20].

In this work, we introduce the Local SFGD to estimate
the low-rank factor of a density matrix over a set of local
machines. Although our main application is to solve the dis-
tributed QST objective in (4), Local SFGD is more generally
applicable to the distributed objective in (2); see Section IV
for details. Local SFGD is summarized in Algorithm 1.
While there are non-convex results on Local SGD [21], [22],
they consider a different problem setting, and only provide
convergence in terms of the norm of the gradient. To the best
of our knowledge, this is the first work that studies Local
SGD in the non-convex factorized objective, and provides
convergence in terms of the distance to the optimal model
parameters.

Local SFGD produces M sequences in parallel, where
M is the number of machines. If a synchronization step
happens at time t, i.e., t = tp for some p ∈ N, then the
local parameters at each machine U it are sent to the central
server, and their average is computed (line 6). Otherwise,
each machine performs (possibly many iterations of) SFGD
without communicating with the central server (line 8).
An important metric to consider for Local SFGD is the
maximum time interval between two synchronization time
steps: maxp |tp − tp+1|, which we assume is bounded by
h > 1; see also Theorems 2 and 4. If communication happens
on every iteration, i.e., h = 1, then Algorithm 1 reduces to
the (parallel) SFGD in (6).

IV. THE CONVERGENCE OF LOCAL SFGD

We provide local convergence guarantees of Local SFGD
in Algorithm 1 for restricted µ-strongly convex/L-smooth
objectives. Similarly to (3), as we parametrize X = UU>,

Problem (2) becomes non-convex, where:

min
U∈Rd×r

{
g(U) =

1

M

M∑
i=1

gi(U)
}
, (8)

which now is unconstrained, as both the PSD and the low-
rank constraints are automatically satisfied.

We assume fi is a symmetric function: fi(X) = fi(X
>).

Then, the gradient of gi(U) = fi(UU
>) simplifies to:4

∇gi(U) =
(
∇fi(UU>) +∇fi(UU>)>

)
U = 2∇fi(UU>)U.

We now state key assumptions used in our main results.

Assumption 1. The function fi is µ-restricted strongly
convex and L-restricted smooth. That is, ∀X,Y � 0 and
∀i ∈ [M ], it holds that

fi(Y ) > fi(X) + 〈∇fi(X), Y−X〉+ µ
2 ‖X − Y ‖

2
F , (I-a)

and ‖∇fi(X)−∇fi(Y )‖F 6 L‖X − Y ‖F . (I-b)

Assumption 2. The stochastic gradient∇gji is unbiased, has
a bounded variance, and is bounded in expectation, ∀i ∈
[M ]. That is,

Ej
[
∇gji (U)

]
= ∇gi(U), (II-a)

Ej
[
‖∇gji (U)−∇gi(U)‖2F

]
6 σ2, and (II-b)

Ej
[
‖∇gji (U)‖2F

]
6 G2, (II-c)

where j follows a uniform distribution.

Assumptions (I-a) and (I-b) respectively state that µ-strong
convexity and L-smoothness hold when we restrict the space
of d× d matrices to the set of PSD matrices. Such assump-
tions have become standard in optimization analysis, and are
significantly weaker than assuming global strong convexity.
Importantly, note that we only assume fi(X) to have such
structures—the transformed function gi(U) in (8) typically
does not satisfy restricted strong convexity/smoothness [23].

Assumptions (II-a) and (II-b) respectively imply that the
stochastic gradient is unbiased and has a bounded variance,
and both are standard assumptions in stochastic optimization
[24]. Assumption (II-c) states that the stochastic gradient has
a bounded norm, in expectation. This assumption may seem
strong when the objective is (unconstrained) strongly convex
[25]; however, note that Assumption (I-a) is restricted to PSD
matrices, and the original Problem (2) is constrained.

Apart from (8) being non-convex, another difficulty that
arises by the parametrization X = UU> is that the solution
can become non-unique.5 We can remove this ambiguity by
defining the following rotation invariant distance metric.

Definition 1 (Eq. (3.1) in [10]). For any U, V ∈ Rd×r, let
D(U, V ) := minR∈O ‖U − V R‖F , where O ⊆ Rr×r is the
set of orthonormal matrices such that R>R = Ir×r.

4Without loss of generality, we absorb 2 into ηt to use ∇gi(U) and
∇fi(UU>)U interchangeably.

5Consider reconstructing X? =

[
1 1
1 1

]
. It can be seen that both U? =

[1 1]> and Ũ? = −[1 1]> satisfy U?U?> = Ũ?Ũ?> = X?.



