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Modeling and attitude control of spacecraft with
an unbalanced rotating device

Davide Invernizzi1

Abstract— This paper addresses the problem of con-
trolling the attitude of spacecraft endowed with a rotating
device, motivated by recent space applications which will
make use of large rotating payloads. Due to the presence
of uncertain and potentially large inertial asymmetries in
the rotating device, an internal force and a torque can
appear at interface between the spacecraft and the rotor,
causing performance degradation and even affecting the
system stability. To counteract such unbalance effects, ac-
tive balancing systems, using movable masses mounted on
the rotating device, are being considered in the literature.
During the balancing phase, it is important for the attitude
control system to maintain a stable configuration. After
deriving a suitable control-oriented model of the multi-body
spacecraft, we propose using a coordinate-free attitude
controller that ensures safe balancing operations and de-
sirable pointing performance.

Index Terms— Spacecraft control, geometric control.

I. INTRODUCTION

In recent years there has been an increasing interest in

space missions that require the use of spacecraft endowed with

rotating devices, such as large antenna reflectors, to achieve

high Earth observation capabilities [1], [2]. These systems

demand a careful design since the presence of unavoidable

inertial asymmetries in the rotating devices give rise to internal

forces and torques in the spacecraft, leading to a reduction of

pointing accuracy and stability, and undermining the outcome

of the mission itself.

While the system considered in this paper falls within the

class of asymmetric dual-spin satellites, existing works focus

mostly on the study of the torque-free dynamics and typically

assume small inertial asymmetries [3], [4], [5]. In order to

mitigate the detrimental effects of potentially large inertial

asymmetries in the rotating device, two viable approaches

can be considered: 1) the development of an attitude control

system on the spacecraft base capable of rejecting the interface

force and torque; 2) the design of a balancing system made

of movable masses mounted on the rotating device to actively

cancel the inertial unbalances [6]. The first option is interesting

because it would solve the problem just by using suitable

control laws. On the other hand, it would be inefficient and

risky in case of large unbalances: the attitude control system

would waste a lot of power in compensating the unbalance

1Davide Invernizzi is with Dipartimento di Scienze e Tecnologie
Aerospaziali, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
{davide.invernizzi}@polimi.it

torque and the prolonged application of interface loads could

damage the bearings of the motor sustaining the payload

rotation. The second option would require carrying additional

mass onboard the spacecraft. However, it would also reduce

risks associated with the unbalances and potentially lead to

better pointing performance. Of course, the attitude control

system of the spacecraft should be able to keep a stable

configuration while balancing operations are carried out during

the first phases of the mission. In this work, we specifically

address the latter problem.
First of all, the dynamical model of the multi-body space-

craft is derived leveraging Lagrange’s approach developed

directly on the configuration manifold with no parametrization.

We refer to the center of mass of the overall spacecraft as

opposed to the center of mass of the spacecraft base [7]: under

reasonable assumptions, this choice allows decoupling the

attitude from the position dynamics to obtain a suitable model

for attitude control analysis and design purposes. The control

design is then carried out using a coordinate-free formulation

[8] that avoids singularities or ambiguities associated with

parametrization of SO(3), the attitude configuration manifold.

Using Lyapunov methods and results from differential geom-

etry, we show that the considered control law can be tuned

to guarantee robust asymptotic stability of the desired attitude

configuration and globally uniformly ultimately bounded er-

rors for any inertial unbalance.

Notation. R(R>0,R≥0) denotes the set of (positive, nonnega-

tive) real numbers, R
n denotes the n-dimensional Euclidean

space and R
m×n the set of m × n real matrices. The i-th

vector of the canonical basis in R
n is denoted is denoted

as ei := [ 0 ... 0 1 0... 0 ]� (1 in the i-th entry, 0 elsewhere)

for i ∈ {1, ..., n} and the identity matrix in R
n×n is In :=

[e1 · · ·ei · · ·en]. Given vectors x,y ∈ R
n, the standard inner

product is defined as 〈x,y〉 := x�y. The Euclidean norm of a

vector x ∈ R
n is |x| :=

√〈x,x〉. The minimum and maximum

eigenvalues of A ∈ R
n×n are denoted by λm(A) and λM(A),

respectively. For a matrix A ∈ R
n×n, skew(A) := A−A� and

sym(A) := A+A�. The n-dimensional unit sphere is denoted

as S
n := {x ∈ R

n+1 : |x| = 1}. The set SO(3) := {R ∈ R
3×3 :

R�R = I3,det(R) = 1} is the 3D Special Orthogonal group.

