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Abstract—Many existing region-of-attraction (ROA) anal-
ysis tools find difficulty in addressing feedback systems
with large-scale neural network (NN) policies and/or high-
dimensional sensing modalities such as cameras. In this
letter, we tailor the projected gradient descent (PGD) attack
method as a general-purpose ROA analysis tool for high-
dimensional nonlinear systems and end-to-end perception-
based control. We show that the ROA analysis can be
approximated as a constrained maximization problem such
that PGD-based iterative methods can be directly applied.
In the model-based setting, we show that the PGD updates
can be efficiently performed using back-propagation. In the
model-free setting, we propose a finite-difference PGD esti-
mate which is general and only requires a black-box simula-
tor for generating the trajectories of the closed-loop system
given any initial state. Finally, we demonstrate the scalabil-
ity and generality of our analysis tool on several numerical
examples with large state dimensions or complex image
observations.

Index Terms—Region of attraction, nonlinear systems,
perception-based control.

I. INTRODUCTION

RECENTLY, deep reinforcement learning (DRL) tech-
niques have gained popularity in control [1], [2]. For

control applications, DRL has two main advantages. First,
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DRL provides a general-purpose framework for addressing
complex nonlinear dynamics (e.g., contact force, etc). Second,
DRL can be applied to train pixel-based control systems in an
end-to-end manner [3], [4]. Despite these advantages, applica-
tions of DRL in real-world control systems are still rare. One
issue is that the stability and robustness properties of such
DRL-based controllers have not been fully understood. There
is an urgent need to develop new analysis tools for addressing
the stability and robustness of DRL-based control systems.

In this letter, we are interested in estimating the region
of attraction (ROA) of nonlinear control systems with high-
dimensional states (e.g., up to 1000 states) and/or rich observa-
tions (e.g., images). There are three main technical difficulties.
First, the state dimension can be high, and the NN policies can
have a large number of hidden neurons, leading to scalability
issues. Second, the feed-forward dynamics of perception-based
control systems are typically not fully known due to the com-
plex mapping from the plant state to the image. Third, in
general, the control action may depend on the past output mea-
surements, and thus the coupling of system states at different
time steps can be complicated. The first two issues will cause
trouble for existing Lyapunov-based ROA analysis methods
using semidefinite programming [5]–[8] or mixed-integer pro-
grams [9]–[11]. Due to the last issue, the methods of Lyapunov
neural networks [12]–[14] or other stability certificate learn-
ing methods [15]–[17] may also be not applicable since these
methods typically require the control action to depend on the
current state. Our goal is to develop a ROA analysis method
which can address the above three issues simultaneously.

To achieve our goal, we will borrow the method of the
projected gradient descent (PGD) attack developed in the
adversarial learning literature [18]–[21] and tailor it as a
general-purpose ROA analysis tool. Originally, the PGD attack
was developed to find the worst-case perturbation that can
shift the output of neural networks significantly and degrade
the performances of classifiers in computer vision. In our
paper, we build a connection between PGD attack and the
ROA analysis. We show that the ROA analysis can be approx-
imated as a constrained maximization problem whose goal
is to find the worst-case initial condition which shifts the
terminal state most significantly. Then PGD can be directly
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applied to solve the resultant maximization problem. Such a
maximization formulation is not based on Lyapunov theory,
and hence does not require any particular structures for the
underlying dynamical system. Similar to the applications in
computer vision, we find that PGD scales well and can address
high-dimensional system states and large-scale NN policies.
When the unknown mapping from the plant state to the image
pixels and complex coupling between states at different time
steps are involved, we propose a finite difference PGD esti-
mation which is general in the sense that it only requires
a black-box simulator for generating the trajectories of the
closed-loop systems given any initial state. Consequently, the
proposed method can address the three challenges mentioned
above simultaneously. Finally, we present some numerical
experiments as well as some concluding remarks.

