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Abstract—The redesign of output feedback controllers
for linear systems based on adaptive saturation (stub-
born) and dead-zone redesign is investigated by showing
that input-to-state stability holds in closed loop upon the
satisfaction of linear matrix inequalities. Such results are
obtained by using sector conditions that are involved in
the Lyapunov analysis in order to ensure input-to-state sta-
bility. A simulation case study shows the effectiveness of
the proposed redesign in denoising and outlier attenuation
with increased accuracy and precision.

Index Terms—Saturation, dead-zone, sector conditions,
LMI.

I. INTRODUCTION

D ISTURBANCE attenuation in feedback design is of
primary importance in control applications. For linear

systems, many techniques have been developed in output feed-
back control, such as H∞, H2 design or LQG approaches
[1]–[3]; geometric approaches [4]; or internal-model based
regulators [5]. Often a state-feedback design is combined with
a state observer, but purely output feedback regulators can be
also obtained [6]. Linear controllers posses however structural
performance limitations [3, Chs. 5 and 6]. A possible way to
overcome such limitations is to use nonlinear or hybrid tech-
niques. We recall the works [7]–[11] as few examples of hybrid
controllers employed for performance improvement by means
of reset or switching strategies. Here we pursue instead the
use of a nonlinear device for output feedback control of linear
systems, while providing solid theoretical findings in terms of
input-to-state stability (ISS, [12]) properties.

In this letter, we propose two redesign methods for dynamic
output feedback of linear systems by embedding stubborn
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(saturation) and dead-zone redesign techniques [13]–[18] in
an output feedback loop to improve noise reduction. Our goal
is twofold: with a stubborn redesign, we improve the tran-
sient response of the closed loop to measurement outliers.
Instead, with a dead-zone redesign, we get a reduction in
the sensitivity of the closed loop to persistent disturbances
such as measurement bias or Gaussian noise affecting the
output. Our solution extends the above-mentioned observer
design techniques by adopting an output feedback term (rather
than the output injection term) with a saturation or a dead-
zone function having a variable threshold, adapted according
to a linear filter dynamics. The series of works [13]–[16]
have highlighted the potential of this paradigm in the con-
text of observers. We show here that, by redesigning a given
output feedback controller, not only the original ISS proper-
ties are preserved, but also the overall performances can be
improved.

It has been already shown in the case of asymptotic
observers (output injection), the stubborn redesign is particu-
larly efficient in the presence of outliers affecting the measured
outputs [13]–[15], while the dead-zone redesign helps in
robustifying the observer against high-frequency measurement
noises [15], [16]. In fact, [13] and [16] initially motivated
the construction of these nonlinear redesigns in the context of
linear observers. Later, the stubborn paradigm was extended
to synchronization of multi-agent systems [17], [18], set-
membership estimation [19], low-power high-gain observers
[20], extended Kalman filtering [21], estimation for distributed
parameter systems [22], nonlinear filtering [23]. Here instead,
we extend the approach to a generic linear output feed-
back (possibly dynamic) controller, exploiting linear matrix
inequalities (LMIs) [24] for the parameter tuning, generalizing
the output injection scenarios of [13] and [16]. In particu-
lar, we allow in our setting for any given stabilizing linear
dynamic output feedback law designed for a multivariable lin-
ear plant affected by disturbances, and provide LMI-based
stubborn/dead-zone redesign conditions that guarantee closed-
loop exponential ISS. The feasibility of our LMI-based con-
ditions is also proven. Performance improvements are shown
via a simulation example inspired from a model of the lon-
gitudinal dynamics of a fixed-wing vehicle flying at high
speed [25].

The rest of this letter is structured as follows. In Section II
we state the problem formulation. In Section III the stubborn
redesign is addressed, while the Section IV studies the dead-
zone redesign. Conclusions are drawn in Section V.
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Notation: R≥0 denotes the set of non-negative real numbers.
For a vector x or a matrix A, x� and A� denote their transposes,
respectively. x(i) and A(i) denote the ith component of vector
x and the ith row of matrix A, while |x| := √

x�x denotes the
Euclidean norm of x and diag(x) is a diagonal matrix having
diagonal elements x(i). For two symmetric matrices A, B of
equal dimensions, A > B means that A − B is (symmetric)
positive definite. For a square matrix A, He(A) = A + A�,
λmax(A) (resp. λmin(A)) denotes the maximal (resp. minimal)
eigenvalue of matrix A. I and 0 stand for the identity and
the null matrix of appropriate dimensions, respectively. For a
partitioned matrix, the symbol � stands for symmetric blocks.
Given two vectors x1, x2, we denote (x1, x2) = [x�

1 x�
2 ]�.