The map S(·) : R3 → so(3) := {W ∈ R
3×3 : W = −W�} is

defined such that given x,y ∈ R
3 one has S(x)y = x× y. The

inverse of S is denoted S−1. Given a differentiable function

g : Rm×n �→R, the gradient with respect to x is represented by

∇xg(x) : Rm×n �→ R
m×n.



II. MATHEMATICAL MODELING

A. Multi-body system configuration

The spacecraft that we consider in this work is a multi-body

system made by a base and a payload which is rotating about a

fixed axis in the base frame through a revolute joint constraint.

The main difference with respect to the convectional ”gyrostat”

model [3] lies in the fact that the rotating device is neither

assumed to be axis-symmetric nor to have its Center of

Mass (CoM) lying on the axis of rotation (see Figure 1).

To describe the system configuration we introduce several

Cartesian reference frames:

• an inertial frame Fi := (Oi,{i1, i2, i3}) fixed at center of

the Earth;

• a base-fixed frame Fb := (Ob,{b1,b2,b3}), with Ob being

the CoM of the base. The difference vector between Ob
and Oi resolved in Fi is denoted by xb ∈ R

3.

• a base-fixed frame Fa := (Oa,{a1,a2,a3}), with Oa being

the attachment point between the base and the payload

and a3 ∈ S
2 identifying the axis of rotation. Without loss

of generality, we assume ai ≡ bi ∀i ∈ {1,2,3}, namely,

Fa is aligned with Fb. The difference vector between Oa
and Ob resolved in Fb is denoted by ha ∈ R

3.

• a payload-fixed frame Fp := (Op,{p1, p2, p3}), with

Op ≡ Oa. The difference vector between Op and Oi
resolved in Fi is denoted by xp ∈ R

3. The difference

vector between the payload CoM and Op resolved in Fp
is denoted by x̄p ∈ R

3.

Fig. 1. Multibody spacecraft configuration.

The inertial properties of the system are defined as follows:

mb ∈ R>0 and mp ∈ R>0 denote the mass of the base and of

the payload, respectively; Jb = J�b ∈R
3×3
>0 and Jp = J�p ∈R

3×3
>0

denote the inertia matrices of the base and of the payload,

resolved in Fb and Fp, respectively.

The attitude of the spacecraft is identified by the rotation

matrix R := [ b1 b2 b3 ]∈ SO(3), with each axis bi ∈ S2 resolved

in Fi. The payload attitude with respect to the inertial frame

is given by the composition of rotations

Rp := RQ, (1)

where Q is the (planar) rotation matrix between Fp and Fa.

For what concerns the position kinematics, the main point of

departure with respect to other modeling approaches [7] is that

we do not refer to a fixed point in the base frame (such as Ob)

to derive the position dynamics but rather refer to the CoM of

the overall spacecraft, denoted hereafter as C. The difference

vector between C and Oi, resolved in Fi, is denoted xc and is

related to the base and payload CoM as follows:

xc =
mbxb+mpxp

mb+mp
. (2)

The configuration of the spacecraft can be uniquely identified

by the tuple (R,xc,Q), which is an element of the nonlinear

seven-dimensional manifold SO(3)×R
3 ×SO(3).

Before proceeding, we derive some useful expressions re-

lating the position of the base and of the payload CoM to

the configuration variables. To this aim, let us introduce the

difference vector between C and Ob, resolved in Fb:

x̄c := R�(xc − xb) = R�
(

mbxb+mp(xb+R(ha+Qx̄p))
mb+mp

− xb

)

= R�
(

mp(R(ha+Qx̄p))
mb+mp

)
= μp(ha +Qx̄p) = x̄c(Q) (3)

where μp :=
mp

mp+mb
∈ R>0, and where we used equation (2)

and xp = xb +R(ha +Qx̄p) in the first line and the identity

R�R = I3 in the second line. Equation (3) shows the de-

pendency of location of the CoM in the body frame on the

orientation of the payload Q. Indeed, the only case in which

this dependency is removed occurs when x̄p lies on the axis

of rotation, i.e., when x̄p = [0 0 x̄p3 ]
�, so that one would have

Qx̄p = x̄p3
Qe3 = xp3

e3 = x̄p. Based on (3), the inertial position

of the base CoM can be written in terms of xc as follows:

xb = xc −Rx̄c = xc −μpR(ha +Qx̄p). (4)

Using geometric arguments and (4), the inertial position of the

payload CoM can be computed as a function of xc as follows:

xp = xb +R(ha +Qx̄p) = xc +μbR(ha +Qx̄p) (5)

where μb := mb
mp+mb

.