II. PROBLEM FORMULATION

In this letter, we are interested in ROA analysis of the
following nonlinear dynamical system

xt+1 = f (xt, ut)

yt = h(xt) (1)

where xt ∈ R
nx is the state, ut ∈ R

nu is the control input,
and yt ∈ R

ny is the output observation. Here, ut is deter-
mined by a complex nonlinear mapping K from the history
of observation-action pairs over a time window, i.e., ut =
K(yt, yt−1, ut−1, . . . , yt−N+1, ut−N+1) where N is the window
length. We allow the analytical form of the function h to be
unknown and hence yt is allowed to be a high-dimensional,
rich observation from a camera. In this case, yt is just a vec-
tor augmented from the image pixel values obtained at time
t, and we make the assumption that the environment for the
image generation is relatively static such that h is determinis-
tic. For perception-based control systems, the analytical form
of h is unknown. However, it is reasonable to assume that we
can query a simulator which can render the perception-based
observation output of h for a given state (e.g., a simulated rgb
depth camera used in [22]).

We assume that (1) is posed in a way that the equilibrium
state is 0. Our goal is to estimate the ROA of the feedback
interconnection of (1) and K. For any fixed t, the state xt

of the closed-loop control system (1) with policy K will be
uniquely determined by a mapping from the initial state x0.
We denote such a mapping as gt. Once f , h, and K are fixed,
gt is determined. Then the state trajectory generated by the
closed-loop feedback control system satisfies xt = gt(x0) for
any t. Now we can define ROA as follows.

Definition 1: The ROA of the feedback control system (1)
with the policy K is defined as

R = {x0 : lim
t→∞ gt(x0) = 0}. (2)

We are interested in finding convex approximations of R
and addressing two difficult cases. First, system states and
DRL-based NN policies can be high-dimensional, causing a
scalability issue for performing ROA analysis. Second, for
perception-based control systems, it is difficult to figure out
the internal mechanism of image generation, and hence the

mapping h is typically unknown. Notice that the output of h
is typically a high-dimensional signal, and fitting a function
to estimate such h for ROA analysis is also difficult. In gen-
eral, it is very difficult to obtain tight rigorous approximations
of R for high-dimensional nonlinear/perception-based control
systems. We will borrow the idea of PGD attack to generate
initial conditions which do not belong in R and then construct
ROA approximations using these initial conditions.

III. MAIN ANALYSIS FRAMEWORK

A. Approximating ROA via Constrained Maximization

In this letter, we are interested in approximating R as the
following parameterized convex set

R̂(p, r, C) = {ξ : ‖Cξ‖p ≤ r} (3)

where C is some prescribed transformation matrix, r quanti-
fies the size of the approximated ROA, and p can be 1, 2,
or ∞. Notice that C should be full rank such that C�C is a
positive definite matrix. When p = 2, we will have ellipsoidal
approximations. Clearly, the set R̂(p, r, C) is always convex,
and hence projection to R̂(p, r, C) can be easily done. For
convenience, we will drop the subscript “2” in the notation of
the �2 norm and just use ‖·‖ instead.

If R̂(p, r, C) ⊂ R, then we have limt→∞ gt(ξ) = 0 for
any ξ ∈ R̂. Therefore, a necessary and sufficient condition for
R̂(p, r, C) ⊂ R is given as follows

max
ξ∈R̂(p,r,C)

(
lim sup

t→∞
‖gt(ξ)‖2

)
= 0. (4)

Checking the above condition numerically will lead to a finite-
horizon approximation:

max
ξ∈R̂(p,r,C)

‖gT(ξ)‖2 ≤ δ (5)

where T is a prescribed large number and δ is some fixed small
number. We will use (5) as our main criterion for approximating
R. Specifically, given C, p, r, T , and δ, we will calculate
max

ξ∈R̂(p,r,C)
‖gT(ξ)‖2 and compare the resultant solution with

δ. For a fixed C and p, we will perform bisection on the
radius r to find the maximum of r such that (5) is satisfied.
Then the resultant R̂(p, r, C) will be our ROA approximation.
We formalize the above discussion by defining the (T, δ)-
approximated region of attraction (AROA) as follows.

