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Abstract—Inspired by the path coordination problem arising
from robo-taxis, warehouse management, and mixed-vehicle
routing problems, we model a group of heterogeneous players
responding to stochastic demands as a congestion game under
Markov decision process dynamics. Players share a common
state-action space but have unique transition dynamics, and
each player’s unique cost is a function of the joint state-action
probability distribution. For a class of player cost functions,
we formulate the player-specific optimization problem, prove
equivalence between the Nash equilibrium and the solution of
a potential minimization problem, and derive dynamic pro-
gramming approaches to solve for the Nash equilibrium. We
apply this game to model multi-agent path coordination and
introduce congestion-based cost functions that enable players
to complete individual tasks while avoiding congestion with
their opponents. Finally, we present a learning algorithm for
finding the Nash equilibrium that has linear complexity in the
number of players. We demonstrate our game model on a multi-
robot warehouse path coordination problem, in which robots
autonomously retrieve and deliver packages while avoiding
congested paths.

I. INTRODUCTION

As autonomous path planning algorithms become widely-
adapted by aeronautical, robotics, and operational sectors [1],
[2], the standard underlying assumption that the operating
environment is stationary is no longer sufficient. More likely,
autonomous players share the operating environment with
other players who may have conflicting objectives. While the
possibility for multi-agent conflicts has pushed single-agent
path planning towards greater emphasis on robust planning
and collision avoidance, we believe that the overarching goal
should be to consider other players’ trajectories and achieve
optimality with respect to the multi-agent dynamics.

We focus on the scenario where a group of heterogeneous
players collectively perform path planning in response to
stochastic demands. We are inspired by fleets of robo-taxis
fulfilling ride demands while avoiding congestion in traffic [3]
and warehouse robots retrieving packages under dynamic
arrival rates [4], [5] while avoiding collisions. The common
feature in these applications is that the players must plan
with respect to a forecasted demand distribution rather than a
deterministic demand. We assume that the desirable outcome
is a competitive equilibrium. Beyond competitive settings, a
competitive equilibrium can be used in cooperative settings
to ensure that each player achieves identical costs and each
demand is optimally fulfilled with respect to other demands,
thus ensuring a degree of fairness.

We propose MDP congestion games as a theoretical frame-
work for analyzing the resulting path coordination problem.

1Authors are with the William E. Boeing Department of Aeronautics
and Astronautics, University of Washington, Seattle. sarahli@uw.edu
djcal@uw.edu behcet@uw.edu

By leveraging common congestion features in multi-agent
path planning, our key contribution is reducing the N -player
coupled MDP problem to a single potential minimization
problem. As a result, we can use optimization techniques
to analyze the Nash equilibrium as well as apply gradient
descent methods to compute it.

Contributions. To address the lack of game-theoretical
models for path coordination under MDP dynamics, we
propose an MDP congestion game with finite players and
heterogeneous player costs and dynamics. We define Bellman
equation-type conditions for the Nash equilibrium, formulate
a potential function and provide a necessary and sufficient
condition for its existence. Under certain assumptions on the
player costs, we show equivalence between the Nash equi-
librium and the global solution of the potential minimization
problem, and provide sufficient conditions for a unique Nash
equilibrium. Specifically for multi-player path coordination,
we formulate a class of cost functions that allows players to
have different sensitivities to the total congestion and to find
congestion-free paths that optimally achieve their individual
objectives. Finally, we provide a distributed algorithm that
converges to the Nash equilibrium and give rates of its
convergence. We demonstrate our model and algorithm on a
2D autonomous warehouse problem where robots retrieve and
deliver packages with stochastic arrival times while sharing
a common navigation space.

II. RELATED WORK

An MDP congestion game [6] is a stochastic population
game and is related to potential mean field games [7], [8]
in the discrete time and state-action space [9] and mean
field games on graphs [10]. In this paper, we extend our
previous framework from continuous populations of identical
MDP decision makers [6] to a finite number of heterogenous
MDP decision makers. In the continuous population case,
MDP congestion games have been analyzed for constraint
satisfaction in [11] and sensitivity to hyperparameters in [12].