II. PROBLEM FORMULATION

Consider the following linear plant

ẋp = Apxp + Bpu + Bpww

y = Cpxp + Dpww, (1)

where xp ∈ R
np is the state, u ∈ R

m is the control input,
w ∈ R

nd is an exogenous disturbance input (comprising pro-
cess disturbances and measurement noise), and y ∈ R

p is
the measured output. Matrices Ap, Bp, Bpw, Cp, and Dpw are
constant known matrices of appropriate dimensions.

We assume that for plant (1) a linear stabilizing dynamic
output feedback controller has been designed, as follows

ż = Fz + Gy

u = Hz + Ny, (2)

where z ∈ R
nc is the state of the dynamic controller and F, G,

H, and N are constant matrices of appropriate dimensions. For
closed loop (1)-(2) we enforce the following mild assumption,
which is not restrictive.

Assumption 1: The linear closed-loop system (1)-(2) with
w ≡ 0 is globally exponentially stable to the origin.

Assumption 1 only holds if the triplet (Ap, Bp, Cp) be stabi-
lizable and detectable: a necessary assumption for output feed-
back stabilizability (with a linear feedback). The assumption
is also sufficient and necessary to guarantee global exponential
stability with our mildly invasive redesign solutions.

Inspired by the recent works [13]–[16] where linear and
nonlinear observers are augmented with dynamic saturations
or dead-zones acting on the output injection term, we follow a
similar paradigm for the case of output feedback augmentation.

III. LMI-BASED STUBBORN REDESIGN

A. Design Paradigm and Main Result
With measurement outliers, namely sporadic large-

amplitude disturbances affecting the measurement output
y, we redesign the closed loop (1)-(2) by augmenting con-
troller (2) with a new non-negative state σ ∈ R≥0 (namely
the non-negative reals is a forward invariant set for the
ensuing dynamics). State σ is instrumental for the dynamic
saturation limits of the augmentation scheme. In particular,
given a constant vector v ∈ R

p having only positive elements,
we denote by

√
σv the componentwise square-root of each

component of v scaled by the scalar state σ . The stubborn
redesigned controller is

ż = Fz + G sat√σv(y)

u = Hz + N sat√σv(y)

σ̇ = −λσ + y�Ry, σ ∈ R≥0, (3)

where the notation σ ∈ R≥0 emphasizes the fact that solutions
are only defined with σ in the non-negative reals, so that (3)
can be regarded as a constrained differential equation.

In (3), function sat√σv denotes the decentralized symmetric
vector-valued saturation from R

p to R
p whose components

are given by (sat√σv(y))i = max{−√
σvi, min{√σvi, yi}} for

all i = 1, . . . , p. The stubborn redesign is parametrized by
vector v ∈ R

p, the symmetric positive semi-definite matrix
R and the positive scalar λ ∈ R. To suitably represent the
redesigned closed loop, we introduce the dead-zone function
dz√

σv(y) := y − sat√σv(y), and we define the closed-loop
state x := (xp, z) ∈ R

np+nc . Then replacing sat√σv(y) = y −
dz√

σv(y) in (3), we may represent (1), (3) as:

ẋ = Ax − B dz√
σv(y) + Bww (4)

y = Cx + Dw (5)

σ̇ = −λσ + y�Ry, σ ∈ R≥0, (6)

with the following matrices:[
A B Bw
C D

]

:=
⎡
⎣ Ap + BpNCp BpH BpN BpNDpw + Bpw

GCp F G GDpw
Cp 0 Dpw

⎤
⎦. (7)

Note that, due to Assumption 1, matrix A in (7) is Hurwitz. For
the design of v, λ, and R, we rely on the Lyapunov function