Definition 2: The (T, δ)-AROA is defined as

R̃(T, δ) = {x0 : ‖gT(x0)‖2 ≤ δ}.
The following lemma gives a precise characterization of the

relation between R̃(T, δ) and R.
Proposition 1: For any fixed T and δ > 0, we have⋂

t≥T

R̃(t, δ) = {x0 : ‖gt(x0)‖2 ≤ δ, ∀t ≥ T}. (6)

The sequence of sets {⋂t≥T R̃(t, δ)}∞T=0 is monoton-
ically increasing to lim infT→∞ R̃(T, δ). In addition,
lim infT→∞ R̃(T, δ) is monotonically decreasing in δ, and the
following limit holds

R = lim
δ→0

(
lim inf
T→∞ R̃(T, δ)

)
. (7)
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Proof: Most statements in the above lemma can be
verified trivially. The proof of (7) is less straightforward
and hence included here. First, we will show R ⊂
limδ→0(lim infT→∞ R̃(T, δ)). Suppose x0 ∈ R. By definition,
we have limt→∞ gt(x0) = 0. Hence for any δ0 > 0, there
exists T such that ‖gt(x0)‖2 ≤ δ0 for all t ≥ T . This means
R ⊂ lim infT→∞ R̃(T, δ0) for any δ0. Then we can let δ0
approach 0 and have R ⊂ limδ→0(lim infT→∞ R̃(T, δ)). Next,
we will show limδ→0(lim infT→∞ R̃(T, δ)) ⊂ R. Suppose
x0 ∈ limδ→0(lim infT→∞ R̃(T, δ)). For any δ0 > 0, it
is straightforward to verify limδ→0(lim infT→∞ R̃(T, δ)) ⊂
lim infT→∞ R̃(T, δ0). This means that for any arbitrary δ0 > 0,
there exists T > 0 such that ‖gt(x0)‖2 ≤ δ0 for t ≥ T .
Therefore, we have limt→∞ gt(x0) = 0. This leads to the
desired conclusion and completes the proof.

Based on (7), it is reasonable to estimate R from R̃(T, δ)

with some small δ and large T . From a practical point of view,
Definition 2 also makes sense since engineering systems are
run on finite-time windows. Stability and ROAs defined on
infinite horizons provide meaningful abstractions for quantify-
ing the resilience property of many feedback control systems.
However, we will show that the finite-horizon notion of ROA
will provide complementary benefits from a computational
perspective. Our finite-horizon approach will not give a rig-
orous inner approximation of R. However, if we choose T
and δ carefully, our approach will lead to scalable solu-
tions for estimating ROA of complex nonlinear systems and
perception-based control. We will elaborate on this later.

B. PGD Attack for ROA Approximation

From the above discussion, the ROA analysis can be
formulated as the following maximization problem

maximize
ξ∈R̂(p,r,C)

‖gT(ξ)‖2 (8)

Denote ξ∗ = arg max
ξ∈R̂(p,r,C)

‖gT(ξ)‖2. We will perform
bisection on r over the domain [0, rmax], iteratively solving (8),
to find the largest r such that ‖gT(ξ∗)‖2 ≤ δ. We will then use
the resultant set R̂(p, r, C) to approximate the ROA. The key
to our analysis is that we can apply PGD to solve ξ∗

r . Denote
LT(ξ) = ‖gT(ξ)‖2. In addition, for any convex set S, we use
�S to denote the projection onto S. Then PGD iterates as1

ξ k+1 = �R̂(p,r,C)

(
ξ k + α∇LT(ξ k)

)
. (9)

One way to interpret (9) is that at every k, it recursively mini-
mizes (−LT(ξ k)−∇LT(ξ k)�(ξ − ξ k)+ 1

2α
‖ξ − ξ k‖2) over the

feasible set ξ ∈ R̂(p, r, C), where an �2 regularizer is added
to the first-order expansion of (−LT) around ξ k.

Another way to solve (8) is to approximate (8) as

ξ k+1 = arg max
‖Cξ‖2

p=r2

{
LT(ξ k) + ∇LT(ξ k)�(ξ − ξ k)

}
(10)

where the �2 regularizer is removed and the inequality con-
straint ‖Cξ‖2

p ≤ r2 is replaced with an equality condition

1Technically speaking, projected gradient ascent is needed for maximization
problems. However, the terminology PGD is still used here such that our paper
is consistent with the adversarial learning literature.