B. Kinematics
The attitude kinematics of the base-fixed frame is given by

the matrix differential equation

Ṙ = RS(ω) (6)

where ω ∈ R
3 is the body angular velocity of the base. The

relative kinematics of the payload-fixed frame is a planar

rotation (due to the revolute joint constraint) described by

Q̇ = QS(Ωe3) = QS(e3)Ω, (7)

where Ω ∈ R is the angular rate of the payload with respect

to the base about the spin axis. The attitude kinematics of the

payload is obtained by differentiating equation (1):

Ṙp = ṘQ+RQ̇ = RS(ω)Q+RQS(e3)Ω
= RQ(Q�S(ω)Q+S(e3)Ω) = RpS(Q�ω + e3ω)

(8)

where we exploited the linearity property of the S−1(·) map

and the property S−1(R�S(ω)R) = R�ω ∀(R,ω) ∈ SO(3)×



R
3. From equation (8), one can define the payload angular

velocity resolved in Fp as

ωp = Q�ω +Ωe3, (9)

which gives the compact expression Ṙp = RpS(ωp).
For what concerns the position kinematics, the motion of

the CoM of the overall system is given by

ẋc = vc, (10)

with vc ∈ R
3 representing the CoM inertial velocity. With the

aim of computing the inertial velocity of the base CoM as a

function of vc, one has to differentiate equation (4) as follows:

ẋb = vc −μpR(S(ω)(ha +Qx̄p)+QS(e3)x̄pΩ) =: vb (11)

where (6) and (7) are used. Similarly, the inertial velocity of

the payload CoM is obtained by differentiation of (5):

ẋp = vc +μbṘ(ha +Qx̄p)+μbRQ̇x̄p

= vc +μbR(S(ω)(ha +Qx̄p)+QS(e3)x̄pΩ) =: vp
(12)

The kinematics of the system is fully characterized by the

tuple (ω,vc,Ω) ∈ R
3 ×R

3 ×R, which is consistent with the

dimension of the configuration manifold.

C. Dynamics and equations of motion

The equations of motion are derived in this section using

Euler-Lagrange equations for systems evolving in the product

manifold SO(3)×R
3, which deserves some care as SO(3) is

a nonlinear manifold. The Lagrangian of the system described

in Section II-A is given by L := T −U , where

T := 1
2 mb|vb|2 + 1

2 ω�Jbω + 1
2 mp|vp|2 + 1

2 ω�
p Jpωp, (13)

U :=−
∫
Bb

μ
|xb+Rρ| dm(ρ)−

∫
Bp

μ
|xp+Rpρ| dm(ρ) (14)

are the kinetic and the potential energy associated with the

gravity field, respectively, μ := 398600.5km3s−2 is the (earth)

gravitational constant, Bb and Bp are all the base and payload

material points, respectively, dm(ρ) is the infinitesimal mass

element at a given location ρ ∈ R
3 such that

∫
Bi

dm(ρ) = mi.

Let us focus on the kinetic energy (13). Expanding the

expressions for vb in (11) and vp in (12), the translational

part of the kinetic energy can be written as follows:

1
2 mb|vb|2 + 1

2 mp|vp|2 = 1
2 (mb +mp)|vc|2

+ 1
2 ms

∣∣∣S(ha +Qx̄p)
�ω +QS(x̄p)

�e3Ω
∣∣∣2 (15)

where ms :=
mbmp

mb+mp
and where we exploited that the cross-term

(mbμp −mpμb)v�c R(S(ω)(ha +Qx̄p)+QS(e3)x̄pΩ)

vanishes because mbμp −mpμb = mb
mp

mb+mp
−mp

mb
mb+mp

= 0.