V(x, σ ) = x�Px + ζσ + μ max{x�Px − λσ, 0} (8)

with P = P� > 0, and ζ and μ are positive scalars whose
selection is clarified in the proof of Theorem 1. Function (8) is
selected quadratic in x and linear in σ so as to obtain an LMI
designed by deriving (8) along the solutions to system (4)-(6).
Indeed, structure (8) allows exploiting desirable properties of
both P when x�Px < λσ (because ζ will be selected small in
the proof of Theorem 1) and −λσ when x�Px > λσ (because
μ will be selected large in the proof of Theorem 1). The details
are reported in Section III-C. Based on (8), we first impose
the following condition, ensuring its decrease when σ is large
(i.e., when the max function is equal to 0):

Mg := He

[
PA − 1

2λC�RC + 1
2λP − PB

UgC − Ug

]
< 0, (9)

where Ug is diagonal positive definite. Conversely, for the case
where σ is small (i.e., when the max function is equal to its
first argument), we need to impose the next conditions

M� := He

[
PA − PB

U�C + Y − U�

]
< 0 (10)

[
P Y�

(i)
Y(i) λ−1u�,i

]
≥ 0, ∀i = 1, . . . , p, (11)

where U� = diag{u�,1, . . . , u�,p} is diagonal positive definite.
Within the above setting we can state and prove the follow-

ing first main result, whose proof is postponed to Section III-C.
Theorem 1: Assume that there exist a scalar λ > 0, a sym-

metric positive definite matrix P ∈ R
n×n, a symmetric positive

semi-definite matrix R ∈ R
p×p, two diagonal positive definite
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matrices Ug ∈ R
p×p, U� ∈ R

p×p, and a matrix Y ∈ R
p×n

such that inequalities (9)–(11) are satisfied. Then, selecting the
entries of vector v as the inverse of the diagonal elements of
U� (namely diag(v) = U−1

� ), the closed loop (1), (3) is finite-
gain exponentially input-to-state stable from w to x, namely
there exist positive scalars M, α > 0 and γ > 0 such that all
solutions satisfy

∣∣∣(x(t),√σ(t))
∣∣∣ ≤ Me−αt

∣∣∣(x(0),
√

σ(0))

∣∣∣ + γ ‖w‖2, (12)

where ‖w‖2 denotes the L∞ norm of w.
We provide below some information about the conservative-

ness of the design conditions (9)–(11).
Proposition 1: Under Assumption 1 there exist parameters

P, R, U�, Ug, Y and λ satisfying the conditions of Theorem 1.
Proof: Recalling that A is Hurwitz by assumption, select

P and ν > 0 solution to PA + A�P ≤ −νP. Next, consider
the conditions (10) and (11). With P selected above, select
Y = B�P−U�C. Then (10) is trivially satisfied for any U� > 0.
Then, apply the Schur complement to (11), obtaining P −
λ(PB − U�C)�i u−1

�,i (PB − U�C)i ≥ 0. Fix any U� and select
λ < min{ν, u�,i/
}, with 
 = λmax(PB − U�C)2λmin(P). This
ensures (11) is satisfied. Finally, the Schur complement of (9)
gives PA + A�P − λC�RC + λP + Q < 0 with Q = (C�Ug −
PB)U−1

g (UgC−B�P). Using the Young inequality one obtains
Q ≤ 2C�UgC + 2PBU−1

g B�P. Selecting Ug > 4
ν−λ

|PB|2P−1

and R > 2
λ

Ug, inequality (9) is satisfied.
While Proposition 1 establishes feasibility of conditions

(9)–(11), we comment here on optimality-based selections of
the parameters. First observe that (9)–(11) are quasi-convex in
the decision variables and correspond to a generalized eigen-
value problem in the scalar parameter λ. Indeed, except for the
product λR in which λ can be absorbed in the free variable R,
smaller selections of λ increase the feasibility set. Moreover,
once λ has been fixed, the conditions are homogeneous in
the decision variables, in the sense that if P, R, U�, Ug, Y
are feasible, then cP, cR, cU�, cUg, cY are feasible too for
any c > 0. Therefore, an effective approach is to fix λ small
enough to get feasibility of the LMIs, and then impose P > I
while minimizing the trace of R so that the final design is
associated to a fast reduction of the stubborn parameter σ and
the response quickly brings the saturation threshold to a small
value that can effectively eliminate measurement outliers. This
design approach is followed in the next section.

