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Abstract— In an inverse game problem, one needs to
infer the cost function of the players in a game such that
a desired joint strategy is a Nash equilibrium. We study
the inverse game problem for a class of multiplayer matrix
games, where the cost perceived by each player is cor-
rupted by random noise. We provide sufficient conditions
for the players’ quantal response equilibrium—a general-
ization of the Nash equilibrium to games with perception
noise—to be unique. We develop efficient optimization al-
gorithms for inferring the cost matrix based on semidef-
inite programs and bilevel optimization. We demonstrate
the application of these methods in encouraging collision
avoidance and fair resource allocation.

Index Terms— Game theory, optimization

I. INTRODUCTION

In a multiplayer game, each player tries to find the strategies
with the minimum cost, where the cost of each strategy
depends on the other players’ strategies. The Nash equilibrium
is a set of strategies where no player can benefit from unilat-
erally changing strategies. The Nash equilibrium generalizes
minimax equilibrium in two-player zero-sum games [1] to
multiplayer general-sum games [2], [3].

Given a joint strategy of the players in a game, the inverse
game problem requires inferring the cost function such that
the given joint strategy is indeed a Nash equilibrium. The
inferred cost function can either rationalize observed player
behavior [4]–[6] or provide incentives to encourage desired
behavior [7], [8]. There have been many results on inverse
games in different contexts, including specific games, such
as matching [9], network formation [10], and auction [11];
and generic classes of games, such as succinct games [12],
dynamic games [4], and general convex games whose Nash
equilibria are characterized by variational inequalities [5].

The existing results on inverse games have the following
limitations. First, the existing results do not guarantee a unique
Nash equilibrium. Such nonuniqueness makes the players’
behavior less predictable since there is ambiguity in which
equilibrium the players will choose. It also complicates the
players’ decision-making, since the players need to align
their choice of equilibrium with the other players’ [13]; see

Y. Yu and U. Topcu are with the Oden Institute for Computational
Engineering and Sciences, The University of Texas at Austin, TX, 78712,
USA (emails: yueyu@utexas.edu, utopcu@utexas.edu). J. Salfity is with
the Department of Mechanical Engineering, The University of Texas
at Austin, TX, 78712, USA (email: j.salfity@utexas.edu). D. Fridovich-
Keil is with the Department of Aerospace Engineering and Engineering
Mechanics, The University of Texas at Austin, TX, 78712, USA (email:
dfk@utexas.edu).

strategy 1

str
ate

gy
2

str
ate

gy
2

strategy 1

player 1 player 2

Fig. 1: A two-player game with two Nash equilibrium: joint
strategy (1, 1) and (2, 2). The players must align their choice
of equilibrium to avoid collisions.

Fig. 1 for an illustrative example. Second, the existing results
assume each player has perfect perceptions of the cost of each
action. Such an assumption is not reasonable to model human
behavior where the players have bounded rationality and
imperfect cost estimation [14], [15]. Recent work addressed
these limitations in the context of two-player zero-sum games
[6]. However, for multi-player general-sum games, treatments
to these limitations are, to our best knowledge, still missing.

We study the inverse game problem for a class of multi-
player general-sum matrix games, where each player’s strategy
is a probability distribution over a finite number of discrete
actions, the cost of a strategy is characterized by a matrix,
and the cost perceived by each player is corrupted by random
noise. Our contributions are as follows.

First, we provide sufficient conditions on the cost matrix for
the uniqueness of the quantal response equilibrium—which
is a generalization of the Nash equilibrium when the cost
perceived by each player is corrupted by noise [14], [15]—and
show that one can efficiently compute this unique equilibrium
by solving a nonlinear least-squares problem. Second, we
develop two numerical methods–one based on semidefinite
programs, the other based on bilevel optimization–that infer
the cost matrices which optimize the unique quantal re-
sponse equilibrium with respect to a performance function.
The latter extends the implicit differentiation methods in [6]
from convex-concave saddle point problems to nonconvex
equilibrium problems. Finally, we demonstrate the application
of these methods in encouraging collision avoidance and fair
resource allocation.

