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Connectivity of the Feasible and Sublevel Sets
of Dynamic Output Feedback Control With

Robustness Constraints
Bin Hu and Yang Zheng , Member, IEEE

Abstract—This letter considers the optimization land-
scape of linear dynamic output feedback control with H∞
robustness constraints. We consider the feasible set of all
the stabilizing full-order dynamical controllers that satisfy
an additional H∞ robustness constraint. We show that this
H∞-constrained set has at most two path-connected com-
ponents that are diffeomorphic under a mapping defined
by a similarity transformation. Our proof technique utilizes
a classical change of variables in H∞ control to establish
a surjective mapping from a set with a convex projection to
the H∞-constrained set. This proof idea can also be used
to establish the same topological properties of strict sub-
level sets of linear quadratic Gaussian (LQG) control and
optimal H∞ control. Our results bring positive news for
gradient-based policy search on robust control problems.

Index Terms—Optimization landscape, sublevel set,
direct policy search, H∞ control, LQG control.

I. INTRODUCTION

INSPIRED by the impressive successes of reinforcement
learning, model-free policy optimization techniques are

receiving renewed interests from the controls field. Indeed,
we have seen significant recent advances on understanding
the theoretical properties of policy optimization methods on
benchmark control problems, such as linear quadratic regula-
tor (LQR) [1]–[4], linear robust control [5]–[8], and Markov
jump linear quadratic control [9]–[11].

It is well-known that all these control problems are non-
convex in the policy space. Classical control theory typically
parameterizes the control policies into a convex domain over
which efficient optimization algorithms exist [12]. An impor-
tant recent discovery is that despite non-convexity, many
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state-feedback control problems (e.g., LQR) admit a useful
property of gradient dominance [1]. Therefore, model-free pol-
icy search methods are guaranteed to enjoy global convergence
for these problems [1], [3], [9]. Note that most convergence
results require a direct access of the underlying system state,
in which a simple change of variables exist to get a convex
reformulation of the control problems [13].

For real-world control applications, however, we may only
have access to partial output measurements. In the output
feedback case, the theoretical results for direct policy search
are much fewer and far less complete [14]–[18]. It remains
unclear whether model-free policy gradient methods can be
modified to yield global convergence guarantees. It has been
revealed that the set of stabilizing static output-feedback con-
trollers can be highly disconnected [14]. This is quite different
from the state feedback case [19]. Such a negative result indi-
cates that the performance of gradient-based policy search on
static output feedback control highly depends on the initial-
ization, and only convergence to stationary points has been
established [15]. It is thus natural to investigate dynamical
controllers for the output feedback case, and to see whether
the corresponding optimization landscape is more favorable for
direct policy search methods. The very recent work [16] shows
that the set of stabilizing full-order dynamical controllers has
at most two path-connected components that are identical in
the frequency domain. This brings some positive news and
opens the possibility of developing global convergent policy
search methods for dynamical output feedback problems, such
as linear quadratic Gaussian (LQG) control [16]. Two other
recent studies are [17], [18]. In [18], the global convergence of
policy search over dynamical filters was proved for a simpler
estimation problem.

It is well-known that the optimal LQG controller has no
robustness guarantee [20]. It is thus important to explicitly
incorporate robustness constraints for the search of dynamical
controllers. In this letter, we study the topological properties
of the feasible set for linear dynamical output feedback con-
trol with H∞ robustness constraints. The H∞ constraints have
been widely used in robust control [12], [21] and risk-sensitive
control [22]. Our main result shows that the set of all stabi-
lizing full-order dynamical controllers satisfying an additional
input-output H∞ constraint has at most two path-connected
components, and they are diffeomorphic under a mapping
defined by a similarity transformation. Our proof technique is
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inspired by [16] and relies on a non-trivial but known change
of variables for H∞ control [23], [24]. If the control cost is
invariant under similarity transformation, one can initialize the
local policy search anywhere within the feasible set and there
is always a continuous path connecting the initial point to a
global minimum. Some implications on the connectivity of
strict sublevel sets of H∞ and H2 control are discussed. Our
result sheds new light on model-free policy search for robust
control tasks.

The rest of this letter is organized as follows. In Section II,
we formulate the linear dynamic output feedback control with
H∞ constraints as a constrained policy optimization problem.
Section III presents our main theoretical results. We revisit
connectivity of strict sublevel sets for LQG and H∞ control
in Section IV. We conclude this letter in Section V.