Model-based multi-agent path planning is typically solved
via graph-based searches [13] and mixed integer linear pro-
gramming [14]. Recently, reinforcement learning has been
introduced as a viable method for solving multi-agent path
planning [1], [15]. In most scenarios, the path planning
problem is modeled as an MDP [16], [17]. In particular, [17]
adopts a stochastic game model for human-robot collision
avoidance, but focuses more on algorithm development rather
than game structure analysis.

III. HETEROGENEOUS MDP CONGESTION GAME

Consider a finite number of players [N ] = {1, . . . , N}
with a shared finite state-action space given by ([S], [A])
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and common time interval T = {0, 1, . . . , T}. Each player
i has individual time-dependent transition probabilities given
by P i ∈ RTSSA+ , where at time t, P its′sa is the transition
probability from state s to state s′ using action a satisfying
the simplex constraints:∑

s′ P
i
ts′sa = 1, ∀(i, t, s, a) ∈ [N ]× [T ]× [S]× [A]. (1)

State-action distribution. At time t, let player i’s state be
si(t) ∈ [S] and action taken be ai(t) ∈ [A], then xitsa =
P[si(t) = s, ai(t) = a] is player i’s probability of being
in state s taking action a at time t. Player i’s state-action
probability trajectory over time period T is xi ∈ R(T+1)SA,
its state-action distribution. We use X (P i, zi0) to denote the
set of all feasible state-action distributions under transition
dynamics P i and initial condition zi0 ∈ RS+, where zi0s =
P[si(0) = s] is player i’s probability of starting in state s.

X (P i, zi0) :=
{
xi ∈ R(T+1)SA

+

∣∣∣∣∣∑a x
i
0sa = zi0s,∀s ∈ [S],

∑
s′,a P

i
tss′ax

i
(t−1)s′a =

∑
a x

i
tsa, ∀(t, s) ∈ [T ]× [S]

}
.

(2)

The joint state-action distribution of all players is given by

x = (x1, . . . , xN ) ∈ RN(T+1)SA
+ . (3)

We assume that x is fully observable and may denote it as
x = (xi, x−i) where x−i = (xj)j∈[N ]/{i}.
Player costs. Similar to stochastic games, the player costs
are continuously differentiable functions of x: player i incurs
a cost `itsa(x) for taking action a at state s and time t.

`itsa : RN(T+1)SA
+ 7→ R, ∀(i, t, s, a) ∈ [N ]× T × [S]× [A].

(4)
Compared to stochastic games where player costs are cou-
pled to the opponent policies, (4) is better suited to model
collision events. For example, the expectation of the log-
barrier function for players i and j at time t can be modeled
as
∑
s,s′∈[S](

∑
a x

i
tsa)(

∑
a x

j
ts′a) log(ds,s′), in which ds,s′

denotes the distance between states s, s′ ∈ [S].
The cost vector of (`1, . . . `N ) (4) is given by ξ :

RN(T+1)SA
+ 7→ RN(T+1)SA

+ ,

ξ(x) = [`1011(x), `1012(x), . . . , `NTSA(x)] ∈ RN(T+1)SA
+ . (5)

We assume that ξ has a positive definite gradient in x.

Assumption 1. The player cost vector ξ (5) satisfies∇ξ(x) �
0 for all x (3) where xi ∈ X (P i, xi0), ∀i ∈ [N ].

For the class of player costs considered in Section III-B,
Assumption 1 implies that the player costs strictly increase
as the number of players increases.
Coupled MDPs. Given an initial distribution zi0 ∈ RS+ and
fixed state-action distributions x−i (3), player i solves the
following optimization problem under MDP dynamics.

min
xi

∑
t,s,a

∫ xi
tsa

0

`itsa(ui, x−i)∂uitsa s.t. xi ∈ X (P i, zi0).