‖Cξ‖2
p = r2. Intuitively, using an equality constraint makes

sense for the ROA analysis since we will perform a bisection
on r. When p = 2, the constraint is just ‖Cξ‖2 = r2, and a
closed-form solution for (10) is given as

ξ k+1 = r∥∥C−�∇LT(ξ k)
∥∥ (C�C)−1∇LT(ξ k) (11)

To see this, we apply the Lagrange multiplier theorem to (10)
and obtain −∇LT(ξ k) + 2λC�Cξ = 0 and ‖Cξ‖ = r, where
λ is the Lagrange multiplier. This leads to (11). The above
PGD update rule (10) can be viewed as a special case of the
so-called Frank-Wolfe (or conditional gradient) algorithm [23].
There is also a connection between (11) and the alignment con-
dition in the controls literature [24], since the initial condition
can be viewed as an input applied at t = 0.

For p = 2, the implementation of (11) is straightforward.
For other values of p, (10) can also be applied. Due to the
page limit, we only discuss the update rules for these other
cases in our arXiv report [25]. Another subtle issue is how
to choose T . Notice that T cannot be too large. Otherwise
the gradient ∇LT(ξ) may be too small for any ξ ∈ R and
this makes finding ξ∗ more difficult. Decreasing T is actually
smoothing the cost function LT and makes the optimization
easier. Decreasing T will also significantly shorten the com-
putational time. However, we also cannot make T be too small.
Otherwise R̃(T, δ) is no longer a good estimate for R. In gen-
eral, T will be highly dependent on the class of system and
may have to be chosen through domain knowledge or exper-
iments. Also note that the choice of C in the update (11) is
fixed and can significantly impact the resulting volume of the
ROA approximation. If nothing is known a priori about the
shape of the ROA, one may tune C heuristically by fitting the
shape to sampled points.

Remark 1: Our proposed analysis only provides an approx-
imation for the true ROA. There is a gap between R and
R̃(T, δ). If T and δ are well chosen, the approximation error
induced by such a gap will be small. Then we can just verify
whether R̂(p, r, C) ⊂ R̃(T, δ), and the optimization error in
solving (8) will become a more dominant factor. In general, (8)
is a non-concave maximization problem. If R̂(p, r, C) ⊂ R̃,
we can verify this by finding one initial condition satisfy-
ing LT(ξ) > δ. This is relatively easy. However, to verify
R̂(p, r, C) ⊂ R̃, we need to find the global maximum of (8)
and compare it with δ. There lacks strong guarantees for find-
ing such global solutions. One useful heuristic fix is to run
PGD with different random initial conditions. Despite the lack
of strong global guarantees, our simulation study shows that
the ROA approximations from PGD are good estimates of the
true ROAs in many situations.

Both (9) and (11) are inspired by existing attack methods
in the adversarial learning literature [19], [21]. For both (9)
and (11), the key step is to evaluate ∇LT(ξ k). Next, we discuss
how to perform such gradient evaluation for nonlinear systems
with NN policies and/or image observations.

C. Model-Based Analysis: PGD With Back-Propagation

As a sanity check, we consider the relative simple case
where ut = K◦h(xt) with the analytical forms of both K and h
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being known apriori. Here the operation ◦ denotes the compo-
sition of two maps. In this case, we can use back-propagation
to evaluate ∇LT(ξ) efficiently. The feedback system reduces
to the autonomous form xt+1 = f (xt, K ◦ h(xt)). For simplic-
ity, we denote f̃ (x) = f (x, K ◦ h(x)). We also denote f̃ (0) to
be the identity map and set f̃ (n+1) = f̃ ◦ f̃ (n). Then we have
xt = f̃ (t)(x0), and LT(x0) = ‖f̃ (t)(x0)‖2. We introduce the
costate pt, and define the Hamiltonian as H(x, p) = pf̃ (x).
The following result holds.

Proposition 2: Set x0 = ξ and generate the state sequence
as xt+1 = f̃ (xt) for t = 0, 1, . . . , T − 1. Next, set pT = 2xT

and generate the costate in a backward manner, i.e., pt =
∇xH(xt, pt+1) for 0 ≤ t ≤ T − 1. Then ∇LT(ξ) = p0.

Proof: The above result is a special case of
[26, Proposition 5]. It can also be verified using the chain
rule.