Notations: The set of k × k real symmetric matrices is
denoted by S

k, and the determinant of a square matrix M
is denoted by det M. We use Ik to denote the k × k iden-
tity matrix, and use 0k1×k2 to denote the k1 × k2 zero matrix;
we sometimes omit their dimensions if they are clear from the
context. Given a matrix M ∈ R

k1×k2 , MT denotes the transpose
of M. For any M1, M2 ∈ S

k, we use M1 ≺ M2 (M1 � M2)
and M2 � M1 (M2 � M1) to mean that M2 − M1 is positive
(semi)definite.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Dynamic Output Feedback With H∞ Constraints

We consider a continuous-time linear dynamical system1

ẋ(t) = Ax(t) + B1w(t) + B2u(t),

z(t) = C1x(t) + D11w(t) + D12u(t),

y(t) = C2x(t) + D21w(t), (1)

where x(t) ∈ R
nx is the state, u(t) ∈ R

nu is the control action,
w(t) ∈ R

nw is the exogenous disturbance, y(t) ∈ R
ny is the

measured output, and z(t) ∈ R
nz is the regulated performance

output. We make the following assumption.
Assumption 1: The state-space model (A, B2, C2) in (1) is

stabilizable and detectable.
We aim to design a controller that maps the measured

output to the control action, in order to minimize some
control performance metric, while satisfying stability and/or
robustness constraints. Such control design problems can be
formulated as a constrained policy optimization of the form

min
K∈K

J(K), (2)

where the decision variable K is determined by the policy
parameterization, the objective function J(K) measures the
closed-loop performance, and the feasible set K is specified
by some stability/robustness requirements. We consider the
following policy parameterization and robustness constraint:

Decision variable K: Output feedback control problems
typically require dynamical controllers, and we consider the
full-order dynamical controller in the form of:

ξ̇ (t) = AKξ(t) + BKy(t),

u(t) = CKξ(t) + DKy(t), (3)

1All topological results can be extended to the discrete-time domain.

where ξ(t) is the controller state with the same dimension
as x(t), and matrices (AK, BK, CK, DK) specify the controller
dynamics. For convenience, we denote

K :=
[

DK CK
BK AK

]
∈ R

(nu+nx)×(ny+nx), (4)

but this matrix K should be interpreted as the dynamical
controller in (3).

Feasible region: The controller K needs to stabilize the
closed-loop system and satisfy a robustness constraint that
enforces the H∞ norm of the transfer function from w(t) to
z(t) smaller than a pre-specified level γ .

We allow a general cost function J(K), which can be an
H2 performance on some other performance channel, or more
general user-specified performance metrics. One advantage for
the policy optimization formulation (2) is that it opens the pos-
sibility of solving robust control design via model-free policy
search methods. This letter aims to characterize connectivity
of K and strict sublevel sets of J(K).

B. Problem Statement

We denote the state of the closed-loop system as ζ =[
xT ξT

]T
after combining (3) with (1). It is not difficult to

derive the closed-loop system

ζ̇ (t) = Aclζ(t) + Bclw(t),

z(t) = Cclζ(t) + Dclw(t), (5)

where the matrices (Acl, Bcl, Ccl, Dcl) are given by

Acl :=
[

A + B2DKC2 B2CK
BKC2 AK

]
,

Bcl :=
[

B1 + B2DKD21
BKD21

]
,

Ccl := [
C1 + D12DKC2 D12CK

]
,

Dcl := D11 + D12DKD21. (6)

The closed-loop system is internally stable if and only if Acl
is Hurwitz [12]. The set of full-order stabilizing dynamical
controllers is thus defined as

Cstab :=
{

K ∈ R
(nu+nx)×(ny+nx)

∣∣∣ Acl is Hurwitz
}
. (7)

The transfer function from w(t) to z(t) is

Tzw(s) = Ccl(sI − Acl)
−1Bcl + Dcl. (8)

Then, the feasible set is formally specified as

Kγ := {
K ∈ Cstab| ‖Tzw‖∞ < γ

}
, (9)

where ‖Tzw‖∞ denotes the H∞ norm of Tzw, and can be calcu-
lated as ‖Tzw‖∞ := supω σmax(Tzw(jω)), with σmax(·) denot-
ing the maximum singular value. In (9), we explicitly highlight
the robustness level γ via the subscript. Under Assumption 1,
there exists a finite positive value

γ � := inf
K

‖Tzw‖∞.