(6)

In (6), we note that each integral is taken over uitsa, the
(t, s, a)th element of ui. When `itsa(x) is constant for all
(t, s, a) ∈ T × [S] × [A], player i solves a standard linear
program MDP.
Dynamic programming. At a joint state-action distribution
x (3), player i’s cost-to-go in (6) can be recursively defined
via Q-value functions [18] as

QiTsa(x) := `iTsa(x),

Qi(t−1)sa(x) := `i(t−1)sa(x) +
∑
s′ P

i
ts′samin

a′
Qit,s′a′(x),

∀ t ∈ [T ] (7)

The optimal solution of (6) can be stated using (7).

Theorem 1. Under Assumption 1, xi (2) uniquely mini-
mizes (6) with respect to the state-action distribution x−i if
and only if its associated Qi(xi, x−i) (7) satisfies

xitsa > 0⇒ Qitsa(xi, x−i) = mina′ Q
i
tsa′(x

i, x−i), (8)

for all (t, s, a) ∈ T ×[S]×[A]. I.e., xi is optimal for (6) if and
only if every action played with nonzero probability achieves
the minimum cost-to-go (7) among available actions.

Proof. Let F (xi, x−i) =
∑
t,s,a

∫ xi
tsa

0
`itsa(ui, x−i)∂uitsa,

then ∂F (xi, x−i)/∂xi = `(xi, x−i). We then apply Propo-
sition A1 to (6) and the theorem’s results follow directly.

When all players jointly achieve the optimal cost-to-go (8),
a stable equilibrium for unilateral optimality is achieved.

Definition 1 (Nash Equilibrium). The joint state-action dis-
tribution x̂ = [x̂1, . . . , x̂N ] (3) is a Nash equilibrium if(
x̂i, Qi(x̂)

)
satisfies (8) for all i ∈ [N ].

A. Potential optimization form

We are interested in MDP congestion games that can be
reduced from the coupled MDPs (6) to a single minimization
problem given by

min
x1,...,xN

F (x), s.t. xi ∈ X (P i, zi0), ∀ i ∈ [N ], (9)

where F is the potential function of the corresponding game.

Definition 2 (Potential Function). We say an MDP congestion
game with player costs {`i}i∈[N ] (4) has a potential function
F : RN(T+1)SA 7→ R if F satisfies

∂F (x)

∂xitsa
= `itsa(x), ∀ (i, t, s, a) ∈ [N ]×T × [S]× [A]. (10)

The following assumption on {`i}i∈[N ] is necessary and
sufficient for the existence of F [19, Eqn.2.44].

Assumption 2. For all (i, t, s, a), (i′, t′, s′, a′) ∈ [N ]× T ×
[S]× [A], the player costs {`i}i∈[N ] satisfy

∂`itsa(x)

∂xi
′
t′s′a′

=
∂`i

′

t′s′a′(x)

∂xitsa
. (11)

Remark 1. Assumption 2 is equivalent to F being conser-
vative: ∀ x1, x2 ∈ {xitsa | (i, t, s, a) ∈ [N ]×T × [S]× [A]},

∂2F (x)/∂x1∂x2 = ∂2F (x)/∂x2∂x1. (12)



In other words, the Jacobian of ξ (5), ∂ξ(x)/∂x, is symmet-
rical.

Verifying the existence of F (10) is non-trivial. However, if
F exists, the solution of (9) is the Nash equilibrium [20].

Theorem 2. If the player costs {`i}i∈[N ] (4) satisfy Assump-
tion 1,

1) the potential function (Definition 2) exists,
2) x̂ (3) is the global optimal solution of (9) if and only if

x̂ is a Nash equilibrium (Definition 1).

