Publications of the DLR elib

This is the author’s copy of the publication as archived with the DLR’s electronic library at http://elib.dlr.de. Please
consult the original publication for citation.

Passivity-based Motion and Force Tracking Control for
Constrained Elastic Joint Robots
Meng, Xuming; Keppler, Manuel; Ott, Christian

‘ Copyright Notice

(©2022 IEEE. Personal use of this material is permitted. Permission from I[EEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Citation Notice

QARTICLE{Meng2022,
author={Meng, Xuming and Keppler, Manuel and Ott, Christian},
journal={IEEE Control Systems Letters},
title={Passivity-based Motion and Force Tracking Control for Constrained Elastic Joint Robots},
year={2022},
volume={},
number={},
pages={1-1},
doi={10.1109/LCSYS.2022.3187345}




Passivity-based Motion and Force Tracking
Control for Constrained Elastic Joint Robots

Xuming Meng, Manuel Keppler and Christian Ott, Senior Member, IEEE

Abstracit—In the past, several motion and force controls
were successfully implemented on rigid-joint robots with
constraints. With the invention of mechanically compliant
robots, the focus on designing controllers for elastic joint
robots with constraints is increasing, especially involving
the complexity of the joint elasticity in control. Aiming to
bridge the gap between the control schemes of rigid- and
elastic-joint robots, this letter presents a controller consist-
ing of a PD+ task-space tracking and integral force control,
while the intrinsic inertial and elastic properties of the
system are fully preserved. We provide a passivity analysis
and prove uniform asymptotic stability of the equilibrium.
Simulations on a planar two-armed benchmark system with
constraints validate the proposed control law.

Index Terms— Robotics, control applications

[. INTRODUCTION

OR the sake of improving the mechanical robustness

while keeping structural rigidity, robot design has incor-
porated the joint elasticity progressively since the 90s. This
joint elasticity, inspired by nature, provides many benefits,
e.g., large impact tolerance and energy storage, etc. However,
dealing with combined motion and force control problems
is more challenging than for pure motion control, especially
when the robot is constrained. The constrained robots can
be seen as multi-body systems with closed-loop topologies,
such as cooperative manipulation, robotic hands for grasping,
or humanoid robots. Therefore, one question arises: how to
control motion and force simultaneously and robustly on a
constrained elastic joint robot?

In the domain of hybrid motion and force control for elastic
joint robots, Spong [1] proposed the ideas of integral manifolds
and corrective control for elastic joint manipulators in both
constrained (motion) space and unconstrained (force) space.
However, a fast inner control loop would be needed due to the
assumed singularly perturbed system. Mills [2] had a similar
approach. A corrective term was applied in the slow loop to
compensate for the joint flexibility. More recently, Aghili [3]
proposed a projected inverse-dynamic method for a rigid-joint
robot. The controller design is based on separating the original
dynamics into two independent orthogonal spaces. Mistry et
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al. [4], [5] extended this formulation to the operational space,
which is used for underactuated robots, e.g., humanoid robots.

Since then, various variants of these projected methods were
presented. The researchers in [6] conducted the experimental
studies on the fully decoupling of motion and force con-
trol of a light-weight robot by formulating an explicit force
controller. The general projection method, i.e., implementing
inverse-dynamics controller in the constraint-free space and
solving optimization problems in the constrained space, was
successfully validated on multi-arm robots and quadrupeds for
manipulation and locomotion tasks [7], [8].

Notwithstanding the effectiveness of the works mentioned
above, the rigid joint controllers [3]-[8] cannot be directly
implemented on elastic joint robots. One possible solution is
to additionally design an inner loop (e.g., a cascaded or a two-
loop structure in [1], [2]) after that. However, it inevitably
shapes the original dynamics. Besides, in [3], [5], at least in
one subspace (usually is the unconstrained space), an inverse-
dynamics (feedback-linearization) controller is utilized, which
consists of canceling out or modifying the intrinsic properties.
Furthermore, the passivity feature is unclear;

Controlling robots through a passive design was illustrated
in [9], [10]. Keppler et al. [11], [12] proposed a passive con-
troller, aiming for imposing the desired interaction behavior on
the either motor side or link side, while the intrinsic elastic
properties remain unchanged. Following this idea, this letter
aims to design a motion/force controller for the elastic joint
robots, and contributions of this letter are

1) We propose a passivity-based controller for elastic joint
robots that achieves simultaneous motion tracking and
force control. We choose a dynamically consistent pro-
jector and preserve the robot’s intrinsic inertial and
elastic structure.