Hence, the kinetic energy of the spacecraft is given by

T = 1
2 ms|vc|2 + 1

2 ω�Js(Q)ω

+ω�
(

QJ̄p +S(ha)
�QS(Īp)

)
e3Ω+ 1

2 e�3 J̄pe3Ω2, (16)

where

Js(Q) := J̄b +QJ̄pQ�+ sym(S(ha)
�S(QĪp)) (17)

J̄b := Jb +msS(ha)S(ha)
� (18)

J̄p := Jp +msS(x̄p)S(x̄p)
� (19)

Īp := msx̄p. (20)

Remark 1: According to the proposed selection of configu-

ration variables, the kinetic energy can be decomposed as the

sum of a translational and a rotational term as follows:

T = Tpos(vc)+Trot(Q,Ω,ω) (21)

where Tpos(vc) := 1
2 ms|vc|2 and Trot(Q,Ω,ω) := 1

2 ω�Js(Q)ω+
ω� (

QJ̄p +S(ha)
�QS(Īp)

)
e3Ω + 1

2 e�3 J̄pe3Ω2. Moreover, the

rotational kinetic energy is invariant to changes in the base

attitude. Combined with suitable assumptions, these important

properties will be exploited in the control design.

At this point, assume the payload relative rotation Q be

regulated at a constant rate in such a way that Ω̇ = 0.

According to this assumption, Q is not any more a free

variable. When considering that the base of the spacecraft has

an actuation mechanism capable of delivering a desired torque

τc ∈ R
3, the Euler-Lagrange equations on SO(3)×R

3 read

d
dt ∇vcL−∇xcL= 0 (22)

d
dt ∇ωL+S(ω)∇ωL−S−1(skew(R�∇RL)) = τc, (23)

which fully describe the dynamical model of the overall

system together with the kinematic equations (6), (7), (10).

By substituting the Lagrangian with (21) into (22)-(23), the

full set of equations is given by (6), (7), (10), and

(mp +mb)v̇c = fu(R,xc,Q) (24)

Js(Q)ω̇ = τu(R,xc,Q)− J̇s(Q)ω+

−S(ω)hg(Q,Ω,ω)+ τe(Q,Ω)+ τc, (25)

fu = ∇xcU , τu = S−1(skew(R�∇RU)), J̇s = Ω(Q(S(e3)J̄p) +
J̄pS(e3))Q�+ sym(S(ha)

�S(QS(e3)Īp)) and

hg := Js(Q)ω +
(

QJ̄p +S(ha)
�QS(Īp)

)
e3Ω (26)

τe :=
(

QS(e3)
�J̄p +S(ha)QS(e3)S(Īp)

)
e3Ω2. (27)

The following Lemma provides a useful characterization of

the dependence of hg and τe on the inertial unbalances.

Lemma 1: Let d :=
[
Īp1

Īp2
J̄p13

J̄p23

]�
, then the gen-

eralized angular momentum hg in (26) and the perturbing

torque τe in (27) can be written as affine functions with respect

to d as follows:

hg = Js(Q)ω + J̄p33
Ωe3 +Ω

(
QWJ +S(ha)

�QWI

)
d (28)

τe = Ω2
(

QS(e3)
�WJ +S(ha)QS(e3)WI

)
d. (29)

where WJ :=
[

0 0 1 0
0 0 0 1
0 0 0 0

]
, WI :=

[
0 1 0 0
−1 0 0 0
0 0 0 0

]
.

Proof: The expressions (28)-(29) can be obtained by

rewriting the terms QJ̄pe3 and S(Īp)e3 which appear in

both (26) and (27). Noting that QJ̄pe3 = Q(I3 ± e3e�3 )J̄pe3 =
J̄p33

Qe3+Q(I3−e3e�3 )J̄pe3, the first term in the sum simplifies

as J̄p33
Qe3 = J̄p33

e3 since Q is a planar rotation about e3. As



for the second term of the sum, one has (I3 − e3e�3 )J̄pe3 =

[ J̄p13
J̄p23

0 ]� = WJd. Given S(Īp)e3 = −S(e3)Īp = WId, the

Lemma is proven with straightforward substitutions.

It is worth noting that d includes the static unbalances of the

payload CoM only in the plane perpendicular to the payload

rotation axis (Īp1
, Īp2

) and that d does not include the dynamic

unbalance on the same plane, i.e., J̄p12
. The torque τe(Q,Ω)

depends on the payload rotation Q, is null whenever Ω = 0 or

d = 0 and is periodically time-varying ∀Ω �= 0 when seeing

Q=Q(t) as the solution to (7) for some initial condition Q(t0).