Therefore, one can just run the forward dynamics and then
make a back-propagation to calculate the ∇LT(ξ). When f ,
h, and K are known, one can write out explicit expressions
for ∇xH and perform the gradient calculation accordingly. For
perception-based control systems, the analytical form of the
mapping h is typically not known, and the dimension of h is
high. This motivates us to use a model-free approach.

D. Model-Free ROA Analysis

Now we present a model-free approach to address the case
where the analytical forms of f and h are unknown, but a
black-box simulator for gT is available. We assume that we
can simulate the closed-loop system and generate gT(ξ) for
any given T and ξ . For perception-based control systems, the
dimension of yt is high. However, a key fact is that gT(ξ) is a
function of ξ which lives in a space of much lower dimension.
This motivates us to apply the finite difference estimation for
the gradient evaluation. Specifically, we have ∇LT(ξ k) ≈ �

where the j-th entry of � can be estimated using the following
finite difference scheme:

�(j) = LT(ξ k + εej) − LT(ξ k)

ε
. (12)

Notice ej denotes a vector whose entries are all 0 except the
j-th entry which is 1. Therefore, we need to simulate the tra-
jectories for (nx+1) times. For systems with a reasonable state
dimension (e.g., up to a thousand), such a gradient evaluation
is scalable, in fact, linearly in the horizon T .

The above finite difference method is extremely general. In
principle, as long as we can have a black-box simulator for the
closed-loop system, we can apply the finite difference method
without knowing any underlying dynamic structures. Such an
approach is mostly useful for perception-based control systems
with a complex mapping h. It is also possible to apply auto-
differentiation to obtain the gradient estimate. In general, it
is unclear whether the finite-difference technique or the auto-
differentiation method gives a better gradient in the context of
control, and this topic is still being studied actively [27]. We
will investigate this issue in the future.

IV. EXPERIMENTAL RESULTS

We now present numerical results demonstrating the
scalability and effectiveness of our proposed PGD-based

Fig. 1. In this figure we compare the results of our PGD approach and
Monte Carlo over random cubic systems over a range of state dimen-
sions. left: For each state dimension nx , we report the mean and one
standard deviation over N = 10 samples for the spherical ROA approx-
imation found by our method. Here r̂ is the estimate and r
 is the true
largest spherical region about the origin that is a subset of the true ellip-
soidal ROA. right: The mean CPU time is reported with a log-log scaling.
Note that only a single sample for nx = 1000 for PGD was taken and no
statistics are reported.

analysis. We apply the PGD update rule (11) with the finite
difference gradient estimator (12) to perform ROA analysis.
More discussion on the alternative PGD update rule (9) is
given in our arXiv report [25]. Finally, we will also justify
our approach via a comparison with a Monte Carlo sampling
baseline.

A. Cubic Systems With High-Dimensional States

First, we test our proposed method on high-dimensional
polynomial systems. We revisit the cubic system example
from [28] to showcase the scalability of our proposed method
when the system state is high-dimensional. Specifically, we
consider the system xt+1 = f̃ (xt), which is discretized from
the continuous-time cubic ODE ẋ(t) = (1 − x(t)�Mx(t))Fx(t),
where M can be any positive definite (PD) matrix, and F = −I.
We choose the sampling time as dt = 10−3. Therefore, f̃
generates xt+1 by solving for the state of the cubic continuous-
time ODE at dt starting from initial time 0 and initial state
xt. One can simulate f̃ using the Runge-Kutta method. This
cubic example has a known ROA given by the ellipsoid
R = {x0 ∈ R

nx : x�
0 Mx0 < 1}, and was used to study the scal-

ability of the sum-of-squares (SOS) technique [28]. It is found
that SOS has difficulty when the state dimension exceeds 10,
as the number of variables scales exponentially with dimen-
sion. In fact, the original results in [28] only cover the case
when nx is up to 8. As shown in Figure 1 (which will be
explained in the next paragraph), we demonstrate that our PGD
analysis can be applied for state dimensions greater than 1000.