B. Simulation Example
Consider the model of the longitudinal dynamics of a fixed-

wing vehicle flying at high speed, given in [25]:

v̇ = e − g sin(γ ) + w1, γ̇ = �v sin(θ − γ ) − g cos(γ )
v , θ̇ = q,

where v is the modulus of the speed, γ is the path angle, θ

is the pitch angle, q is the pitch rate, g is the standard grav-
itational acceleration, � is an aerodynamic lift coefficient, w1
is a perturbation caused by the wind. Considering the signals
e, q as control inputs and γ, θ as measured outputs, the lin-
earization around an equilibrium (v0, 0, 0) of this model is in

Fig. 1. Disturbances, norm of the state, and σ (t) (stubborn redesign).

the form (1) in which the matrices Ap, Bp, Cp are given by

[
Ap Bp Bpw

Cp Dpw

]
=

⎡
⎢⎢⎢⎢⎣

0 − g 0 1 0 1 0 0
gv−2

0 − �v0 �v0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 1 0
0 0 1 0 0 1

⎤
⎥⎥⎥⎥⎦

where we supposed that measurement noise affects both out-
puts. Choosing g = 1, v = 2, � = 0.1, by means of pole
placement we select a feedback of the form (2) with

[
F G
H N

]
=

⎡
⎢⎢⎢⎣

−2.91 − 4.11 − 0.80 − 0.83 0
0.25 − 0.4 0 0.2 0.2

−0.99 − 4.96 − 2.88 0 0
−2.9 − 3.9 − 0.8 0 0
−1 − 4.9 − 2.8 0 − 0.1

⎤
⎥⎥⎥⎦

so that the real values of the eigenvalues of the closed-loop
system are included in the set [−3,−0.1]. The solution of the
LMI conditions (9)–(11) with a fixed λ = 0.5 provided

R =
(

18.4638 2.5576
2.5576 5.9588

)
, v =

(
0.1978
0.1300

)
.

Fig. 1 shows the simulations, where the adaptive saturation
level σ , initialized at zero, is clearly excited by the outliers
affecting the measurements before t = 35 s and then becomes
quite small when no other outliers occur after t = 35 s. The
outliers’ effect is clearly attenuated, as illustrated by the mid-
dle plot. Based on Fig. 1, we computed the integrals of |x(t)|
in the interval t ∈ [0, 60] s for the standard regulator case
and the stubborn redesigned regulator case, which are equal
to 42.4572 and 39.4415, respectively.

C. Proof of Theorem 1
Consider the candidate Lyapunov function V in (8). Such a

function is linear in σ and quadratic in x. Furthermore, recall-
ing that σ ∈ R≥0, we deduce that V is positive definite on
R

n × R≥0 and satisfies the bounds

α1|(x,√σ)|2 ≤ V(x, σ ) ≤ α2|(x,√σ)|2, (13)
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where α1 := min{λmin(P), ζ }, and α2 := max{(1 +
μ)λmax(P), ζ } stem from upper and lower bounding the var-
ious terms in (8). Similar to [13, Proof of Th. 1], one can
observe that function V(x, σ ) is not differentiable in the set of
measure zero where x�Px−λσ = 0. However, it is continuous
and locally Lipschitz. Therefore, proceeding as in [13], due to
continuity of the closed-loop dynamics (1), (3), it is enough to
ensure suitable decrease conditions of V for almost all points
of the state space (see also the recent results of [26] for an
alternative proof of this fact). To check our Lyapunov condi-
tions almost everywhere, we split the analysis in two cases:
(C1) x�Px < λσ and (C2) x�Px > λσ .

(C1). In this case, (8) yields V(x, σ ) = x�Px + ζσ , whose
directional derivative along dynamics (4)–(6) reads

V̇(x, σ ) = 2
(

x�PAx − x�PB dz√
σv(y) + x�PBww

)
− 2λζσ + 2ζy�Ry. (14)

We use [27, Lemma 1.6] with respect to dz√
σv, leading to the

following regional sector condition (we use dz here and below
as a shortcut notation for dz√

σv(y)): dz� U�(y+Qx−dz) ≥ 0,
which holds for any positive definite diagonal matrix U� ∈
R

p×p, any matrix Q ∈ R
p×n and any x satisfying −√

σvi ≤
Q(i)x ≤ √

σvi.
Let us now consider (11) and notice that, with the selec-

tion Y = U�Q, and recalling the selection diag(v)−1 = U�

from the theorem statement, a Schur complement provides,
P − λv−1

i Q�
(i)Q(i) ≥ P − λu�,iQ�

(i)Q(i) ≥ 0. This inequality,
combined with the inequality pertaining case (C1), provides

λv−1
i |Q(i)x|2 = λv−1

i x�Q�
(i)Q(i)x ≤ x�Px ≤ λσ, (15)

which ensures that the regional sector condition holds, because
−√

σvi ≤ Q(i)x ≤ √
σvi. Based on the above reasoning, we

may construct the following bound on V̇ , stemming from (14)

V̇ ≤ V̇ + 2 dz� U�(y + Qx − dz)

= 2
(

x�PAx − x�PB dz +x�PBww
)

− λζσ (16)

+ ζy�Ry + 2 dz� U�(y + Qx − dz).