Remark 1. Definition 1 regards all U, V ∈ Rd×r to be
in the same distance such that D(U, V R) = D(UR, V ) =
D(U, V ). Hence, it defines the equivalence classes {UR :
R>R = Ir×r} and {V R : R>R = Ir×r} [23].

A crucial component for our convergence analysis is the
following lemma, which replaces the role of (strong) con-
vexity in classical convergence analysis of gradient descent:

Lemma 1 (Lemma 14 in [26]). Let Assumption 1 hold.
Assume that D2(U i0, U

?) 6 σr(X
?)

100·κ·σ1(X?) , where σk(X?) is
the k-th singular value of X?,6 and κ := L

µ . Then, the
following inequality holds:〈
U it − U?R?,∇gi(U it )

〉
> 2ηt

3 ‖∇gi(U
i
t )‖2F + 3µ

20σr(X
?) ·D2(U it , U

?).
(11)

Remark 2. The initialization scheme (7) in Algorithm 1 is
modified from [26, Theorem 11] to distributed version, and
satisfies the initialization condition in Lemma 1 for small
enough κ; for the QST problem, the Pauli sensing matrices
Ak satisfy the Restriced Isometry Property (RIP) [4], [27],
implying κ ≈ 1+δ

1−δ , where δ ∈ (0, 1) is the RIP constant.
Hence, by using right prior information (e.g., low-rankness),
we can apply the compressed sensing results, implying that
X? is unique and can be recovered exactly [28].

We are now ready to present the main theoretical results.
We first show in Theorem 2 that the Local SFGD converges
locally at a linear rate to a small neighborhood of the global
optimum with a constant step size. Then, in Theorem 4, we
show the exact local convergence by using an appropriately
diminishing step size, at the expense of reducing the conver-
gence rate to a sub-linear rate.

Theorem 2 (Local linear convergence with constant step
size). Let Assumptions 1, 2, and the initialization condition
of Lemma 1 hold. Moreover, let ηt = η < 1

α for t ∈ [0 : T ]
and maxp |tp − tp+1| 6 h. Then, the output of Algorithm 1
has the following property:

E
[
D2(ÛT+1, U

?)
]
6 (1− ηα)

T+1
D2(Û0, U

?)

+ η
(

(h−1)2G2

α + σ2

Mα

)
,

(12)

where X? is the optimum of f over the set of PSD matrices
such that rank(X?) = r, U? is such that X? = U?U?>, and
α = 3µ

10σr(X
?) is a global constant.

Remark 3. In (12), the expectation is with respect to the
previous iterates, {Ût}Tt=0. We make a few remarks about
Theorem 2. First, notice the last variance term σ2

Mα , which
disappears in the noiseless case, is reduced by the number
of machines M . Second, we assume a single-batch is used
in the proof; by using batch size b > 1, this term can
be further divided by b. Lastly, by plugging in h = 1
(i.e., synchronization happens on every iteration), the first
variance term disappears, exhibiting similar local linear
convergence to SFGD [11].

6Without loss of generality, singular values are sorted in descending order.

Proof. We start with the following auxiliary lemma.

Lemma 3. Let Assumptions 1 and (II-c) hold. Then, the
output of Algorithm 1 with maxp |tp+1 − tp| 6 h satisfies:

1

M

M∑
i=1

E
[
‖Ût − U it‖2F

]
6 (h− 1)2η2tG

2. (13)

The proof is almost identical to [17, Lemma 3.3], and
hence is omitted. Throughout the proof, we use the notations:

U it+1 = U it − ηtgit and Ût+1 = Ût − ηtgt,

where Ût = 1
M

∑M
i=1 U

i
t , i.e., the average across different

machines at time t. We denote the stochastic gradient of ma-
chine i at time t with git := ∇f jti (U itU

i>
t )U it = ∇gjti (U it ),

and the average of stochastic gradients across machines with
gt = 1

M

∑M
i=1 g

i
t. Finally, we denote E [gt] = ḡt.

We first decompose the distance of D2(Ût+1, U
?):

D2(Ût+1, U
?) = min

R∈O
‖Ût+1−U?R‖2F 6 ‖Ût+1−U?R?‖2F

= ‖Ût − U?R? − ηtḡt‖2F + η2t ‖ḡt − gt‖2F
+ 2ηt〈Ût − U?R? − ηtḡt, ḡt − gt〉. (14)

The first term in (14) can be further decomposed to:

‖Ût − U?R?‖2F + η2t ‖ḡt‖2F − 2ηt〈Ût − U?R?, ḡt〉. (15)

We bound the second and the third terms of (15) separately.
For the second term, by Jensen’s inequality, we have:

‖ḡt‖2F =
∥∥ 1
M

M∑
i=1

∇gi(U it )
∥∥2
F
6 1

M

M∑
i=1

‖∇gi(U it )‖2F . (16)