Our results are particularly useful for designing incentives
that motivate desired behavior when the players’ cost function
is (partially) known. They also have potential applications in
general inverse multiplayer games.
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Notation: We let R, R+, R++, and N denote the set
of real, nonnegative real, positive real, and positive integer
numbers, respectively. Given m,n ∈ N, we let Rn and Rm×n
denote the set of n-dimensional real vectors and m × n real
matrices; we let 1n and In denote the n-dimensional vector
of all 1’s and the n × n identity matrix, respectively. Given
positive integer n ∈ N, we let [n] := {1, 2, . . . , n} denote the
set of positive integers less or equal to n. Given x ∈ Rn and
k ∈ [n], we let [x]k denote the k-the element of vector x,
and ‖x‖ denote the `2-norm of x. Given a square real matrix
A ∈ Rn×n, we let A>, A−1, and A−> denote the transpose,
the inverse, and the transpose of the inverse of matrix A,
respectively; we say A � 0 and A � 0 if A is symmetric posi-
tive semidefinite and symmetric positive definite, respectively;
we let ‖A‖F denote the Frobenius norm of matrix A. We let
blkdiag(A1, . . . , Ak) denote the block diagonal matrix whose
diagonal blocks are A1, . . . , Ak ∈ Rm×m. Given continuously
differentiable functions f : Rn → R and G : Rn → Rm,
we let ∇xf(x) ∈ Rn denote the gradient of f evaluated at
x ∈ Rn; the k-th element of ∇xf(x) is ∂f(x)

∂[x]k
. Furthermore,

we let ∂xG(x) ∈ Rm×n denote the Jacobian of function G

evaluated at x ∈ Rn; the ij-th element of ∂xG(x) is ∂[G(x)]i
∂[x]j

.

II. QUANTAL RESPONSE EQUILIBRIUM IN MATRIX GAMES

We introduce our theoretical model, a multiplayer matrix
game where the cost perceived by each player is corrupted by
stochastic noise.

A. Multiplayer matrix games with perception noise
We consider a game with n ∈ N players. Each player i ∈ [n]

has mi ∈ N actions. We let m :=
∑n
i=1mi denote the total

number of actions of all players. Player i’s strategy is an mi-
dimensional probability distribution over all possible actions,
denoted by xi ∈ ∆i, where

∆i := {y ∈ Rmi |y>1mi = 1, y ≥ 0}. (1)

Each player’s optimal strategy is one that minimizes the
perceived cost, which is jointly determined by the strategies
of all players and a stochastic perception error. In particular,
let bi ∈ Rmi and Cij ∈ Rmi×mj with Cii = C>ii � 0 for
all i, j ∈ [n] be cost parameters. Then the cost of action k
perceived by player i is given by

[bi +
∑n
j=1 Cijxj ]k + ξik, (2)

where ξik is a random variable that captures perception error
in player i’s decision-making.

If each ξik is independently sampled from the Gumbel
distribution with mean γλ for some λ ∈ R++ where γ is
Euler’s constant, then the optimal strategy for player i is

xi = fi
(
− 1

λ (bi +
∑n
j=1 Cijxj)

)
(3)

where fi(z) := 1
1>
mi

exp(z)
exp(z) for all z ∈ Rmi , and

exp(z) ∈ Rmi
++ is the elementwise exponential of vector z. The

strategy in (3), known as the logit quantal response, models the
bounded rationality in decision-making, and has been effective
in consumer choice problems [16]; see [14], [15] for a detailed

discussion. We define the concept of logit quantal response
equilibrium formally as follows.

Definition 1. A joint strategy x :=
[
x>1 x>2 . . . x>n

]>
is

a quantal response equilibrium if (3) holds for all i ∈ [n].

The following lemma provides an optimization-based char-
acterization of the equilibrium in Definition 1.