Now we present the details for our scalability study. If we
let M be an arbitrary PD matrix and choose C = I in our
ROA analysis, then the best inner approximation of the true
ROA is given by a sphere of radius r
 := λ

−1/2
max , where λmax

is the largest eigenvalue of M. In this way, we can obtain
a spherical ROA ground-truth for systems of arbitrarily high
dimension. We can then benchmark our PGD approach by
computing the radius r̂ of our spherical ROA approximation
which can be compared with r
. Our ROA approximation will
be good if r̂

r∗ is close to 1. If r̂
r∗ is smaller than 1, then we

have obtained an inner-approximation of the true spherical
ROA. Otherwise our analysis results will be outer approxi-
mations of the true ROA. This will allow us to demonstrate
high-dimensional state cases that can not be solved by SOS
but still have a known ground-truth ROA to compare against.
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Fig. 2. A diagram depicting the image-based feedback setup.

In principle, any Hurwitz matrix F and PD matrix M may be
used for this example as long as (F, M) satisfy the Lyapunov
equation F�M + MF = −Q for some PD matrix Q. For
simplicity and freedom to choose arbitrary ROA parameter-
ization M, we use F = −I. For this experiment, we apply
our PGD analysis with finite-difference gradient estimates to
randomly generated cases with different state dimensions, i.e.,
nx ∈ {2, 5, 10, 20, 50, 100, 500, 1000}. We fix T = 105, inte-
grating for 100 seconds with dt = 10−3 to ensure the system
can converge and δ = 10−2. For each case, we compute the
radius r̂ and plot the ratio r̂

r
 in Figure 1, which demonstrates
that our approach scales reasonably well as the state dimension
increases. For the state-dimensions up to 500, we take 10 ran-
domly generated samples for each dimension. We then take the
mean and standard deviations of the approximate radius found
by our PGD method, r̂, normalized by the best inner approxi-
mation of the true ROA r
. We also run the PGD method for
the case of nx = 1000, but only take a single sample for the
sake of exposition. This data, along with the mean CPU time
taken to run the PGD method on local laptop machine can be
found in Figure 1. It is impressive that the analysis for this
case can be run on a laptop within four hours.

We also compare our approach with a Monte Carlo-based
baseline algorithm which performs the same ROA analy-
sis with a uniform sampling approach. This approach still
performs bisection on the ROA radius, but uses the same
simulation time-step budget as allowed by PGD for each bisec-
tion step. For the cubic system example, we find that our
PGD method scales favorable to simply Monte Carlo sampling
especially for high-dimensions (> 50).

B. Perception-Based Control Systems

Next, we consider several examples where control actions
are directly determined from image pixels (see Figure 2).
We present our ROA analysis results for perception-based
control of nonlinear cartpole systems (with single and dou-
ble links). For the full-state feedback case, comparison to an
existing quadratic-constraint approach can be found in our
arXiv report [25], however it is not applicable to this setting.
The perception-based feedback control loop is visualized in
Figure 2. The plant can be any nonlinear system (e.g., inverted
pendulum, cartpole, etc). A camera is used to measure the
system output and environment is assumed to be static such
that the mapping from the system state to the images is time-
invariant. This is a reasonable assumption and similar settings
have been adopted previously [22], [29]. The controller uses
the last N 84 × 84 RGB images, which are generated by the
Deepmind Control Suite [29]. We train each perception-based

Fig. 3. We compare the ROA spherical and ellipsoidal approximations
found by our PGD approach as well as the Monte Carlo baseline on the
perception-based single cart-pole system. Shown is a two-dimensional
slice of the four-dimensional ROA is determined by fixing the cart posi-
tion and velocity to be zero. Our approach produces a more accurate
ROA estimate when allowing Monte Carlo to use the same number of
simulation time-steps.

controller using the novel image-augmentation training pro-
cedure from [4], and utilize the model-free RL algorithm
Soft-Actor-Critic (SAC) [30] as the policy optimizer. Within
the controller K, a policy network is prepended by a four-layer
CNN encoder with 3 × 3 kernels and 32 channels, applying
ReLU activations at each CNN layer. The output of the CNN
encoder is then fed to the fully-connected four-layer ReLU
policy network with 1024 neurons. Despite the complexity of
the policy network, we can apply the PGD update rule (11)
with the finite difference gradient estimator (12) of ∇LT to
perform ROA analysis.