For the third term, we decompose further to have:

〈
Ût−U?R?, 1

M

M∑
i=1

∇gi(U it )
〉

= 1
M

M∑
i=1

〈
Ût−U it ,∇gi(U it )

〉
+ 1

M

M∑
i=1

〈
U it − U?R?,∇gi(U it )

〉
. (17)

We again bound the two terms in (17) separately. Using
〈A,B〉 > − δ2‖A‖

2
F − 1

2δ‖B‖
2
F , The first term admits:

1
M

M∑
i=1

〈
Ût − U it ,∇gi(U it )

〉
> 1

M

M∑
i=1

(
− δ

2‖Ût − U
i
t‖2F − 1

2δ‖∇gi(U
i
t )‖2F

)
By Lemma 1, the second term in (17) admits:

1
M

M∑
i=1

〈
U it − U?R?,∇gi(U it )

〉
> 1

M

M∑
i=1

2ηt
3 ‖∇gi(U

i
t )‖2F + 1

M

M∑
i=1

3µ·σr(X
?)

20 D2(U it , U
?)

> 1
M

M∑
i=1

2ηt
3 ‖∇gi(U

i
t )‖2F + 3µ·σr(X

?)
20 D2(Ût, U

?),



where we used convexity of D2(·, ·) in the second inequality.
Combining above two bounds into (17), we have
〈ḡt, Ût − U?R?〉

> 1
M

M∑
i=1

(
− δ

2‖Ût − U
i
t‖2F − 1

2δ‖∇gi(U
i
t )‖2F

)
+ 1

M

M∑
i=1

2ηt
3 ‖∇gi(U

i
t )‖2F + 3µ·σr(X

?)
20 D2(Ût, U

?). (18)

Substituting (16) and (18) into (15), we have
‖Ût − U?R? − ηtḡt‖2F

6
(
1− ηt · 3µ10σr(X

?)
)
‖Ût − U?R?‖2F

+ 1
M

M∑
i=1

[(
ηt
δ −

η2t
3

)
‖∇gi(U it )‖2F + ηtδ‖Ût − U it‖2F

]
δ=4/ηt

= (1− ηtα) ‖Ût−U?R?‖2F

+ 1
M

M∑
i=1

[
ηt
(
ηt
4 −

ηt
3

)
‖∇gi(U it )‖2F + 4‖Ût − U it‖2F

]
6 (1− ηtα) ‖Ût−U?R?‖2F + 4

M

M∑
i=1

‖Ût − U it‖2F , (19)

where in the equality we defined α := 3µ
10σr(X

?), and in
the last inequality we used that ηt

4 −
ηt
3 < 0.

Substituting (19) into (14) and taking expectations condi-
tional on previous iterates, and using E [gt] = ḡt, we get

E[D2(Ût+1, U
?)] = ‖Ût−U?R?−ηtḡt‖2F + η2tE[‖ḡt−gt‖2F ]

(19)
6 (1− ηtα) ‖Ût − U?R?‖2F

+ 4
M

M∑
i=1

E
[
‖Ût − U it‖2F

]
+ η2tE[‖ḡt − gt‖2F ]

(13)
6 (1− ηtα) ‖Ût − U?R?‖2F

+4η2t (h− 1)2G2 + η2tE[‖ḡt − gt‖2F ].

where the last inequality is by Lemma 3. We further have:

E[‖ḡt − gt‖2F ] = E
[∥∥∥ 1

M

M∑
i=1

(
∇gjti (U it )−∇gi(U it )

)∥∥∥2
F

]
6 1

M2

M∑
i=1

E[‖∇gjti (U it )−∇gi(U it )‖2F ]
(II-b)
6 σ2

M ,

where we used Var(
∑M
m=1Xm) =

∑M
m=1 Var(Xm) for

independent random variables.
We now arrive at the iteration invariant bound:

E[D2(Ût+1, U
?)]

6 (1− ηtα)D2(Ût, U
?) + η2t

(
4(h− 1)2G2 + σ2

M

)
. (20)

Lastly, we unfold (20) for T iterations, and using∑T
t=0(1− ηtα)t 6

∑∞
t=0(1− ηtα)t = 1

ηtα
, we obtain

E[D2(ÛT+1, U
?)] 6 (1− ηtα)

T+1
D2(Û0, U

?)

+ ηt

(
4(h−1)2G2

α + σ2

Mα

)
,

which completes the proof.