2) An integral force control is designed to solve a steady-
state error problem in the case of constant disturbances
in the constrained space. The output strict passivity for
the physical interaction and uniform asymptotic stability
for the free motion are shown.

II. SYSTEM DYNAMICS

We consider a robot dynamics model with all rotational
joints implemented by Serial Elastic Actuators (SEAs). For
the highly-geared actuators, we shall use the reduced model,
proposed by Spong [13], with n rigid links with m linearly
independent kinematic constraints', expressed by a set of

'In this work, we assume the constraint is holonomic.



algebraic equations [14]
M(q)§+C(q,9)d+9(a) = K(0-q)+ A(@)" A+ Teu,

(1a)
BO+K(0-q)=u, (1b)
A(q)g =0, (Ic)

where g € R™ represents link position. M(q) is a symmet-
ric positive definite link inertia matrix, C(q,q) the Corio-
lis/centrifugal matrix. g(q) denotes the gravity torque, T, €
R"™ the generalized external torques on the link, 8 € R" the
motor coordinate. The positive diagonal matrix B includes the
reflected motor inertia, with the following assumptions

Assumption 1. The singular values of inertia M(q) and
B are bounded above and bounded below away from zero.
Hence, both M(q)™" and B~ exist and are bounded. Be-
sides, C(q,q) is bounded in q and bounded for bounded q.
M(q) -2C(q,q) is skew-symmetric.

The positive diagonal stiffness K represents a linear tor-
sional spring connecting the link and motor shaft. The motor
input u € R™ is the control input. A is a Lagrange multiplier
which denotes the constraint force. A(q) := %ﬁlq) e R™™ is
a constraint Jacobian matrix, where ¢(q) = 0,R"™ - R™ is a
constraint function, with the following assumption:

Assumption 2. The holonomic constraint ¢(q) is at least four
times differentiable. The constraint Jacobian matrix A(q) has
full rank m and is uniformly bounded in q.

Due to kinematic constraints, q is not a minimal coordinate
any more. The minimal generalized coordinates has dimension
n —m. Authors in [3], [5] introduced a projection operator
P, such that’> ¢ = Pgq, for all ¢ in the nullspace of A.
P is not unique. In order to preserve the original inertial
properties, different from [3], [5], we choose a dynami-
cally consistent projector, P = I — AM* A, where AM* =
M AT(AM™A" )" is an inertia-weighted inverse. It also
implies AP = 0, and the projector fulfills P = P2,

In order to achieve a task-space tracking, we define a task
space = = f(q), f: Q — R’, where Q € R". The task-space
velocity is expressed by

z=J(q)qg=J(q)Pq , 2)
where J(q) = 0f(q)/0q € R™™. Stacking the task-space
mapping and constraints, and taking derivative, we have

o] [¢(e)] & [o] [A].
) = B e
—— Y— —_ Y——
z Ficy & J(a)
where Z, & and f(q) are the extended task-space position,

velocity and the mapping function including constraints, re-
spectively. J denotes the augmented task Jacobian matrix.

Assumption 3. The mapping f(q) is one-to-one in Q, where
Q:={qe Q|01 <0,(J(q)) < 0.}, where o) and o, are
lower and upper bounds, respectively. It implies that the task

ZFor easy notation, we omit the argument q in P(q), same for J, J.

3In the following text, oy, (A) (or: Am(A)), oar(A) (or: Apr(A))
represent the minimal and maximal singular values (or eigenvalues) of matrix
A, respectively.

space is free of singularities. Each task x; is independently
defined, and also independent from each constraint ¢;(q). The
extended task T spans the remaining state space as a whole,
ie,t=m-n, JeR"™" and rank(J) = n. It is also assumed
that f(q) is continuously differentiable with q.