Then, Kγ is non-empty if and only if γ > γ �. By defini-
tion (9), we have Kγ0 ⊂ Cstab for any positive γ0.

In (2), it is possible to estimate the gradient of J(K) and
‖Tzw‖∞ from sampled system trajectories, and one may apply
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model-free gradient-based barrier algorithms to find a solution
in an iterative fashion. To understand the performance of such
model-free policy search algorithms, we need to characterize
the optimization landscape of (2). In particular, we focus on
some geometrical properties of the feasible region Kγ and
strict sublevel sets of J(K). It is well-known that Kγ is in
general non-convex, but little is known about their other geo-
metrical properties. Only a very recent work shows that Cstab
has at most two path-connected components that are identical
up to similarity transformations [16, Ths. 3.1 and 3.2].

In many cases, it is desirable to explicitly encode
some robustness guarantee for the feasible region [20]–[22].
However, the connectivity of the H∞-constrained set Kγ

remains unknown. In this letter, we focus on topological prop-
erties of Kγ and their implications to gradient-based policy
search. We will show that Kγ shares similar properties with
Cstab.

Remark 1: The dynamical controller (3) is proper.
Depending on the cost function J(K) (e.g., LQG [12]), we
may want to confine the policy space to strictly proper
dynamical controllers. Then the feasible set is defined as

K̃γ := {
K ∈ Kγ

∣∣ DK = 0
}
. (10)

Our analysis technique works for both K̃γ and Kγ , and we
show that K̃γ and Kγ have similar topological properties.

III. PATH-CONNECTIVITY OF Kγ

In this section, we present our main results on the topolog-
ical properties of Kγ . We first have a simple observation.

Lemma 1: Let γ > γ �. The set Kγ is non-empty, open,
unbounded and can be non-convex.

This fact is well-known. Then openness of Kγ follows from
the continuity of the H∞ norm. It is unbounded since H∞
norm is invariant under similarity transformations that are
unbounded in the state-space domain. The non-convexity is
also known, and we illustrate it using the example below.

Example 1: Consider an open-loop unstable dynamical
system (1) with A = B1 = B2 = C1 = C2 = D21 = D12 = 1,
and D11 = 0. It is easy to verify that the following dynamical

controllers K(1) =
[

0 2
−2 − 2

]
, K(2) =

[
0 − 2
2 − 2

]
satisfy∥∥Ccl(sI − Acl)

−1Bcl + Dcl
∥∥∞ < 3.33, and thus we have K(1) ∈

K3.33, K(2) ∈ K3.33. However, 1
2 (K(1) + K(2)) =

[
0 0
0 − 2

]
,

fails to stabilize the system, and is outside K3.33.
Despite the non-convexity, Kγ has some nice connectivity

property which will be established in this section.

A. Main Results

Our first main technical result is stated as follows.
Theorem 1: Given any γ > γ �, the set Kγ has at most two

path-connected components.
Before presenting a formal proof for Theorem 1, we

first give some high-level ideas. Based on the bounded real
lemma [21], we have K ∈ Kγ if and only if the matrix
inequality,⎡

⎣AT
clP + PAcl PBcl CT

cl

BT
clP − γ I DT

cl
Ccl Dcl − γ I

⎤
⎦ ≺ 0, P � 0, (11)

is feasible. Clearly, the condition (11) is not convex in K
and P. Our result in Theorem 1 relies on the fact that (11)
can be convexified into a linear matrix inequality (LMI) (that
is convex and hence path-connected), using a non-trivial but
known change of variables for H∞ control [23], [24]. The
only potential of disconnectivity comes from the fact that the
set of invertible matrices corresponding to similarity trans-
formations has two path-connected components. Our proof is
inspired by the recent work [16] that characterizes Cstab only,
with the main difference being that we need to analyze a more
complicated H∞ constraint (11).