III. CONTROL MODEL AND PROBLEM FORMULATION

By inspecting equations (10), (24) and (6), (25) one sees that

the position and attitude dynamics are only coupled through

the force and torque associated with gravity, i.e., through fu
and τu. This work addresses the scenario in which the residual

disturbance torque τe due to inertial unbalances is much larger

than environmental torques. In this condition, it is reasonable

to neglect τu for control design purposes.1As a byproduct

of this assumption, the dynamical system takes a cascade

structure, wherein the attitude subsystem (6), (25) perturbs

the position subsystem (10), (24). The control design for the

attitude dynamics, being the upper subsystem in the cascade,

can be carried out independently. The model for control is

derived based on the following modeling assumptions.

Assumption 1: 1) The base and the rotating device are rigid

bodies; 2) the angular velocity Ω of the device relative to the

base is constant; 3) the environmental torque (τu in (25)) is

much smaller in magnitude than the internal torque associated

with the inertial unbalances of the rotating device (τe in (29)).

Based on the above reasoning, we are concerned with the

design of a control torque τc to stabilize a desired attitude

Rd ∈ SO(3) for the system comprising the base kinematics (6)

and the angular velocity dynamics (25) with τu = 0, i.e.,

Js(Q)ω̇ =−J̇s(Q)ω −S(ω)hg(Q,Ω,ω)+ τe(Q,Ω)+ τc.
(30)

We can now formalize the control problem that we are

addressing in this work as follows.

Problem 1: Consider the dynamics of the multi-body space-

craft in (6), (7), (30). Given any desired attitude Rd ∈ SO(3),
design a controller delivering a control torque τc ∈ R

3 such

that the point (R,ω) = (Rd ,0) is locally ISS with respect to

d and the solutions of the closed-loop system are Globally

Uniformly Ultimately Bounded (GUUB) ∀d ∈ R
4.

Any controller solving Problem 1 is a good candidate to ensure

safe balancing operations because it would guarantee ultimate

boundedness of the errors for any inertial unbalance and for

any initial condition (globally) while guaranteeing the nice

properties associated with local ISS2, in particular, the closed-

loop system would be robustly asymptotically stable.

1For the kind of space missions relevant to this work, the gravity gradient
torque is in the order of 10−5Nm whereas admissible residual unbalances
are in the order of 10−1Nm [9]. Hence, gravity gradient and environmental
perturbations can be considered as exogenous disturbances affecting the
steady-state performance of the control system.

2Asking for local ISS is not restrictive when referring to continuous time-
invariant control laws on SO(3) due to the unavoidable presence of multiple
equilibria in the closed-loop dynamics (see also Footnote 3).

IV. CONTROL LAW DESIGN AND STABILITY ANALYSIS

A. Control architecture and closed-loop error dynamics
To solve Problem 1, define the tracking errors

Re := R�
d R, ω = 0 (31)

and consider the following control torque:

τc :=−γR(Re)−Kω ω, (32)

where

γR(Re) := 1
2 S−1(skew(KRRe)), (33)

with Kω ∈R
3×3 being a positive definite matrix and KR ∈R

3×3

being a symmetric matrix such that trace(KR)I3−KR is positive

definite. The use of a control law directly developed on

SO(3)×R
3 allows avoiding singularity issues associated with

mininimal parametrizations or ambiguities associated with

quaternions [8]. When using any minimal parametrization of

SO(3), it can be shown that γR acts as a proportional controller

for small attitude errors: given small angles θe ∈R
3 such that

Re ≈ I3 +S(θe), one has γR(Re(θe))≈ KRθe.

Remark 2: The control law (32) is just one representative

candidate that solves Problem 1 despite being designed for the

dynamics of a single rigid body (which is much simpler that

the dynamics considered here). The use of more advanced

attitude controllers developed in recent years could be con-

sidered as well [10], [11], [12], [13]. Nonetheless, the control

law (32) stands out for its simplicity and is therefore appealing

for space applications, being independent of the system inertial

parameters3 and requiring only (standard) attitude and velocity

measurements of the spacecraft base.

The resulting closed-loop error dynamics is presented in the

following proposition.

Proposition 1: Consider the dynamics (6), (7) (30) and the

controller (32). Using the stabilization error in (31), the closed-

loop error dynamics is an autonomous system described by the

payload kinematics (7) and by

Ṙe = ReS(ω) (34)

Js(Q)ω̇ =−(Kω + J̇s(Q))ω
−S(ω)hg(Q,Ω,ω)+ τe(Q,Ω)− γR(Re). (35)

Proof: The only equation requiring some effort obtaining

is (34), which can be derived as follows: Ṙe = Ṙ�
d R+R�

d Ṙ =
R�

d RS(ω) = ReS(ω), where we exploited (6) and Ṙd = 0.