The singularity-free workspace is a common assump-
tion for the analysis of task-space controllers [15]. Due
to Assumption 3, J(q) is invertible, and uniquely deter-
mined by J = = [AM* P(JP)+], where P(JP)" =
PPTJT(JPPTJ")~'. Therefore, taking derivative of (3),
we get the joint velocities ¢ and accelerations ¢, respectively

G=J ', G=J '&i-J JJ 'z )
Substitute (4) into (1a) and multiply J T on the left, we have
the task-space dynamics

A@)E+p(q,9)z=J [K(0-q)-g+ATA+7eu]. (5
Thank to the structure of J, the transformed inertia matrix
A = diag(Ave, Ayy) = J  MJ " is block-diagonal, and the
IJ’CC I‘LCZE] -
. N.LC l’l’fll
J__T( -MJT T+ C)J__l. Note that we have the properties
of Apy = pt,, + pl, and p,, = —pl., cf. [16, Sec. 4.4] for
details. We separate the open-loop dynamics (5) in constrained
and unconstrained spaces, i.e.,

A= po,d— (AMT[K(O-q) - g] - Aext, (60)

Aacxm + l’l/.’c.’tm. = [P(JP)+]T[K(0 - q) _g] + Fepy. (6b)
Note that the generalized external torque T.,; in the joint
space fulfills T.. = AT + (JP)TF.,; where C!-
continuous F'.,; denotes disturbance in the unconstrained
space and C'-continuous A4 in the constrained space.

g

Coriolis/centrifugal matrix is expressed by p =

[Il. CONTROL OBJECTIVES AND DESIGN
Our objective is to achieve simultaneously (i) a passive,
asymptotic task-space motion tracking; (ii) a force tracking
control, capable of rejecting constant disturbances; (iii) pre-
serving the intrinsic elastic and the inertial properties.

A. Desired Closed-loop Dynamics

The philosophy of a passive design follows the one in the
previous work [12] similarly, called Elastic Structure Preserv-
ing (ESP) control, which facilitates an underactuated robot to
a quasi fully-actuated system. The reference motion x4(t) and
force trajectory Ay4(t) satisfy the following assumption.

Assumption 4. The reference motion trajectory x4(t) € C*
is assumed with bounded |&q4(1)|, ..., H(Bgl)(t)H, and the
reference force trajectory Aa(t) € C? with bounded |Aq(t)
[Aa(®)]-

We present our desired closed-loop dynamics:

A=-K; /Ot X(T)dr - (AMDTK (- G(&)) + p,, &

’

= Aexts (7a)
Ago + (M, + Dy)Z + K& = [P(JP)']"K(n- G(%))
+ Fepy, (7b)

Bij+ K(n-G(Z)) =-Dy, (7c)



where K;, K., D, and D,, are positive definite matrices.
We introduce a new virtual motor coordinate 17, which will be
illustrated in Section III-C. The task-space position, velocity
and acceleration tracking error are denoted as & := f (q)-xq,
z = = Jqg - a4, T = Jg+ Jq &4, respectively. Xi= A=)y
denotes the force tracking error.

In order to achieve the first goal for motion control (from
(6b) to (7b)), we only extend the task-space dynamics (6b) by
adding a positive definite linear spring K ., a positive definite
damping term D, and pseudo feedforward terms ensuring
the tracking performance. Besides, in order to express the
dynamics only with & and m), we replace g in (6b) by using
an implicit inverse kinematics function G : R"™™ - Q.

G(@) = (coll0,2)) - (coll0.za)),  (®)
This inverse function f " exists due to Ass. 3. Note that it
is only used as presenting the desired closed-loop dynamics
(7a), (7b) with the consistent argument &. An explicit formu-
lation of G(&) is not required in the controller design.

Achieving the second goal for force control (from (6a) to
(7a)), we notice that an exact force tracking can be realized
by fully compensating the cross coupling Coriolis term ., &
and force disturbance A.,; in (6a), if it is a rigid-joint robot
(assuming K (6 — q) as a direct control input). However
it is challenging for the case of flexible-joint robots, since
the intrinsic elastic coupling K (6 — q) is inevitable. With
the objective of aiming for a robust design, we refrain from
compensating nonlinear terms and feeding back higher-order
derivatives (;\ewt), which comes at the price of a reduced force
tracking performance. In order to alleviate the latter issue, we
introduce an integral term with a positive definite gain K
into (7a) for suppressing constant bias disturbances. Besides,
a feedforward term Ay and a pseudo feedforward term p,., &4
are also added to guarantee the force tracking. By comparing
(6a), (6b) with (7a), (7b), the resulting inertial properties, the
intrinsic coupling of elastic elements and the motion/force
coupling in closed-loop dynamics are totally preserved. At
last, from (1b) to (7c), for better rejecting the motor-side
disturbance, we add a positive definite damping D,,.