The k-link cartpole is a useful example since there is an
obvious equilibrium point at the upright position which can
be studied. For convenience, we use the Deepmind Control
Suite with its default model parameters to simulate this cart-
pole example with image observations. To capture the physical
limit of the actuators, we set the saturation limit of the control
action to be 1.

In this situation, the dimension of the decision variable
ξ = x0 is 2(npoles + 1) which will be much lower than the
dimension of the output variable (= 2 × 842 × 3 = 42336).
The model-free approach allows us to estimate ∇LT without
concerning the complexity of the image map h. As long as one
can simulate the closed-loop dynamics and generate outputs
from any initial state, ∇LT may be evaluated efficiently in a
model-free manner.

The controller is trained to balance the cartpole starting
near the equilibrium point. Initializing C by fitting an ellip-
soid to 50 ROA sample points, we obtain ROA estimates via
the PGD approach (11) for both the resultant perception-based
controllers. For both the double and single-link cases, we use
T = 20 and δ = 10−1 as the PGD hyper-parameters. For the
single-link case, we obtain an approximate ROA by running
both the model-free PGD method and Monte Carlo to obtain
ellipsoid ROA radii of r̂ = 0.96 and r̂ = 1.07 respectively.
The spherical shape yields a more drastic relative difference of
r̂ = 0.3 and r̂ = 0.4 respectively. A slice of the ROA’s for this
experiment can be seen in Figure 3. For the double-link cart-
pole case, we obtain the spherical ROA radius of r̂ = 0.077.
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Both values are reasonable when compared with the true ROA
radius. Though our analysis tends to slightly over-estimate
the ROA due to our choice of δ, the performance of the
estimate in terms of mean and variance is consistent. This
experiment shows that our method is reasonably effective for
such perception-based tasks with failure cases that may be
addressed with more careful hyper-parameter tuning.

Comparison to the Monte Carlo baseline is also made. One
advantage of our PGD approach is that we may take gradient
estimates using shorter time horizon trajectories, effectively
smoothing the optimization process. This can be seen from
Figure 3. For this example, with larger T , Monte Carlo
sampling starts to generate comparable results to our PGD
approach. This is not that surprising since the system dimen-
sion is below 10. However, our PGD approach allows the use
of small T , reducing the computational efforts.

V. CONCLUDING REMARKS AND FUTURE WORK

In this letter, we tailor the PGD attack as a general-
purpose ROA analysis tool for high-dimensional nonlinear
and/or perception-based systems. We reformulate the ROA
analysis as a constrained maximization problem, and show
that PGD and the model-free variant based on finite dif-
ference estimation can be directly applied to solve the
resultant optimization problem. An important future task
is to extend the PGD attack for input-output gain analy-
sis which is crucial for robust control. Recently, the H∞
input-output gain has been used in robust reinforcement
learning [31]–[36]. A general-purpose input-output gain anal-
ysis will play a crucial role for the developments of robust
DRL methods.

REFERENCES

[1] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” 2015, arXiv:1509.02971.

[2] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
2015, arXiv:1506.02438.

[3] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi, “Dream to control:
Learning behaviors by latent imagination,” 2019, arXiv:1912.01603.

[4] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto, “Mastering visual contin-
uous control: Improved data-augmented reinforcement learning,” 2021,
arXiv:2107.09645.

[5] H. Yin, P. Seiler, and M. Arcak, “Stability analysis using quadratic
constraints for systems with neural network controllers,” IEEE Trans.
Autom. Control, vol. 67, no. 4, pp. 1980–1987, Apr. 2022.

[6] H. Hu, M. Fazlyab, M. Morari, and G. J. Pappas, “Reach-SDP:
Reachability analysis of closed-loop systems with neural network con-
trollers via semidefinite programming,” in Proc. 59th IEEE Conf. Decis.
Control (CDC), 2020, pp. 5929–5934.

[7] M. Jin and J. Lavaei, “Stability-certified reinforcement learning: A
control-theoretic perspective,” IEEE Access, vol. 8, pp. 229086–229100,
2020.

[8] A. Aydinoglu, M. Fazlyab, M. Morari, and M. Posa, “Stability anal-
ysis of complementarity systems with neural network controllers,” in
Proc. 24th Int. Conf. Hybrid Syst. Comput. Control, 2021, pp. 1–10.