Proof. We prove statement 1 by showing that Assumption 1
implies Assumption 2: if ∇ξ(x) � 0 for all feasible joint
state-action distributions x (3), then ∇ξ(x) is symmetrical
and satisfies (11). Next, we show the forward direction of
the statement 2. If (x̂1, . . . x̂N ) minimizes (9), then for each
i ∈ [N ], x̂i minimizes (22) at x̂−i. From Proposition A1,
x̂i satisfies (8) for all i ∈ [N ], therefore x̂ is a Nash
equilibrium. To show the reverse direction of 2, if (8) is
satisfied for all i ∈ [N ], x̂i is coordinate-wise optimal for
coordinate i (Proposition A1). Under Assumption 1, (9) has a
strictly convex differentiable objective with separable convex
constraints X (P i, zi0)—each xi is constrained independently
of xj , ∀j ∈ [N ]/{i}, then the jointly coordinate-wise optimal
x̂ is the global optimal solution of (9) [21, Thm 4.1].

B. Path Coordination as an MDP Congestion Game

We now model the path coordination problem as an MDP
congestion game and demonstrate how players can achieve
individual objectives while avoiding each other.
To reflect the congestion level of each state-action, we first
define a congestion distribution as the weighted sum of
individual state-action distributions.

y :=
∑
i∈[N ] αix

i ∈ R(T+1)SA, αi > 0, ∀i ∈ [N ], (13)

where αi is player i’s impact factor. If all players contribute
to congestion equally, αi = 1 ∀i ∈ [N ].
Player costs. We derive a class of player costs that sat-
isfy Assumption 1, incorporate congestion-based penalties,
and enable players to pursue individual objectives. For all
(i, t, s, a) ∈ [N ]×T × [S]× [A], the player cost is given by

`itsa(y, xi) = αifts
(∑

a′ ytsa′
)

+ αigtsa
(
ytsa

)
+ hitsa(xitsa),

(14)
where αi is the same as in (13), fts : R 7→ R is the
state-dependent congestion and takes the congestion level of
(t, s) as input, gtsa : R 7→ R is the state-action-dependent
congestion and takes the congestion level of (t, s, a) as input,
and hitsa : R 7→ R is the player-specific objective and takes
player i’s probability of being in (t, s, a) as input. Player-
specific objectives such as obstacle avoidance and target
reachability can be incorporated as constant offsets in hi.

Remark 2 (Effect of αi). The impact factor αi scales player
i’s relative impact on the total congestion and the total
congestion’s impact on player i. When αi < αj , player i
impacts congestion less and cares about the congestion less

than player j. When αi > αj , player i impacts congestion
more and cares about the congestion more than player j.

The potential function (10) of the game with costs (14) is

F (x) =
∑
t,s

∫∑
a′ ytsa′

0
fts(u)∂u+

∑
t,s,a

∫ ytsa
0

gtsa(u)∂u

+
∑
i,t,s,a

∫ xi
tsa

0
hitsa(u)∂u.

(15)

Remark 3. Congestion costs f and g must be identical for
all players in order for a potential (Definition 2) to exist.

Example 1 (Road-sharing Vehicles). Consider a sedan
(player 1, α1 = 1) and a trailer (player 2, α2 = 2)
sharing a road network modeled by [S] × [A]. Player i
wants to reach state si ∈ [S]. The player-specific objective
is hitsa(xitsa) = −1[s = si] + εix

i
tsa, where 1[w] is 1

when w is true and 0 otherwise. The term εix
i
tsa where

εi > 0 encourages player i to randomize its policy over all
optimal actions. Players experience state-based congestion
as fts(w) = exp(w). The player cost (14) is `itsa(y, xi) =
αi exp(

∑
a′ ytsa′) + εix

i
tsa − 1[s = si].

Corollary 1. Player costs of form (14) satisfy Assumption 1
if hitsa(·) is strictly increasing and fts(·), gtsa(·) are non-
decreasing ∀(i, t, s, a) ∈ [N ]× T × [S]× [A].