In the following text, we shorten the notation and denote
a new elastic torque as ¥ (n,Z) = K(n - G(Z)) and an
extended reference as &4 := col[0,x4].

B. Equilibrium

In order to acquire a first-oder dynamics for a state-space
formulation, we take derivative of (7a), and get

A+ KX =ho(Z,2,1,1) - Aear, 9)

where* hy = p, @+ fi, 8- S[(AM")T4p(n, &)]. By defining
a state vector z = col[&, &, 1, 7, A] and imposing % = 0,
F..: =0 and )'\emt =0 on (7a)—(7c), we have

KiX=0,%9(n.&) =0, K& =[P(JP)'|"¢(n,&). (10)
It can be easily derived that X =0 and & = 0. The second
equation is equivalent to K (n—G(&)) = 0. Substituting & = 0
into (8) leads to G(0) = 0. Therefore, we have 1 = 0. The
unique equilibrium is the origin, i.e., z = 0.

4Note that since & can be substituted by (7b), h2 is only position- and
velocity-dependent.

C. Coordinate Transformation

The first step is coordinate transformation (x,0) — (x,n).
To achieve the desired closed-loop dynamics, we define a new
virtual motor coordinate 17 which imposes the equivalence of
(6a), (6b) and (7a), (7b).

K(0-q):=K(n-G(&))+n,

t
n:AT[ —)\d+KI/O A(T)dT+/,l,c$$.d]

+(JP)T[Apiq+ pypa— K& - D, +g,

where n consists of three parts: (1) an integral force controller
with a feedfoward term -\, and a pseudo feedfoward p_, 24,
projected by AT 2) a task-space PD+ controller projected
by (JP)T; (3) a joint-space gravity compensation g. In order
to obtain the motor velocity and acceleration transformation
accordingly, we need to differentiate (11a)—-(11b). Note that
when dlfferentlatlng G( sr:? in the (11a), we will have G(&) =
Jl'i-J md =q-J x4 Hence, ¢ in both sides of the
first derivative of (11a) will be eliminated. The original motor
velocity and acceleration are written by

6= n+a+K n, 6= n+a+K n (12)

where we define a == J acd and a=-J JJ a:d +J a:d,
with 24 = col[0, #4].

(11a)

(11b)

D. Controller Design

Model-based calc. of J z, &, A, A,p
Y higher derivatives of x

System
Dynamics
with
Constraints | A, g

(la)-(le) [

Task- [
space |
Trafo.
@0)

[

| =T T T

J,.J, PP

Fig. 1. The proposed control scheme. The block <4 denotes the
analytical differentiation of the input signal. The higher derivative is
computed by model-based calculation, cf. footnote 5.

By substituting (12) into (1b), we get the intermediate motor
dynamics

Bij+ Ba+ BK 'iv+ K(0-q) = u. (13)
Using (11a)—(11b) and choosing the control input with
u=BK 'iv+ Ba+n-D,n (14)

lead to the final closed-loop dynamics (7a)—(7c). The proposed
control scheme is depicted in Fig. 1. Only gains K, K,
need to be designed. The damping terms D,, D, are com-
puted by using the modal damping method [17], dependent
on the closed-loop inertia, stiffness and the modal factor &

SNote that 7 includes the jerk z®) = Jq(3) + 2jij + j'q, where q(3)
is computed by model-based calculation ¢(3) = MK (6 - ¢) + ATX +
AT A+ 4 pt-MG-Cg-Cij—gl.and = MK (0-q)+ AT A +7cnt—
C¢—g]. The constraint force A can be either measured or estimated via X =
(AMTATY TAM 1 [C4+g-K(0-q) -Text] -(AM T AT) 1 Ag.



(0 < ¢ < 1). In general, we chose & = 1, so that the errors
&, m are critically damped. Hence, K, (or K) will affect
mostly the convergence rate of &, 1 (or A).

IV. PASSIVITY AND STABILITY

In this section, passivity and stability features of the original
system dynamics (la)—(1c) with the proposed controller (14)
will be illustrated.

A. Output Strict Passivity (OSP)
Consider a storage function for (7b)—(7c), written as
1. .1 1
S = ia‘:TAm:iJr 5" B+ 53" K,3+U.(n-G(&)), (15)

where U (n-G(&)) = 3(n-G(&))" K (n-G(&)) denotes
the potential energy of the elastic element in the closed loop.