We now illustrate this idea for the case of state feedback
(i.e., y(t) = x(t) and u(t) = Kx(t) with K ∈ R

nu×nx ). In this
case, it is known that (11) is feasible2 if and only if

Mγ (Q, L) ≺ 0, Q � 0 (12)

is feasible, where Mγ (Q, L) is defined as⎡
⎣QAT + AQ + LTBT

2 + B2L B1 (C1Q + D12L)T

BT
1 − γ I 0

C1Q + D12L 0 − γ I

⎤
⎦.

Using a simple change of variables K = LQ−1, we have

{K ∈ R
nx×nu | (11) is feasible}

⇐⇒ {K = LQ−1 ∈ R
nx×nu | (12) is satisfied}.

Since the set of (Q, L) satisfying LMI (12) is convex and
the map K = LQ−1 is continuous, the set {K ∈ R

nx×nu |
(11) is feasible} is path-connected.

The analysis above hinges upon the fact that in the state-
feedback case, the non-convex condition (11) can be convex-
ified using the simple change of variables K = LQ−1. In the
output feedback case, a similar condition can be derived using
a more complicated change of variables in [24]. We will lever-
age this fact to prove Theorem 1. Specifically, it is known that
a controller K ∈ Kγ can be constructed from the solution of
the following LMI condition:[

X I
I Y

]
� 0, Mγ (X, Y, Â, B̂, Ĉ, D̂) ≺ 0, (13)

where X ∈ S
nx , Y ∈ S

nx , Â ∈ R
nx×nx , B̂ ∈ R

nx×ny , Ĉ ∈ R
nu×nx ,

and D̂ ∈ R
nu×ny, are decision variables. The linear mapping

Mγ (X, Y, Â, B̂, Ĉ, D̂) is defined as

Mγ (X, Y, Â, B̂, Ĉ, D̂) =

⎡
⎢⎢⎢⎣

M11 M12 M13 M14

MT
12 M22 M23 M24

MT
13 MT

23 M33 M34

MT
14 MT

24 MT
34 M44

⎤
⎥⎥⎥⎦, (14)

where the blocks Mij are given by

M11 = AX + XAT + B2Ĉ + (B2Ĉ)T,

M12 = ÂT + (A + B2D̂C2),

M13 = B1 + B2D̂D21,

M14 = (C1X + D12Ĉ)T,

M22 = ATY + YA + B̂C2 + (B̂C2)
T,

M23 = YB1 + B̂D21,

2In the state-feedback case, (Acl, Bcl, Ccl, Dcl) should be calculated from
some formulas which are different from (6). We omit the details.
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M24 = (C1 + D12D̂C2)
T,

M33 = −γ I,

M34 = (D11 + D12D̂D21)
T,

M44 = −γ I. (15)

Based on LMI (13), we introduce two useful sets:

Fγ :=
{
(X, Y, Â, B̂, Ĉ, D̂) | (13) is satisfied

}
, (16)

Gγ :=
{
(X, Y, Â, B̂, Ĉ, D̂,�,	) | �,	 ∈ R

nx×nx ,

(X, Y, Â, B̂, Ĉ, D̂) ∈ Fγ , 	� = I − YX
}
. (17)

It is obvious that Fγ is convex and hence path-connected.
Together with the fact that the set of nx × nx invertible matri-
ces has two path-connected components, this guarantees that
Gγ has exactly two path-connected components. We shall see
that there exists a continuous surjective map from Gγ to Kγ ,
and thus Kγ has at most two path-connected components. A
detailed proof is provided in the Appendix.

Remark 2: Our analysis relies on the LMI conditions (11)
and (13) from [24] which are specialized for H∞ control
and are more complicated than the ones in the proof of
[16, Proposition 3.1] for characterizing stability.

B. Implications for H∞-Constrained Policy Optimization

To understand the implications of Theorem 1 for pol-
icy optimization, we need to formalize the relationship
between K+

γ and K−
γ (see the end of the Appendix for

definitions). For this, we introduce the notion of similar-
ity transformation that is widely used in control. For any
T ∈ GLnx , let T T : Cstab → Cstab denote the mapping
given by

T T(K) :=
[

DK CKT−1

TBK TAKT−1

]
,

which represents similarity transformations on Cstab.
We have a result that is similar to [16, Th. 3.2].
Theorem 2: If Kγ has two path-connected components K+

γ

and K−
γ , then K+

γ and K−
γ are diffeomorphic under the

mapping T T , for any T ∈ GLnx with det T < 0.
The proof of Theorem 2 is adapted from [16]. We present

the details in our arXiv report [25] due to page limit.
Furthermore, similar to [16, Th. 3.3], we have sufficient

conditions to certify the path-connectedness of Kγ .
Theorem 3: Let γ > γ �. The following statements hold.
1) Kγ is path-connected if it has one dynamical controller

with non-minimal state-space description.
2) Suppose the plant (1) is single-input or single-output,

i.e., m = 1 or p = 1. The set Kγ is path-connected if
and only if it has a non-minimal dynamical controller.