B. Stability analysis and main results
We note that for null inertial unbalances, i.e., for d = 0,

the closed-loop error system (34), (35) has an equilibrium

set given by {Re,ω : γR(Re) = 0,ω = 0}, which contains the

desired attitude (Re = I3) plus additional equilibria.4 The

existence of multiple equilibria cannot be avoided when using

a time-invariant continuous stabilizer on SO(3) and requires

a careful stability analysis [8]. While the control law in (32)

3As shown next, in Theorem 1, one needs to know only (conservative)
bounds on the inertial parameters for stability reasons.

4For instance, when KR is diagonal with distinct eigenvalues, the undesired
equilibria are Ri = Rd exp(πei), i ∈ {1,2,3}, i.e., 180deg rotations about the
axes of the desired attitude. See [8] for further details.



is an implementation of the one suggested in [8] for attitude

tracking, the complex dynamics of the multi-body spacecraft

that we consider in this work requires additional effort to prove

that it solves Problem 1, as claimed by the following theorem.

Theorem 1: The controller (32) with Kω satisfying

λm(Kω ) > cm := |Ω|
(√

J̄2
p12

+
J̄p11

−J̄p22
4 + |ha|

√
Ī2
p1
+ Ī2

p2

)
solves

Problem 1.

Proof: We start the proof by showing local ISS of the

desired equilibrium point. To this end, consider the Lyapunov

candidate

V (Re,Q,ω) := 1
2 |Re|2KR

+ 1
2 ω�Js(Q)ω + cω�Js(Q)γR(Re),

(36)

where |Re|2KR
:= 1

2 tr
(
(I3 −Re)

�KR(I3 −Re)
)
= tr(KR(I3 −Re))

and c > 0 is an arbitrary small positive scalar. Consider now

the following two lemmas.

Lemma 2: Let xe := [ |ω| |Re|KR ]
� ∈ R

2
≥0 and �R :=

λm(tr(KR)I3 − KR) > 0. Then, ∀0 < � < �R there ex-

ist positive constants a1, a2, c such that V in (36) is a

quadratic function with respect to xe in the set Ω� :={
(R,Q,ω) ∈ SO(3)×SO(3)×R

3 : |R|KR ≤ �
}

, namely:

x�e W1xe ≤V (Re,Q,ω)≤ x�e W2xe, ∀(Re,Q,ω) ∈ Ω� (37)

where W1 := 1
2

[
b1 −ca2b2

−ca2b2 1

]
and W2 := 1

2

[
b2 ca2b2

ca2b2 1

]
, b1 :=

minQ∈SO(3) λm(Js(Q)), b2 := maxQ∈SO(3) λM(Js(Q)).
The proof of the Lemma hinges on [8, Lemma 12], accord-

ing to which there exist two positive constants a1,a2 such

that a−1
2 |γR| ≤ |Re|KR ≤ a−1

1 |γR| ∀Re ∈{R ∈ SO(3) : |R|KR ≤ �},

∀0 < � < �R. Constants b1 and b2 are finite thanks to the

continuity of the eigenvalue function and the compactness of

SO(3). Matrices W1, W2 are positive definite ∀c<
√

b1a−2
2 b−2

2 .

Lemma 3: There exists a constant c > 0 such that the Lie

derivative of V in (36) along the closed-loop system (34)-(35)

satisfies the following dissipation inequality:

V̇ ≤−c4|xe|2 + c5|xe||d| ≤ −c6|xe| ∀|xe| ≥ c5
c4λ |d|, (38)

∀(Re,Q,ω) ∈ Ω�, ∀0 < � < �R, ∀|d| ≤ d̄ < c4λ
√
�

c5

√
λM(W2)

, ∀λ ∈
(0,1), c6 := c4(1−λ ), for some constants c4,c5 > 0.

The proof of Lemma 3 is reported in the Appendix. Based

on Lemma 2 and Lemma 3, local ISS of xe = 0, i.e., R =
Rd , ω = 0, with respect to d then follows by resorting to the

local version of [14, Theorem 4.19].