Proposition 1. The closed-loop system (Tb)—(7c) is an output
strictly passive map from input F .., to output &.

Proof. As mentioned before, we have G(&) = J _lcol[O,:i.':].
Therefore, the effective power flow due to elastic element is®
T T (AZ\/I+)T 2T +1T
=107 ~ =
¢o-lor &)\ Sppyr|e - PP T

(16)

Take the time derivative of (15) and §ubstitute by (16), Ay, =

.. in (7b), Bij = ... in (7c) and A, = p,, +pl,, we get

. .T .T . . T

S=& Fop & D,@&-0" Dy <& Fopy O

. . ;T
Remark: For the regulation case 4 = 0, the term & Feyt
represents the physical power during the interaction.

B. Uniform Asymptotic Stability (UAS)

The following section shows UAS of the equilibrium when
(Fent, ).\em) =(0,0). Note that due to the assumed restriction
of non-singular task space, the initial conditions of the task
space cannot include the entire space & € R"™". Hence, the
stability proof is only valid in a local sense [15]. We firstly
split the state vector by z = col[z, z2] € R*™™, with z; :=
col[Z, z, m, 7] e R*"2™ and z, := X € R™. (7a)~(7c) can
be written as a first-order system:

&

xr
2 t ~ 2 . .
d% T — fx( 75137‘:1377]777) =2 = fl(t7Z1), (17)
" T
7 It &,m,m)

%x = _1—{1X + h2(t7 i7 £7"73 ,':’) - 22 = f2(t7 Z1, Zg). (18)
Hence, (17)—(18) can be seen as a hierarchical system (cf. [18,
eq. (2.2)].

Proposition 2. Consider the closed-loop system (17)-(18)
under Assumptions 1-4, the equilibrium is uniformly asymp-
totically stable (UAS) when (Fezt, Aezt) = (0,0).

Proof. The proof is shown by using Theorem 1 by Vidyasagar
[18, Theorem 3.1] in Appendix A.

Check for Assumptions: Assumption (Al) in Theorem 1 is
naturally fulfilled when introducing the equilibrium. (A2) is

®For the better readability, arguments & in G(&), (n, &) in ¥(n,&) are
neglected in the following text.

satisfied since f;(-,-) is continuously differentiable w.r.t. all
arguments in some neighborhood of the origin [18, p. 775].

UAS of z; = 0 for the isolated system (17): By definition,
(17) is already isolated. Due to the Matrosov Theorem [19],
we can show the UAS of z; = 0. A compact proof is shown
in Appendix A.

UAS of zo = 0 for the isolated system Z5 = f4(t,0,22):
Substitute z; = 0 into (18) (or (9)), we have ho(t,z; =0) = 0.
Hence the isolated system is simplified as 2, = -Kzo,
implying the UAS straightforward due to the positive definite
K1, which completes the proof. O

V. EXAMPLE: A CONSTRAINED TWO-ARM SYSTEM

0 0.5

N [m]

(a) (b)

Fig. 2. (a): The constrained two-arm system features SEAs (in large
red dots). The four rigid links (red bars) have evenly distributed mass,
i.e., CoM locates in the geometric middle point, mag = mgr = 6 kg,
mpc = mpg = 1kg. The motion of two manipulators is constrained by
a massless rigid bar. The length of all bars is 0.3 m. (b): The sequence
of different configurations with an ellipse reference trajectory in black.

Consider a planar two-arm system with one kinematic
constraint, whose joints implemented by SEAs (all with the
same stiffness K; = 800 Nm/rad for all ¢ = 1,..,4, where K;
is i-th entry of the diagonal K'). The unconstrained system
has n = 4 DoFs in total. By imposing a constraint ¢(q) =
llzc(q) —xp(q)|| = const on two end-effectors C' and D with
a massless rod (m = 1), we have the remaining DoF (equal to
task space dimension) n—m = 3. Hence, X\ implies the reaction
force (or a manipulation force) along this rod. The task space
is defined by the Cartesian position and orientation of C, i.e.,
x =col[f,(q), fy(q), ¢1+¢2+¢(q)]. The schematic diagram
is shown in Fig. 2. The desired motion and force trajectories
are defined as follows:

(1) The position of the left end-effector follows a
frequency-varying ellipse trajectory (at least C*%). x4(t) =

rqcos[w(t) - t] + cq

rpsin[w(t) -t] + ¢y |, where w(t) =

Aagsin(wp - t) + ag
.06 m, 7, =0.03 m, ¢, = -0.05 m, ¢;, = -0.45 m, ap = 6.64
rad, A« = 0.2 rad, Awg = 2.57 rad/s, wg = 0.27 rad/s, hg = 4 s.