Proof: If K ∈ Kγ is non-minimal, then its minimal real-
ization has dimension less than nx. In particular, we can find
a reduced-order controller (ÃK, B̃K, C̃K, DK) with dimension
(nx − 1) such that

C̃K(sI − ÃK)−1B̃K + DK = CK(sI − AK)−1BK + DK.

Then, this reduced-order controller can be augmented to be a
full-order controller in Kγ as

K̃ =
⎡
⎣D̃K C̃K 0

B̃K ÃK 0
0 0 − 1

⎤
⎦ ∈ Kγ .

Define a matrix T = diag(Inx−1,−1). We can directly verify
det T < 0 and T T(K) = K. By Theorem 2, we can see that
K ∈ K±

γ implies T T(K) ∈ K∓
γ , indicating K ∈ K+

γ ∩ K−
γ .

Thus, K+
γ ∩ K−

γ is nonempty, and Kγ is path-connected.
The proof for the second statement is identical to the proof

of [16, Th. 3.3], and hence is omitted here.
Theorems 2 and 3 bring positive news on local policy search

methods for H∞-constrained optimization (2). If Kγ is path-
connected, it makes sense to initialize the policy search from
any point in the feasible set. If Kγ has two path-connected
components, then the initial point may fall into either of the
components. If J(K) is invariant with respect to similarity
transformations (e.g., the LQG cost), then both components
include global minima. It becomes reasonable to initialize the
policy search within either path-connected component. The
following corollary is immediate.

Corollary 1: Suppose the cost function J(K) is invariant
with respect to similarity transformations, then there exists
a continuous path connecting any feasible point K ∈ Kγ to a
global minimum of (2) if it exists.

C. The Case of Strictly Proper Controllers

We briefly discuss the case of strictly proper dynamical
controllers with DK = 0, which is required in some clas-
sical control problems, including the continuous-time LQG
problem [12]. The topological properties of K̃γ in (10) and
Kγ in (9) are identical. To see this, we let

F̃γ = {(X, Y, Â, B̂, Ĉ, D̂) ∈ Fγ | D̂ = 0},
G̃γ = {(X, Y, Â, B̂, Ĉ, D̂,�,	) ∈ Gγ | D̂ = 0}.

Minor modification of the proofs in the Appendix can show
that F̃γ is path-connected, and that G̃γ has two path-connected
components. The same mapping 
 in (21) is a continuous
and surjective mapping from G̃γ to K̃γ . Therefore, we con-
clude that K̃γ has at most two path-connected components
and they are diffeomorphic under the similarity transformation
with det T < 0.

IV. REVISIT SUBLEVEL SETS IN LQG AND H∞
CONTROL

The results in Section III can be also interpreted as the con-
nectivity of strict sublevel sets in optimal H∞ control. Based
on (8), Tzw can be viewed as a function of K, and the optimal
H∞ synthesis [12] can be formulated as

min
K

‖Tzw‖∞
subject to K ∈ Cstab. (18)

Now, Kγ in (9) is exactly the γ -level strict sublevel set of the
optimal H∞ control (18). Thus, Theorems 1 to 3 characterize
the strict sublevel sets of optimal H∞ control.