Proof. Let IZ be an identity matrix of size Z × Z, 1Z be
a ones vector of size Z × 1, ~α = [α1, . . . , αN ] ∈ RN×1,
h(x) = [h1(x), . . . , hN (x)] ∈ RN(T+1)SA, and ⊗ be a
kronecker product. We define the matrices M = ~α⊗I(T+1)SA

and J = (I(T+1)S ⊗ 1>A)M , and verify that Mx = y,
[Jx]ts =

∑
a′ ytsa′ ∀(t, s) ∈ T ×[S], and ξ(x) = J>f(Jx)+

M>g(Mx) + h(x). Let w = Jx, we can take ξ’s gradient
as ∇ξ(x) = J>∇f(w)J + M>∇g(y)M + ∇h(x). Under
Corollary assumptions, ∇f(w) and ∇g(y) are non-negative
diagonal matrices and ∇h(x) is a strictly positive diagonal
matrix. Therefore, ∇ξ(x) � 0.

Remark 4. Corollary 1 implies that a strictly increasing hi

is crucial to ensuring a unique Nash equilibrium. Therefore,
hi can be interpreted as a regularization term.

C. Frank-Wolfe Learning Dynamics

We find the Nash equilibrium of MDP congestion games by
leveraging single-agent dynamic programming.

Algorithm 1 Frank-Wolfe with dynamic programming
Input: {`i}i∈[N ], {P i}i∈[N ], {zi0}i∈[N ], N , [S], [A], T .
Output: {x̂itsa}t∈T ,s∈[S],a∈[A].

1: xi0 ∈ X (P i, zi0) ∈ R(T+1)SA, ∀ i ∈ [N ].
2: for k = 1, 2, . . . , do
3: for i = 1, . . . , N do
4: Cik = `i([x1k, . . . , xNk])
5: πi = MDP(Cik, P i, [S], [A], T , zi0)
6: bik = RETRIEVEDENSITY(P , zi0, πi) . Alg. 2
7: xi(k+1) = (1− 2

k+1 )xik + 2
k+1b

ik

8: end for
9: end for



In Algorithm 1, each player can access an oracle that returns
the cost for a given joint state-action distribution. In line 5,
πi ∈ [A](T+1)S is any deterministic policy that solves the
finite time MDP with cost Cik, transition probability P i, and
initial distribution zi0. We use value iteration to recursively
find πi as

V iTs = mina C
ik
Tsa, π

i
Ts ∈ argmina C

ik
Tsa,

V i(t−1)s = mina C
ik
(t−1)sa +

∑
s′P

i
ts′saV

i
ts′ ∀t ∈ [T ]

πi(t−1)s ∈ argmina C
ik
(t−1)sa +

∑
s′P

i
ts′saV

i
ts′ ∀t ∈ [T ]

(16)
Algorithm 1 then retrieves the corresponding state-action
density bik via Algorithm 2 and combines it with the current
state-action density xik to derive the next joint state-action
density. All steps within lines 4 to 7 are parallelizable.

Algorithm 2 Retrieving state-action distribution from π

Input: P , z, π.
Output: {dtsa}t∈T ,s∈[S],a∈[A]

1: d0sπ0s = zs, ∀s ∈ [S]
2: for t = 1, . . . , T do
3: dts(πts) =

∑
a

∑
s′ Ptss′ad(t−1)s′a, ∀ s ∈ [S]

4: end for

Theorem 3. Under Assumption 1, Algorithm 1 converges
towards the Nash equilibrium x̂ = (x̂1, . . . , x̂N ) as

α
2

∑
i∈[N ]

∥∥xik − x̂i∥∥2
2
≤ 2CF

k+2 (17)

where CF is the potential function F ’s (10) curvature constant
given by

CF = sup
xi,si∈X (P i,zi0)

γ∈[0,1]
wi=xi+γ(si−xi)

2

γ2

(
F (s)−F (x)−

∑
i∈[N ]

(xi−wi)>`i(x)
)
.