(2) The constrained force should follow with a sinusoid
signal (at least C?), ie., A\g(t) = Xgsin(wy - t), where
Ao = 10 N, wy = 27 rad/s. The gain is chosen by K, =
diag(5e3,5e3, 1e3) in N/m, N/m and Nm/rad, K = 10.

Before starting each simulation, the dynamics initializes
with the correct constraint condition ¢(q) = 0. Besides, we
generate disturbances in both spaces with following func-

t—h 2

ao —0.5+( 0 ) :
—0—c 70 if t<h
ooV 2T 0

ao lfchO

Aw(]

Trexp(=(t=hg)) TW0> Ta =

tions: Aeye(t) = , Fogi(t) =



ay

105 (4

a o1
2 o1V 2T
as

-20 N, as = 40 N, asz = 10 NII’I, ho = 8.0 S, h1 = 6.5 S,
009 =0.4, 01 =0.5, w. =7 rad/s. Note that at t = hg s, Aeze(t)
is C'-continuous, and F.,;(t) fulfills naturally C!-continuity
due to the sine and exponential functions. The disturbances
are depicted in the last row of Fig. 3 during the following
phases (cf. Fig. 3, those areas with color background):

-sin(w, - t), where ag = 20 N, a1 =

a. Time 0.0-5.0s: no disturbance;

b. Time 5.0-6.5s (yellow): disturbance F'.,; appears only
in the unconstrained space;

c. Time 6.5-8.0s (lime): disturbances F'.,; and A, in
both constrained and unconstrained spaces;

d. Time 8.0-10.0s (grey): disturbance A.,; purely in the
constrained space.

The simulations are performed in MATLAB & SIMULINK
using a Runge-Kutta45 solver with fixed step 1 ms.

A. Results and Discussions

P
o
T

o
A
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o
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?
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Fig. 3. In the first three rows, the reference trajectories are in dashed
black lines, and the actual ones in color lines for position, velocity
and constraint force. The last row includes Fegzt,1, Fext,2 and Fezt,3
representing two translational (in 1 and x2) and one rotational (in x3)
disturbances. Aex¢ denotes the disturbance in the constrained space.

We have the following observations:

Phase a (white): The task space error (the 1%-2"¢ row of
Fig. 4) is critically damped from the initial error.

Phase b (yellow): The disturbance F',,; affects the dynam-
ics in both constrained and unconstrained spaces, cf. the 1%-3™
row of Fig. 4. The stored energy S of the closed loop increases
due to the task-space disturbance.

Phase c (lime): With the increasing disturbance )\em + 0,
the task space neither is affected nor causes the increase of the
system energy cf. the last row in Fig. 4. The disturbance in

the constrained space will not inject energy to the closed-loop
system, and only the task-space disturbance will do.

Phase d (grey): The constant disturbance A¢;; = 20 N in
the constrained space is compensated via the designed integral
term (cf. the constraint force error converges to zero in Fig. 4).
Same with the observation in Phase c, the disturbance in
the constrained space will not cause an energy increase. In
the absence of the task-space disturbance F',;, the previous
injected energy has dissipated due to the passive closed loop.

e AQe -

T2 z3

T2 T3

——veCgRme=—-—

o
4ok
N
(o))
oo
>

-10
50

ok
N

Fig. 4._ The first three rows present position &, velocity & and constraint
force A tracking error, respectively. The fourth row shows the control
input . The last row depicts the storage function S.

VI. CONCLUSION

This letter proposed a task-space motion and force tracking
controller for constrained elastic joint robots. Different from
conventional inverse dynamics [3], [20] or the control that
fully decouples motion/force, the proposed controller pre-
served intrinsic inertial and elastic properties of the system.
Due to the passive design, the robustness of the closed-
loop system is increased. Meanwhile, instead of compensat-
ing nonlinear terms, the force controller part incorporates
an integral term that guarantees the force tracking accuracy
when encountering a constant disturbance. Without task-space
disturbance, the origin of the close loop is uniformly asymp-
totically stable, even in the presence of a constant disturbance
in the constrained space. In the future, experiments of the
dual-arm manipulation (a closed-loop kinematic chain) on
an elastic system with nonlinear elastic joints, e.g., DLR
anthropomorphic robot David will be performed.