To finally conclude that the controller (32) solves Problem 1,

we need to show that the closed-loop solutions are GUUB

for any inertial unbalance d. To this aim, we refer to the

Lyapunov function V1 := 1
2 |Re|2KR

+ 1
2 ω�Js(Q)ω and compute

its Lie derivative along the closed-loop system (7), (34), (35),

which can be bounded as follows:

V̇1 ≤−c7|ω|2 +ω�τe ≤− c7
2 |ω|2 + 2

c7
|τe|2, (39)

c7 := λm(Kω)− cm (positive by assumption), where we used

the property ω�S(ω)hg = 0 and Young’s inequality. By further

noting that |ω|2 ≥ 1
b2

ω�Js(Q)ω and that ω�Js(Q)ω = 2V1 −
|Re|KR , the following inequality is obtained from (39):

V̇1 ≤− c7
b2

(
V1 − 1

2 |Re|KR

)
+ 2

c7
|τe|2 ≤−c8V1 +δ (40)

where c8 := c7
b2

> 0, and δ := 2
c7

maxQ∈SO(3) |τe(Q,Ω)| +
c7

2b2
λM(tr(KR)I3−KR)) is a positive constant which exists finite

because d is bounded and τe(Q,Ω) is continuous in both

Q and Ω, with SO(3) compact and Ω finite. By leveraging

the Comparison Lemma [14, Lemma 3.4], V1(t) satisfies the

inequality V1(t)≤ exp(−c8(t−t0))V1(t0)+ δ
c8
(1−exp(−c8(t−

t0))) ∀t ≥ t0, which gives GUUB of the closed-loop solutions.

V. NUMERICAL RESULTS

We report a numerical example to show the effective-

ness of the proposed control design in a mission scenario

in which the attitude of the multi-body spacecraft must

be stabilized starting from perturbed initial conditions. The

simulation data are inspired by the CIMR mission [1]: the

spacecraft operates along an almost polar, slightly ellipti-

cal orbit (i = 98.7deg, e = 0.0011), with an altitude of

824.6km, a corresponding orbital period of T = 6074.7s and

an orbital rate ωo = 0.001rad/s. The payload is rotating at

Ω = 1rad/s. The following inertial and geometric parame-

ters are used, mb = 1000kg, Jb = diag(1000,850,500)kgm2,

mp = 500kg, Jp =
[

5000 −5 −1
−5 5200 −2
−1 −2 1000

]
kgm2, ha = [0 0 1.25 ]� m,

x̄p = [ 0.02 0.03 2 ]� m. The corresponding inertial unbalance is

d = [ 6.67kgm 10kgm −14.33kgm2 −22kgm2 ]�. The initial conditions

are ω(0) = [0.03 0.015 0.02 ]� rad/s and φ(0) = 60deg, θ(0) =
50deg, ψ(0) =−25deg, where φ ,θ ,ψ ∈R represent the roll,

pitch and yaw angle, respectively.

The control goal is to stabilize the spacecraft at (R,ω) =
(I3,0). The gains of the controller (32) are tuned to have an

approximately critically damped behavior in the proximity of

the desired attitude for d = 0. Specifically, we select Kω =
2ωcJ̄s(I3) and KR = J̄s(I3)ω2

c , ωc = 50ωo, for which λm(Kω) =
150 satisfies the condition in Theorem 1, with cm ≈ 115.

In the simulation, we assume the presence of an ideal

balancing system on the rotating payload that starts operating

at 1000s and is capable of reducing the inertial unbalances in

nine steps below 10% of the initial unbalances (behaving as

a first order system with time constant 0.05s). Such residual

unbalances are kept constant for 2000s and then completely

removed starting from 4000s (see Figure 2, top plot). The

considered behavior of the balancing system is inspired by

[6], where a discrete-time harmonic controller is proposed,

and is just one representative candidate to show that the

controller (32) works as established in Theorem 1, covering

both the case of partial balancing (t < 4000s) and the one

of complete balancing (t ≥ 4000s). Nonetheless, different

balancing mechanisms could be considered as well. Assuming

a mechanism that compensates for the inertial unbalances in

small steps and with slow variations of the inertial properties

is reasonable given the criticality of the balancing operations

and at the same time keeps approximately valid the model

(30), which has been developed assuming static unbalances.