Proof. Algorithm 1 is a straight-forward implementation
of [22, Alg.2]. From Assumption 1, ∇ξ(x̂) � 0. Therefore,
the potential function F is strongly convex and satisfies
α
2

∑
i∈[N ]

∥∥xik − x̂i∥∥2
2
≤ F (xk)− F (x̂). Equation (17) then

follows directly from [22, Thm.1].

Remark 5 (Scalability). Algorithm 1 has linear complexity
in the number of players.

IV. MULTI-AGENT PATH COORDINATION

We apply our game model to a multi-agent pick up and
delivery scenario with stochastic package arrival times. As
shown in Figure 1, N players navigate a 2D space. Each
player’s goal is to transport packages from the pick up chutes
to the drop off chutes while avoiding collision with others.
Code for the simulation is available at https://github.com/
lisarah/mdp path coordination.

Fig. 1. Operation environment for multi-robot warehouse scenario.

A. Stationary MDP Model

Players operate in a two dimensional grid world with 5
rows and 10 columns. In addition to capturing location, each
state also dictates whether the robot is in pick up or delivery
mode. The state space is given by

[S] =
{

(v, w,m) | 1 ≤ v ≤ 5, 1 ≤ w ≤ 10, m ∈ {1, 2}
}
.

At each state, available actions are [A] = {u, d, r, l, s},
corresponding to up, down, right, left, stay. Player transition
dynamics and rewards are stationary in time. The transition
probability of each state (v, w,m) extends the location-based
transition probabilities P 0.
Location-based transition. Let u = (v, w) denote the
location component of the state. At each location, each action
either points to a feasible target utarg(a) or is infeasible. The
set of all feasible targets from u isN (u). When a target exists,
players have 1 > q > 0 chance of reaching it and 1−q chance
of reaching other states in N (u).

P 0
u′ua =


q u′ = utarg(a),
1−q
|N (u)| u′ ∈ N (u)/{utarg(a)},
0 otherwise.

(18)

When the target location is infeasible, the player transitions
into a neighboring state u′ ∈ N (u) at random.

P 0
u′ua =

{
1

|N (u)| u′ ∈ N (u),

0 otherwise.
(19)

Full transition dynamics. Within the same mode, players
transition between locations via dynamics P 0. Player modes
transition at pick up chutes P and drop off chutes D.

1) When player i is in mode 1 (pick up) and about to
transition into pick chute pi ∈ P , player i’s mode has
ri probability of switching to mode 2 (drop off).{
P it(pi,2)sa = riP 0

tpiua,

P it(pi,1)sa = (1− ri)P 0
tpiua,

∀s = (u, 1), s ∈ [S].

2) When player i is in mode 2 (drop off) and about to
transition into drop chute di ∈ D, player i transitions to
mode 1 with probability 1.{

P it(di,1)sa = P 0
tdiua,

P it(pi,2)sa = 0,
∀s = (u, 2), s ∈ [S].

https://github.com/lisarah/mdp_path_coordination
https://github.com/lisarah/mdp_path_coordination


Fig. 2. ‖·‖2 of player i’s state-action distribution over Algorithm 1 iterations.

Here, ri ∈ R denotes the probability of package arrival when
player i is in pi. Modeled as an independent Poisson process
with rate λi and interval ∆t = 1s, ri = exp(−λi∆t).

B. Player Costs

For all (t, s, a) ∈ T × [S] × [A] and congestion distribution
y (13), player i’s cost is given by

`itsa(y, xi) = εxitsa − citsa + αifts(y).

The player-specific objective citsa is defined as

cit(v,w,m)a =


1 (v, w) = pi, m = 1,

1 (v, w) = di, m = 2,

0 otherwise.
(20)

The congestion function is strictly state-based and is an
exponential function given by

ft(v,w,m)(y) = −β exp
(
β(

∑
m′∈{1,2}

∑
a′∈[A]

yt(v,w,m′)a′ − 1)
)
,

(21)
where αi > 0 for all (t, s, a) ∈ T × [S] × [A]. As opposed
to (14), function (21) calculates the congestion in (v, w, ·)
using both (v, w, 1)’s and (v, w, 2)’s congestion level.