APPENDIX

Theorem 1. Vidyasagar [18, Theorem 3.1]: We shall consider
the system (17)-(18) in a hierarchical form: (%) %; =
fi(t,21(t), ..., 2i()),i = 1,..,n to those of a collection of
isolated subsystems (%) %; = fi(t,0,...,0, 2z;(t)). Suppose
the following two assumptions hold: (Al) f; is continuous
and f;(t,0,...,0) = 0,Vt > 0,Vi and (A2) there is a constant
¢ such that Supyq SUP|jy, |<c |V, fi(t,wi)] < 00,i=1,....n,
where w; = col[z1,..z;], then, the equilibrium z =0 of . is
uniformly asymptotically stable, if and only if z; = 0,Yi=1,..n
is a uniformly asymptotically stable equilibrium point of the
isolated subsystem .%;, for all 1.

A. Proof of UAS forz, = 0 (via Matrosov’s Theorem)

The following proof follows the same procedure as the one
in [11]. Since the discussed system in this work is in a task
space, only a locally UAS (UGAS in [11]) can be shown. Due
to the page limit, we highlight the critical steps, please refer
[11] for the complete stability proof in details.

Proof. Consider the system (17), where f, : I x Q —» R4"=2m
is a continuous function, where I = [0, 00), and € is an open
connected set in R*"2™ containing z; = 0.

We choose the positive definite storage function S as a
Lyapunov candidate V' = S(¢,z1), cf. (15) for 2; = f,(t, z1).
Its time derivative V = S (with F'.,; = 0) is a negative semi-
definite function, due to positive definite D, and D,.

We invoke Matrosov’s Theorem (the version provided by
Paden [19]). At first, we need to show V is lower and
upper bounded by functions of class K. Choosing a.(]z1]) =
3 (Am(Azo) 2] + BI|? + An (Ko)[2]?) + Ue(n - G())
and b. (|z1]) = 5(Aar (Asa) [ 2]+ B0l + Xar (K2) [2]?) +
U.(n — G(Z)), then according to [21, Lemma 4.3], there
exist class I functions a, b such that a(|z1]]) < a.(z1),
b(||z1]]) = b.(z1). Hence, we can conclude z; = O is
uniformly stable (US) and that Condition (1) in Matrosov’s
Theorem is fulfilled. It further implies the state variable z;
is bounded. Choose V* = Ay (D,)|#|? - 7" D,7, then the
critical set E, where V* =0, is E:={z1 € Q: T = 0,77 =0}.
We choose the auxiliary function W (t,z1) = V(t,2z,) =
~(2&" D,& + & D.d + 20" Dyii + 7" D,n). Since z; = 0
is US, we conclude that |W(¢,z1)| is bounded. Therefore,
Conditions (2) and (3) are satisfied.

The verification of Condition (4) relies on the Lemma by
Paden [19, p.1709]. We differentiate W along (7b)(7c):

W(t 21) = -2[Ty-K,&] Q[Ty-K,&]-2¢" Rep, (19)
for all z; € E, where T := (P(JP)")”, Q= A,' D, A} =
Q">0,R:=B"D,B™' =R" > 0. Then, (19) can be for-
mulated in a quadratic form: W = —2col[v, 2] Hcol[, #],

where . .
T'QT +R -T'QK,
H =
(t,21) [ “K'Qr K'QK,

R1/2 _TTQ1/2
0 KIQ'?

] =YY?, (20

Y (t,21) := > 0. (21)

"The symmetric properties of D, and Dy, can be achieved, if we choose
modal damping design [17].

It implies H is a positive definite, state- and time-dependent
matrix. Hence, we can establish [W(t,z1)| > W*(z,) =
H,,|col[v, &]|?, V21 € E, where H,, := A\, (Y (¢,21)) >0.
In terms of [21, Lemma 4.3], there exists a function ~y of class
K such that [W (t,21)| > v(| z1]). Hence, invoking Lemma 1
in [11] ensures that Condition (4) is satisfied. Condition (5) is
fulfilled, since z; = 0 is US. This completes the proof. O
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