Theorem 4 (Local sub-linear convergence with diminishing
step size). Let Assumptions 1, 2, and the initialization
condition of Lemma 1 hold. Moreover, let ηt = 2

α(t+2) for
t ∈ [0 : T ] and maxp |tp − tp+1| 6 h. Then, the output of
Algorithm 1 has the following property:

E
[
D2(ÛT+1, U

?)
]
6 4C

α(T+3) , (21)

where X? is the optimum such that rank(X?) = r, U? is
such that X? = U?U?>, and α = 3µ

10σr(X
?) and C =

4(h− 1)2G2 + σ2

M are global constants.

Proof. We claim the following, and prove by induction:

D2(Ût, U
?) 6 4C

α2(t+2) , with ηt = 2
α(t+2) . (22)

We start from the iteration invariant bound in (20):

E
[
D2(Ût+1, U

?)
]
6 (1− ηtα)D2(Ût, U

?) + η2t · C.

For the base case t = 0, we have

E
[
D2(Û1, U

?)
]
6 (1− η0α)D2(Û0, U

?) + η20 · C
=
(
1− 1

α · α
)
D2(Û0, U

?) + C
α2 = C

α2 6 4C
3α2 .

Now, we proceed to the inductive step. Assuming (22) holds
for time step t, we want to prove the same holds for the time
step t+ 1. Starting from (20) again, we have:

E
[
D2(Ût+1, U

?)
]
6 (1− ηtα)D2(Ût, U

?) + η2t · C
(22)
6
(

1− 2
t+2

)
· 4C
α2(t+2) + 4C

α2(t+2)2 = 4C · t+1
α2(t+2) ·

1
t+2

6 4C · t+2
α2(t+3) ·

1
t+2 = 4C

α2(t+3) ,

where in the last inequality we used the fact that t+1
t+2 6 t+2

t+3 .
This completes the proof.

V. NUMERICAL RESULTS

We use Local SFGD to reconstruct the Greenberger-
Horne-Zeilinger (GHZ) state, using simulated measurement
data from Qiskit. GHZ state is known as maximally entangled
quantum state [6], meaning it exhibits the maximal inter-
particle correlation, which does not exist in classical mechan-
ics. We are interested in: (i) how the number of local steps
affect the accuracy defined as ε = ‖ÛtÛ>t − ρ?ghz‖2F , where
ρ?ghz = U?U?† is the true density matrix for the GHZ state;
and (ii) the scalability of the distributed setup for various
number of classical machines M .

In Fig. 1 (Top), we first fix the number of machines
M = 10 and the number of total synchronization steps to
be 100, and vary the number of local iterations between two
synchronization steps, i.e., h ∈ {1, 10, 25, 50, 100, 200}. We
use constant step size η = 1 for all h. Increasing h, i.e.,
each distributed machine performing more local iterations,
leads to faster convergence in terms of the synchronization
steps. Notably, the speed up gets marginal: e.g., there is not
much difference between h = 100 and h = 200, indicating
there is an “optimal” h that leads to the biggest reduction in
the number of synchronization steps. Further, one can notice
that higher h leads to slightly worse final accuracy—this is
consistent with (12) in Theorem 2, where the first variance
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Fig. 1. Top: Convergence speed as a function of number of synchronization
steps tp for various number of local iterations. Bottom: number of synchro-
nization steps to reach ε 6 0.05 as a function of number of workers M .
The batch size b = 50 is used for all cases.

term that depends on G2 disappears with h = 1. Finally,
note that ε does not decrease below certain level due to the
inherent finite sampling error of quantum measurements [29].

In Fig. 1 (Bottom), we plot the number of synchronization
steps to reach ε 6 0.05, while fixing h = 20. We vary the
number of workers M ∈ {5, 10, 15, 20}, where each machine
gets 200 measurements. There is a significant speed up from
M = 5 to M = 15, while for M = 20, it took one more
syncrhonization step compared to M = 15, which is likely
due to the stochasticity of SFGD within each machine.

VI. CONCLUSION AND FUTURE WORK

In this work, we introduced a distributed problem set up
for QST as an instance of a general distributed optimization
problem with PSD/low-rank constraints. We proposed the
Local SFGD, a distributed non-convex algorithm that utilizes
local steps at each distributed worker to estimate the low-rank
factor of a density matrix. We proved the local convergence
of Local SFGD for restricted strongly convex/smooth ob-
jectives, which can be of independent interest. For future
work, extension to the heterogeneous data case as well
as the decentralized case with various topologies can be
investigated.
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[24] Léon Bottou, Frank E Curtis, and Jorge Nocedal, “Optimization
methods for large-scale machine learning,” Siam Review, vol. 60, no.
2, pp. 223–311, 2018.

[25] Lam Nguyen, Phuong Ha Nguyen, Marten Dijk, Richtárik, et al.,
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