To suitably bound the right-hand side of (16), we may use
Young’s inequality multiple times to construct a large enough
scalar κ� such that, for any ε > 0, the following bounds hold:

x�PBww ≤ ε|x|2 + κ�

ε
|w|2, (17)

y�Ry ≤ (1 + ε)x�C�RCx + κ�
1+ε
ε

|w|2 (18)

dz√
σv(Cx + Dw)�U�Dw ≤ ε|x|2 + κ�

1+ε
ε

|w|2. (19)

Finally, denoting ξ := (x, dz√
σv(y)) and combining

bounds (16)–(19), we obtain, after recalling that we fixed
Y = U�Q, and choosing ζ = ε,

V̇(x, σ ) ≤ ξ�(
M� + ε

[
4I+(1+ε)C�RC 0

0 0

])
ξ

− 2ελσ + κ̄�|w|2, (20)

where κ̄� := 3κ�

ε
(1 + ε).

(C2). In this case, due to x�Px > λσ , and recalling
the selection ζ = ε performed above, definition (8) yields
V(x, σ ) = x�Px + εσ + μ(x�Px − λσ) = (1 + μ)x�Px +

(ε−λμ)σ , whose directional derivative along dynamics (4)–(6)
reads

V̇(x, σ ) = 2(1 + μ)x�Pẋ + (ε − λμ)σ̇

= 2(1 + μ)
(

x�PAx − x�PB dz√
σ (y) + x�PBww

)
+ (λμ − ε)λσ − (λμ − ε)y�Ry. (21)

We use [27, Lemma 1.4] with respect to dz√
σv, leading to

the global sector condition: dz� Ug(Cx + Dw − dz) ≥ 0 for
any positive diagonal matrix Ug ∈ R

p×p, where we use once
again the placeholder dz instead of dz√

σv(y), to simplify the
notation. Moreover, using the assumed inequality for case (C2)
we obtain

0 ≤ λμ(x�Px − λσ) ≤ λμx�Px − μλ2σ. (22)

Summing up the above sector condition with inequality (22)
and with (21), we obtain the following bound

V̇ ≤ V̇ + 2μ dz� Ug(Cx + Dw − dz) + 2λμ(x�Px − λσ)

= 2(1 + μ)
(

x�PAx − x�PB dz +x�PBww
)

+ λμx�Px − ελσ − (λμ − ε)y�Ry

+ 2μ dz� Ug(Cx + Dw − dz). (23)

To suitably bound the right-hand side of (23), we first assume
for simplicity μ > ε (eventually, μ will be selected sufficiently
large) and then proceeding as in (17)–(19), we use repeatedly
Young’s inequality to show that there exists κg such that, for
each ε > 0, the following bounds hold:

x�PBww ≤ ε|x|2 + κg

ε
|w|2, (24)

−y�Ry ≤ −(1 − ε)x�C�RCx + κg
1+ε
ε

|w|2, (25)

dz√
σv(Cx + Dw)�UgDw ≤ ε|x|2 + κg

1+ε
ε

|w|2. (26)

Finally, denoting again ξ := (x, dz√
σv(y)) and combining

bounds (23)–(26), we obtain the following estimate

V̇(x, σ ) ≤ ξ�(
μMg +

[
(1+2μ)εI 0

0 0

]
+ He

[
PA+ ε

2 C�RC 0

−B�P 0

])
ξ

− ελσ + κ̄g|w|2, (27)

where κ̄g = (3μ − 2 + 5μ
ε
)κg > 0 and Mg, as defined in (9),

is negative definite.
Summary: The two bounds (20) and (27) obtained for cases

(C1) and (C2), respectively, allow selecting a large enough μ

and a small enough ε such that the matrices in the quadratic
forms appearing in (20) and (27) are both negative definite.
Representing σ = √