In addition to (18), the proof idea of using the change of
variables (21) can be applied to other output feedback control



446 IEEE CONTROL SYSTEMS LETTERS, VOL. 7, 2023

problems to establish connectivity of their strict sublevel sets.
For example, we can consider an H2 formulation of the LQG
control [16] as follows

min
K

‖Tzw‖2
2

subject to K ∈ Cstab ∩ {K | DK = 0}, (19)

where ‖Tzw‖2 denotes the H2 norm of Tzw. This problem (19)
covers the LQG control as a special case when the dynam-
ics in (1) are chosen appropriately (this fact is well-known;
see [26] for early discussions). The same proof techniques in
Section III can establish the connectivity of the strict sublevel
sets of (19):

Lγ = {K ∈ Cstab | DK = 0, ‖Tzw‖2
2 < γ }. (20)

We have the following result (see our report [25] for details).
Theorem 4: Under [16, Assumption 1], the strict sublevel

set Lγ (20) has at most two path-connected components L(1)
γ

and L(2)
γ . If so, L(1)

γ and L(2)
γ are diffeomorphic under the

mapping T T , for any T ∈ GLnx with det T < 0.
A straightforward implication from Theorem 4 is that

there exists a continuous path connecting any feasible point
K ∈ Lγ to a global minimum of LQG control. Moreover,
path connectivity of sublevel sets may imply further landscape
properties [27], [28]. For example, using a special definition
of minimizing sets in [28, Definition 5.1], [28, Th. 5.4] guar-
antees that H∞ control (18) and LQG control (19) have a
unique global minimizing set in some weak sense.

Definition 1: A nonempty S is an LT-critical set3 (or LTCS)
for the function ‖Tzw‖2

2 if 1) ‖Tzw‖2
2 is constant, ∀K ∈ S, and

2) for any γ ′ > γ with γ being the value of ‖Tzw‖2
2 over S,

the strict sublevel set Lγ ′ has a single connected component
containing S, and the intersection of all such single connected
components with γ ′ > γ equals to S.

Definition 2: A LTCS is called a global LT-minimizing set
(or global LTMS) if the value of ‖Tzw‖2

2 over this set is no
greater than the values of ‖Tzw‖2

2 for all K ∈ Cstab.
Corollary 2: If the global H2 optimal controller exists, then

the cost function ‖Tzw‖2
2 (as a function of K) has a unique

global LTMS, and no other LT-critical sets.
This result is a direct consequence of [28, Th. 5.4]. A sim-

ilar result holds for H∞ control. Corollary 2 ensures a unique
minimizing set only in a weak sense, and does not rule out
the normal notion of local minima and saddle points. For (19).
saddle points actually exist [16]. A rigorous definition of strict
local minima for (18) or (19) requires extra work due to
unboundedness of similarity transformations. Discussions on
local optimality conditions appear in [29].

V. CONCLUSION

We have proved that the set of H∞-constrained full-order
dynamical controllers has at most two path-connected com-
ponents (cf. Theorem 1) and they are diffeomorphic under
similarity transformations (cf. Theorem 2). We have also dis-
cussed various implications on the strict sublevel sets of LQG
and H∞ control (cf. Theorem 4). This brings positive news
for direct policy search of robust controllers.

3This terminology is adopted from [28], and “LT” stands for “less than.”

APPENDIX

This Appendix presents the proof of Theorem 1.
Lemma 2: For any (X, Y, Â, B̂, Ĉ, D̂,�,	) ∈ Gγ , � and

	 are always invertible, and consequently, the block triangular

matrices

[
I 0

YB2 	

]
and

[
I C2X
0 �

]
are invertible.

The proof is straightforward by observing that det(�	) =
det(YX − I) �= 0 for any (X, Y, Â, B̂, Ĉ, D̂,�,	) ∈ Gγ . Based
on the change of variables in [24], we can map each element
of Gγ back to a controller K ∈ R

(nu+nx)×(ny+nx). For each
Z = (X, Y, Â, B̂, Ĉ, D̂,�,	) in Gγ , we define


(Z) =
[

D(Z) 
C(Z)


B(Z) 
A(Z)

]

=
[

I 0
YB2 	

]−1[D̂ Ĉ
B̂ Â − YAX

][
I C2X
0 �

]−1

. (21)

The nonlinear change of variables in (21) is from [24],
which allows us to establish the following essential result. This
result can be derived from [24], and we provide a proof for
completeness.

Proposition 1: The mapping 
 in (21) is a continuous and
surjective mapping from Gγ to Kγ .

Proof: It is clear that 
(·) is a continuous mapping. To show
that 
 is a mapping onto Kγ , we need to prove the following
statements:

1) For any arbitrary controller K ∈ Kγ , there exists Z =
(X, Y, Â, B̂, Ĉ, D̂,�,	) ∈ Gγ such that 
(Z) = K.