The attitude tracking performance obtained by the proposed

controller along one orbit is illustrated in Figure 2 (middle) in

terms of roll, pitch and yaw angle errors. As expected from

Theorem 1, the closed-loop solutions are ultimately bounded

when the payload is not actively balanced (d constant), i.e., for



t < 1000s. The amplitude of the residual oscillations is then

reduced down to a small ultimate bound (≈ 0.02deg) when

the residual unbalances are below 10% of the initial unbalance

3000s < t < 4000s. In the ideal case of full compensation (t ≥
4000s), the oscillations induced by the unbalances disappear

and only a small residual attitude error (associated with gravity

gradient) is present, confirming the ISS property proven in

Thereom 1. By inspecting Figure 2 (bottom), the amplitude of

the control torque decreases accordingly with the evolution of

the balancing operation.

Fig. 2. Assumed inertial balancing d (top), attitude tracking perfor-
mance (middle) and control torque τc (bottom).

VI. CONCLUSIONS

In this paper we considered the problem of controlling the

attitude of a dual-spin satellite in which the rotating part is

characterized by inertial asymmetries that can have a huge

impact on the stability and attitude performance of the system.

After deriving a suitable control-oriented model, the stabilizing

property of a coordinate-free control design were analyzed

leveraging results from differential geometry and nonlinear

control theory. Important properties such as global uniform

ultimate boundedness of the closed-loop solutions and local

ISS with respect to the inertial unbalances were proven.

APPENDIX: PROOF OF LEMMA 3
The Lie derivative of V along (34)-(35) reads:

V̇ = γ�R ω + 1
2 ω�J̇sω +ω�Js(Q)ω̇

+ c(ω̇�Js(Q)+ω�J̇s)
�γR + cω�Js(Q)γ̇R

=−ω� (
1
2 J̇s +Kω

)
ω +ω�τe + cγ�R (S(ω)hg + τe)

−γR −Kω ω))+ c 1
2 ω�Js(Q)(tr(KRRe)I3 −KRRe)ω

(41)

where the expression γ̇R = 1
2 S−1(skew(KRṘe)) =

1
2 (tr(R

�
e KR)I3 − R�

e KR)ω has been used ([11]) as well

as ω�S(ω(hg)) = 0. Using the chain of inequalities |J̇s(Q)| ≤
|Ω||Q(S(e3)J̄p + J̄pS(e3))Q�| + 2|Ω||S(ha)||QS(e3)Īp)| ≤
|Ω||S(e3)J̄p + J̄pS(e3)| + 2|Ω||ha||S(e3)Īp)| ≤ 2cm, the Lie

derivative (41) can be bounded in Ω� as follows

V̇ ≤−c1|ω|2 + c|Js|√
2

tr(KR)|ω|2 + c|γR|(|S(ω)|(|Js||ω|+ J̄33|Ω|
+|Wg||d|)−|γR|+ |We||d|+λM(Kω)|ω|)+ |xe||We||d| (42)

where we used 1
2 |(tr(ReKR)I3 − ReKR)| ≤ 1√

2
tr(KR) and

defined c1 := λm(Kω) − cm (positive by assumption)

and Wg(Q) := Ω
(
QWJ +S(ha)

�QWI
)
, We(Q) :=

Ω2
(
QS(e3)

�WJ +S(ha)QS(e3)WI
)
, which are both

uniformly bounded together with γ̄R := maxRe∈SO(3) |γR(Re)|
(continuous function on a compact set) and therefore

c5 := maxQ∈SO(3)(cγ̄R|Wg(Q)|+ (c+ 1)|We(Q)|) > 0 is finite

as well. Then, one obtains V̇ ≤ −c4|xe|2 + c5|xe||d|,
in which c4 := λm

([
c1−cc2 −cc3

−cc3 ca2
1

])
, with c2 :=(

tr(KR)√
2

+ γ̄R

)
b2 > 0, 2c3 := J̄33|Ω|+ λM(Kω) > 0. Choosing

c < min(
√

b1a−2
2 b−2

2 , c1a1(c2a2
1+c2

3)
−1) ensures c4 > 0. Thus,

V̇ satisfies the dissipation inequality in (38) ∀(Re,Q,Ω) ∈ Ω�,

|d| ≤ d̄ < c4λ
√
�

c5

√
λM(W2)

, λ ∈ (0,1). The magnitude of d

had to be restricted to a value d̄ > 0 such that the set{
(Re,Ω,Q) : |xe| ≤ c5

c4λ d̄
}

is strictly contained in Ω�.
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