σ
2, we obtain that there exists a small

enough ε̄ > 0 and a large enough κ̄ such that, for all of the
considered cases (namely for almost all (x, σ )), we have

V̇(x, σ ) ≤ −ε̄
∣∣(x,√σ)

∣∣2 + κ̄|w|2, (28)

which, together with (13) shows that V is an ISS Lyapunov
function proving bound (12), and thus completing the proof.1

1The reader is referred to [12] for basic concepts about ISS Lyapunov
functions and to [26] for nonsmooth ISS Lyapunov functions.
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IV. LMI-BASED DEAD-ZONE REDESIGN

A. Design Paradigm and Main Result

We augment here controller (2) with an adaptive dead-zone
having a dynamic dead-zone threshold σ , as follows

ż = Fz + G dz√
σv(y)

u = Hz + N dz√
σv(y)

σ̇ = −λσ + y�Ry, σ ∈ R≥0, (29)

where v ∈ R
p is a constant vector having positive ele-

ments and
√

σv ∈ R≥0 is the component-wise square root
of vector σv. The dynamics of σ ensures by construction
the forward invariance of the non-negative real axis R≥0 for
state σ . Therefore

√
σv is well defined. The dead-zone aug-

mentation (29) depends on the following design parameters:
the positive scalar λ and the symmetric positive semi-definite
matrix R ∈ R

p×p.
Paralleling the derivations in (4)-(7), defining the combined

state x = (xp, z) ∈ R
np+nc , the closed-loop system (1), (29)

can be written in the following compact form:

ẋ = Ax − B sat√σv(Cx + Dw) + Bww (30)

y = Cx + Dw (31)

σ̇ = −λσ + y�Ry, σ ∈ R≥0, (32)

with the same matrices as those defined in (7). In particular,
we recall that A is Hurwitz due to Assumption 1.

For analyzing the closed-loop properties of (30), (32) we
rely on the following Lyapunov function (with a slight abuse
of notation, to keep our notation simple, we use the same
symbols V , Mg and Ug as in Section III)

V(x, σ ) = x�Px + 2σ, (33)

where P = P� > 0 is to be designed. For ensuring suitable
decrease properties of V it is here enough to impose only one
condition, corresponding to

Mg := He

[
PA + 1

2 C�RC − PB
UgC − Ug(1 + λ)

]
< 0, (34)

where Ug is a diagonal positive definite matrix.
We can then state the following main result, whose proof

is postponed to Section IV-C.
Theorem 2: If there exist a symmetric positive definite

matrix P ∈ R
n×n, a symmetric positive semi-definite matrix

R ∈ R
p×p, a diagonal positive definite matrix Ug ∈ R

p×p and
a scalar λ > 0 satisfying (34), then selecting v as the diag-
onal elements of U−1

g (namely diag(v) = U−1
g ) the closed

loop (1), (29) is finite-gain exponentially input-to-state stable
from w to x, namely there exist positive scalars M, α > 0 and
γ > 0 such that all solutions satisfy bound (12).

The design condition (34) of Theorem 2 is quasi-convex
in the variable λ. We prove below that, under Assumption 1,
these conditions are always feasible.

Proposition 2: Under Assumption 1 there exist parameters
P, R, λ and Ug satisfying the conditions of Theorem 2.

Proof: It has been observed that Assumption 1 implies that A
be Hurwitz. Then there exists a small enough R and a positive
definite P such that A�P + PA + C�RC < 0. Taking Ug = I
and λ large enough, constraint (34) is clearly satisfied.

The main rationale of using the proposed dead-zone
redesign (29) is to attenuate the effect of the noise w from y to

Fig. 2. Disturbances, norm of the state, and σ (t) (dead-zone redesign).

the control u (in particular when y is close to zero and hence
mainly composed by noise w). In terms of design guidelines,
since (34) is homogeneous for a fixed λ, a possible strategy for
maximizing the effectiveness of the dead-zone redesign is to
fix λ, then impose P < I (which does not affect feasibility due
to the homogeneity property) and then maximize the trace of
a diagonal R, possibly promoting the directions corresponding
to the sensors most affected by persistent noise.