C. Simulation Results

We simulate the path coordination game using parameters
from Table I. Player i’s pick up locations is the ith element
of P = {(4, wi) | wi ∈ [8, 7, 2]}, and its drop-off location is
the ith element of D = {(0, wi) | wi ∈ [4, 5, 8]}. At t = 0,
players are initialized at their drop off location.

N q γi λi αi ∆t T ε β
3 0.98 0.99 0.5 {0.5, 1, 1.5} 1s 120s 1e-3 40

TABLE I
PARAMETERS FOR SIMULATION ENVIRONMENT.

We run Algorithm 1 for 100 iterations, where line 5 is solved
via value iteration (16). The two norm of xi is shown in Fig-
ure 2 as a function of the algorithm iterations. We see that the
state-action densities stabilize in about 20 steps. Performance
is evaluated by: 1) expected number of collisions, 2) expected
packages delivery time, 3) worst package delivery time. The

Fig. 3. Collisions per player as a function of MDP time step t.

Fig. 4. Average waiting time per package, worst case waiting time per
package, and average number of collisions in T for each player.

results over 100 random trials are visualized in Figures 3
and 4.
We compare the jointly optimal congestion-free wait time

computed using Algorithm 1, and compare them to the
shortest wait time available in the absence of opponents. Each
path is the number of steps to complete the drop off-pick
up-drop off cycle. Based on players’ pick-up and drop-off
locations, their shortest wait time in the absence of opponents
is 16, 12, 20 respectively. We note that this matches well with
the average wait time shown in Figure 4.

We set the player impact factors as {0.5, 1, 1.5} as in
Table I. From Figure 4, the impact factors directly correlate
with rate of collision players experience. Player 0 impacts
congestion the least and is the least sensitive to congestion.
As a result, it encountered more collisions. Player 2 impacts
congestion the most and is the most sensitive to congestion.
As a result, it encountered the least collisions. The collision
rate is spread out evenly over T (Figure 3).

V. CONCLUSIONS

We derived a class of N player, weighted potential games
under heterogeneous MDP dynamics and with application
to multi-agent path coordination. For these games, we show
equivalence between the unique Nash equilibrium and the
global solution of a potential minimization problem, which
we solve via gradient descent and single-player dynamic
programming. Future work include deriving learning-based
solutions for the games and integrating partially observable
scenarios in which players have local observations only.
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APPENDIX

Proposition 1. Under Assumption 1, consider the problem

min
xi

F (xi, x−i) s.t. xi ∈ X (P i, zi0). (22)

where for i ∈ [N ] and x−i, the objective F : RN(T+1)SA 7→
R satisfies ∂F (xi, x−i)/∂xi = `i(xi, x−i) ∀xi ∈ X (P i, zi0),
then x̂i minimizes (22) if and only if Qi(x̂i, x−i) in (7)
satisfies (8).

Proof. Because (22) has linear constraints and ∂2F (x)/∂x2i
= ∂`i(x)/∂xi � 0 by assumption, (22)’s unique minimizer

satisfies the first order KKT conditions. Consider the dual
variables µi ∈ R(T+1)SA

+ for xi ≥ 0 and νi ∈ R(T+1)SA

for the equality constraints in X (P i, zi0) (2). The Lagrangian
of (22) is L(xi, νi, µi) = F (xi, x−i) −

∑
t,s,a µ

i
tsax

i
tsa +∑

s ν
i
0s(x

i
0s −

∑
a x

i
0sa) +

∑
s,t ν

i
ts(
∑
s′a P

i
tss′ax

i
(t−1)sa −∑

a x
i
tsa). The KKT conditions are 1) primal feasibility

xi ∈ X (P i, zi0), 2) dual feasibility µi ≥ 0, 3) complementary
slackness µitsax

i
tsa = 0, ∀(t, s, a) ∈ T × [S] × [A], and 4)

stationarity condition, given ∀(t, s, a) ∈ T × [S]× [A] as{
`itsa(x) +

∑
s′ P

i
(t+1)s′saν

i
(t+1)s′ = νits + µitsa t 6= T

`iTsa(x) = νiTs + µiTsa t = T.
(23)