2) For all Z = (X, Y, Â, B̂, Ĉ, D̂,�,	) ∈ Gγ , we have

(Z) ∈ Kγ .

To show the first statement, let K =
[

DK CK
BK AK

]
∈ Kγ be

arbitrary. By the bounded real lemma [21], there exists P � 0
such that (11) is feasible. We partition the matrix P as

P =
[

Y 	

	T Ŷ

]
. (22)

Without loss of generality, we assume that det 	 �= 0 (other-
wise we can add a small perturbation on 	 thanks to the strict
inequality in (11)). We further define

[
X �T

� X̂

]
:=

[
Y 	

	T Ŷ

]−1

, T :=
[

X I
� 0

]
. (23)

we can verify that

YX + 	� = I, TTPT =
[

X I
I Y

]
� 0. (24)

Now we choose (Â, B̂, Ĉ, D̂) as

Â = Y(A + B2DKC2)X + 	BKC2X

+ YB2CK� + 	AK�,

B̂ = YB2DK + 	BK,

Ĉ = DKC2X + CK�, D̂ = DK. (25)

We can verify that Mγ (X, Y, Â, B̂, Ĉ, D̂) is the same as
⎡
⎣TT 0 0

0 I 0
0 0 I

⎤
⎦

⎡
⎣AT

clP + PAcl PBcl CT
cl

BT
clP − γ I DT

cl
Ccl Dcl − γ I

⎤
⎦

⎡
⎣T 0 0

0 I 0
0 0 I

⎤
⎦,
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which is clearly negative definite due to (11). Thus, we have
Z = (X, Y, Â, B̂, Ĉ, D̂,�,	) ∈ Gγ by the definition of Gγ .
Note that (25) can be compactly rewritten as

[
D̂ Ĉ
B̂ Â − YAX

]
=

[
I 0

YB2 	

][
DK CK
BK AK

][
I C2X
0 �

]
.

Based on Lemma 2, we have[
DK CK
BK AK

]
=

[

D(Z) 
C(Z)


B(Z) 
A(Z)

]
= 
(Z).

Therefore, the first statement is true. The second statement
reduces to the standard controller construction for LMI-based
H∞-synthesis [24]. We complete the proof.

Remark 3: The analysis technique via the change of vari-
ables (21) in Proposition 1 is from [24]. This analysis can also
be used for H2 and other costs; see [24] for details.

Based on Proposition 1, any path-connected component of
Gγ has a path-connected image under the surjective mapping

. Consequently, the number of path-connected components
of Kγ will be no more than the number of path-connected
components of Gγ . The number of path-connected components
of the set Gγ is given below.

Proposition 2: The set Gγ has two path-connected compo-
nents, given by

G+
γ =

{
(X, Y, Â, B̂, Ĉ, D̂,�,	) ∈ Gγ | det � > 0

}
,

G−
γ =

{
(X, Y, Â, B̂, Ĉ, D̂,�,	) ∈ Gγ | det � < 0

}
.

Proof: First, Fγ is path-connected since it is convex. The set
of real invertible matrices GLnx = {� ∈ R

nx×nx | det � �= 0}
has two path-connected components [30]

GL+
nx

= {� ∈ R
nx×nx | det � > 0},

GL−
nx

= {� ∈ R
nx×nx | det � < 0}.

Thus, the Cartesian product Fγ ×GLnx has two path-connected
components. We further observe that the mapping from
(X, Y, Â, B̂, Ĉ, D̂,�) to (X, Y, Â, B̂, Ĉ, D̂,�, (I − YX)�−1)

is a continuous bijection from Fγ × GLnx to Gγ . This
immediately leads to the desired conclusion.

The proofs for Proposition 2 and [16, Proposition 3.2] are
similar. Reference [16, Proposition 3.2] can be viewed as a
special case of Proposition 2 with γ → +∞. Now Theorem 1
can be proved by combining Proposition 1 and Proposition 2.

Proof of Theorem 1: We define K+
γ := 
(G+

γ ) and K−
γ :=


(G−
γ ). We have Kγ = K+

γ ∪K−
γ . If Kγ is not path-connected,

the two path-connected components of Kγ are exactly K+
γ and

K−
γ . Based on Proposition 1, Theorem 1 holds.
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