[9] S. Chen, M. Fazlyab, M. Morari, G. J. Pappas, and V. M. Preciado,
“Learning Lyapunov functions for piecewise affine systems with neural
network controllers,” 2020, arXiv:2008.06546.

[10] H. Dai, B. Landry, L. Yang, M. Pavone, and R. Tedrake, “Lyapunov-
stable neural-network control,” 2021, arXiv:2109.14152.

[11] S. Chen, M. Fazlyab, M. Morari, G. J. Pappas, and V. M. Preciado,
“Learning region of attraction for nonlinear systems,” 2021,
arXiv:2110.00731.

[12] S. M. Richards, F. Berkenkamp, and A. Krause, “The Lyapunov neural
network: Adaptive stability certification for safe learning of dynamical
systems,” in Proc. Conf. Robot Learn., 2018, pp. 466–476.

[13] Y.-C. Chang, N. Roohi, and S. Gao, “Neural Lyapunov control,” in Proc.
Adv. Neural Inf. Process. Syst., 2019, pp. 1–9.

[14] W. Jin, Z. Wang, Z. Yang, and S. Mou, “Neural certificates for safe
control policies,” 2020, arXiv:2006.08465.

[15] J. Kenanian, A. Balkan, R. M. Jungers, and P. Tabuada, “Data driven
stability analysis of black-box switched linear systems,” Automatica,
vol. 109, Nov. 2019, Art. no. 108533.

[16] P. Giesl, B. Hamzi, M. Rasmussen, and K. Webster, “Approximation of
Lyapunov functions from noisy data,” J. Comput. Dyn., vol. 7, no. 1,
p. 57, 2020.

[17] H. Ravanbakhsh and S. Sankaranarayanan, “Learning control Lyapunov
functions from counterexamples and demonstrations,” Auton. Robots,
vol. 43, no. 2, pp. 275–307, 2019.

[18] C. Szegedy et al., “Intriguing properties of neural networks,” 2013,
arXiv:1312.6199.

[19] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” 2014, arXiv:1412.6572.

[20] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples
in the physical world,” in Artificial Intelligence Safety and Security.
Chapman & Hall, 2018, pp. 99–112.

[21] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards deep learning models resistant to adversarial attacks,” 2017,
arXiv:1706.06083.

[22] J. Xu, B. Lee, N. Matni, and D. Jayaraman, “How are learned perception-
based controllers impacted by the limits of robust control?” in Proc.
Learn. Dyn. Control, 2021, pp. 954–966.

[23] J. C. Dunn and S. Harshbarger, “Conditional gradient algorithms with
open loop step size rules,” J. Math. Anal. Appl., vol. 62, no. 2,
pp. 432–444, 1978.

[24] J. E. Tierno, R. M. Murray, J. C. Doyle, and I. M. Gregory,
“Numerically efficient robustness analysis of trajectory tracking for non-
linear systems,” J. Guid. Control Dyn., vol. 20, no. 4, pp. 640–647,
1997.

[25] A. Havens, D. Keivan, P. Seiler, G. Dullerud, and B. Hu, “Revisiting
PGD attacks for stability analysis of large-scale nonlinear systems and
perception-based control,” 2022, arXiv:2201.00801.

[26] Q. Li, L. Chen, and C. Tai, “Maximum principle based algorithms for
deep learning,” J. Mach. Learn. Res., vol. 18, pp. 1–29, Apr. 2018.

[27] H. Suh, M. Simchowitz, K. Zhang, and R. Tedrake, “Do differentiable
simulators give better policy gradients?” 2022, arXiv:2202.00817.

[28] W. Tan and A. Packard, “Stability region analysis using polynomial
and composite polynomial Lyapunov functions and sum-of-squares pro-
gramming,” IEEE Trans. Autom. Control, vol. 53, no. 2, pp. 565–571,
Mar. 2008.

[29] S. Tunyasuvunakool et al., “DM_control: Software and tasks for con-
tinuous control,” Softw. Impacts, vol. 6, Jun. 2020, Art. no. 100022.

[30] T. Haarnoja et al., “Soft actor–critic algorithms and applications,” 2018,
arXiv:1812.05905.
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