We can show that (x̂i, x−i) satisfies the KKT conditions
above if and only if it satisfies (8). To simplify notation, we
use Qitsa to denote Qitsa(x̂i, x−i).
(⇒): suppose (x̂i, νi, µi) satisfies the KKT conditions. When
x̂itsa > 0, νits represents the value function and νits + µitsa
represents Q-value. When x̂itsa = 0, we shift (νi, µi) to
(ν̂i, µ̂i) to generate the optimal Q-values. To this end, define
λi ∈ R(T+1)SA, ∆i ∈ R(T+1)S , µ̂i ∈ R(T+1)SA, ν̂i ∈
R(T+1)S recursively from t = T . At T = t, let ∆i

(T+1)s′ =
0 ∀s′ ∈ [S]. All other variables are recursively defined as

λitsa = µitsa +
∑
s′ P

i
(t+1)s′sa∆i

(t+1)s′ ,

∆i
ts = mina′ λ

i
tsa′ ,

µ̂itsa = λitsa −∆i
ts,

ν̂its = νits + ∆i
ts.

(24)

At time t, let the condition x̂itsa > 0 implies λitsa = 0 be de-
noted as K(t). We can show that K(t) implies K(t−1): from
complementary slackness, x̂i(t−1)sa > 0 implies µi(t−1)sa = 0.
Subsequently, λi(t−1)sa = 0 (24) if P its′sa∆i

ts′ = 0 ∀s′ ∈ [S]:
either P its′sa = 0 or P its′sax̂

i
(t−1)sa =

∑
a′ x̂

i
ts′a′ > 0. In the

second case, there exists a′ ∈ [A] such that x̂its′a′ > 0, and
if K(t) holds, λits′a′ = 0. By definition, ∆i

ts′ is non-negative
and must be zero. We conclude that P its′sa∆i

ts′ = 0 ∀s′ ∈ [S],
and K(t − 1) holds. At t = T , x̂iTsa > 0 implies µiTsa = 0
and λiTsa = 0. Therefore, K(t) holds ∀t ∈ T .
By adding

∑
s′ P

i
(t+1)s′sa∆i

(t+1)s′ to (23) and simplifying it
via (24), we obtain{

`itsa(x) +
∑
s′ P

i
(t+1)s′saν̂

i
(t+1)s = ν̂its + µ̂itsa t 6= T

`iTsa(x) = ν̂iTs + µ̂iTsa t = T.
(25)

We define Qitsa = ν̂its + µ̂itsa. From (24), µ̂itsa is always
non-negative and µ̂itsa′ = 0 for some a′ ∈ [A]. Therefore
mina′ Q

i
tsa′ = ν̂its, and Qi substituted in (25) satisfies (7).

If x̂itsa > 0, then from K(t), λitsa = 0. Therefore, µ̂itsa = 0
and Qitsa = mina′ Q

i
tsa′ . We conclude that Qi satisfies (8).

(⇐): We show that if Qi satisfies (8), then x̂i satisfies the
KKT conditions. Let νits = mina′ Q

i
tsa′ and µitsa = Qitsa−νits

∀(t, s, a) ∈ T × [S] × [A], then (x̂i, νi, µi) is a KKT point.
Both x̂i and µi satisfy primal/dual feasibility respectively.
From (8), x̂itsa > 0 implies that νits = Qitsa and µitsa = 0.
Since either x̂itsa > 0 or x̂itsa = 0, complementary slackness
x̂itsaµ

i
tsa = 0 holds ∀(t, s, a) ∈ T × [S] × [A]. Finally, the

stationarity condition (23) directly follows from (7).
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