B. Simulation Example

We consider the same example of Section III-B. For a dead-
zone redesign, we obtain

R =
(

0.0294 0.0017
0.0017 0.0617

)
, v =

(
1.6086
2.6432

)
,

after solving the LMI condition (34) with λ = 0.5. Simulation
results are shown in Fig. 2 with the same initial conditions
and noises of Fig. 1. The bottom plot clearly shows that dead-
zone level σ is highly excited by the outliers occurring in
the first interval, where the redesign effect is not advanta-
geous, especially with the repeated outliers between t = 10 s
and t = 20 s, because it is not suited for these disturbances.
Instead, the redesign is very effective at the steady state, where
it provides desirable reduction of the steady-state error caused
by persistent noise (see, especially, the middle response in the
interval t ∈ [80, 100] s). We computed the integrals of |x(t)|
in the interval t ∈ [60, 100] s for the standard regulator and
the dead-zone redesigned regulator, which are given by 3.6459
and 2.5558, respectively. This confirms the fact that the stub-
born redesign is suitable for improving the response to outliers
(compare with Fig. 1), and the dead-zone redesign is suitable
for improving the response to persistent noise.

C. Proof of Theorem 2

Differently from the proof of Theorem 1, there is no need
for this proof to split the analysis in two cases, and only one
set of inequalities is sufficient to establish the result. Consider
the candidate Lyapunov function V in (33) and note that the
fact that σ ∈ R≥0 implies that V is positive definite on
R

n × R≥0 satisfies bound (13), with α1 := min{λmin(P), 2},
and α2 := max{λmax(P), 2} (namely V it is positive definite
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and radially unbounded). The time-derivative of V along the
solutions of (30), (32) reads:

V̇(x, σ ) = 2x�Pẋ + 2σ̇ = 2x�PAx − 2x�PB sat√σv(y)

+ 2x�PBww − 2λσ + 2y�Ry. (35)

By exploiting the sector properties and global boundedness of
sat√σv(y) we obtain the following two conditions:

• sat√σv(y)
�Ug(y − sat√σv(y)) ≥ 0, for any positive

diagonal matrix Ug ∈ R
p×p from [27, Lemma 1.4];

• λ(σ − sat√σv(y)
�Ug sat√σv(y)) ≥ 0.

Summing up the above conditions to expression (35), we
obtain the following bound (where we use “sat” in place of
“sat√σv(y)” to make the notation compact):

V̇ ≤ V̇ + 2 sat� Ug(y − sat) + 2(1 − ε)λ(σ − sat� Ug sat)

= 2x�PAx − 2x�PB sat +2x�PBww

+ 2y�Ry + 2 sat� Ug(Cx + Dw − sat)

− 2ελσ − 2(1 − ε)λ sat� Ug sat, (36)

where ε > 0 is selected below. To suitably bound the right-
hand side of (36), we use repeatedly Young’s inequality to
show that there exists κg such that, for each ε > 0, the
following bounds hold:

x�PBww ≤ ε|x|2 + κg

ε
|w|2, (37)

y�Ry ≤ (1 + ε)x�C�RCx + κg
1+ε
ε

|w|2, (38)

sat√σv(Cx + Dw)�UgDw ≤ ε|x|2 + κg
1+ε
ε

|w|2. (39)

Finally, denoting ξ := (x, sat√σv(y)) and combining
bounds (36)–(39), we obtain the following estimate

V̇(x, σ ) ≤ ξ�(
Mg + ε

[
2I+C�RC 0

0 2λUg

])
ξ − 2ελσ + κ̄g|w|2

where κ̄g = (2 + 3
ε
)κg > 0 and Mg, as defined in (34), is

negative definite. The last inequality allows selecting a small
enough ε such that the matrix in the quadratic form is negative
definite (because of the strict inequality in (34)). Representing
σ = √

σ
2, it is then immediate to obtain, for a small enough

ε̄ > 0 and a large enough κ̄ the bound in (28) for all (x, σ ).
This bound, together with (13) (which was proven at the begin-
ning of the proof) shows that V is an ISS Lyapunov function
proving bound (12), and thus completing the proof.

V. CONCLUSION

We rigorously and successfully addressed performance
improvement for linear dynamic output feedbacks with stub-
born and dead-zone redesigns. Future work includes compar-
ing the nominal and redesigned feedbacks by generalizing
the results in [15, Sec. III-B, p. 671 and Sec. IV-B, p. 674]
and the output feedback for nonlinear systems, possibly with
multi-variable threshold dynamics.
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