Lemma 1. If λ > 0 and Cii = C>ii � 0 for all i ∈ [n], then
(3) holds if and only if

xi ∈ argmin
y∈∆i

(
bi+

1
2Ciiy+

∑
j 6=i Cijxj

)>
y+λy> ln(y), (4)

where ln(y) denotes the elementwise logarithm of y.

Proof. Since Cii = C>ii � 0 and the set ∆i is nonempty, the
condition in (4) holds if and only if the following Karush-
Kuhn-Tucker conditions hold for some vi ∈ R and ui ∈ Rmi

bi +
∑n
j=1 Cijxj + (λ+ vi)1mi

+ λ ln(xi)− ui = 0mi
,

x>i 1mi
= 1, xi ≥ 0, ui ≥ 0, u>i xi = 0.

(5)
Furthermore, since the logarithm function is only defined for
strictly positive numbers, we know that (4) implies that xi
is elementwise positive. Combining this fact with (5) gives
ui = 0mi

. Finally, one can directly verify the equivalence
between (3) and (5) when ui = 0mi

.

Remark 1. If n = 2, Cii = 0mi×mi
for i = 1, 2, and

C12 = −C21, then Definition 1 reduces to the quatal response
equlibrium in two-player zero-sum games [6].

B. Computing the quantal response equilibrium via
nonlinear least-squares

We can compute the quantal response equilibrium in Def-
inition 1 by solving the following nonlinear least-squares
problem:

minimize
x

∑n
i=1

∥∥∥xi − fi(− 1
λ (bi +

∑n
j=1 Cijxj)

)∥∥∥2

(6)
where function fi is given by (3). If the optimal value of
the objective function in optimization (6) is zero, then the
corresponding solution x indeed satisfies (3) for all i ∈ [n].

However, the question remains whether optimization (6) has
an optimal value of zero, or whether it has a unique solution.
We will answer these questions next.

Throughout we will also use the following notation:

b :=

 b1
b2
...
bn

, C :=

 C11 C12 ... C1n

C21 C22 ... C2n

...
...

. . .
...

Cn1 Cn2 ... Cnn

. (7)

We make the following assumptions on optimization (6).

Assumption 1. λ > 0, C+C> � 0, Cii = C>ii for all i ∈ [n].

The following proposition provides sufficient conditions
under which the quantal response equilibrium in Definition 1
exists and is unique.



Proposition 1. If Assumption 1 holds, then there exists a
unique x =

[
x>1 x>2 . . . x>n

]> ∈ Rm++ such that (3) holds
for all i ∈ [n].

Proof. We first prove the existence. Since C+C> � 0, all of
its principle submatrices are also positive semidefinite. Hence
Cii � 0 for all i ∈ [n]. In addition, since y> ln(y) is a convex
function of y, we conclude that any x that satisfies (4) is the
Nash equilibrium of a concave game, which always exists, due
to [17, Thm. 1].

Next, we prove the uniqueness of x. The logarithm function
in (4) ensures that x is elementwise positive. By combining
this fact together with Assumption 1, we can show that
C + C> + λ diag(x)−1 is positive definite. Hence any x that
satisfies (4) is the Nash equilibrium of a diagonally strict
concave game, which is unique [17, Thm. 6].

The rest of the proof follows from the equivalence between
(3) and (4), due to Lemma 1.

In practice, different cost functions can induce the same
equilibrium, even those violating Assumption 1 . The cost
functions satisfying Assumption 1, however, eliminate the
ambiguity in the quantal response equilibrium, as shown by
Proposition 1.

III. NUMERICAL METHODS FOR INVERSE MATRIX GAMES

We now consider the following inverse game problem: given
a desired joint strategy x, how can one infer the cost matrix
C that makes x the unique equilibrium in Definition 1. Here
we only consider the inferring of the matrix C. We note that
one can seamlessly generalize the results in this section to the
inference of vector b.

In the following, we will introduce two different approaches
for the aforementioned inverse matrix game: one based on
semidefinite programs, the other based on the projected gra-
dient method for bilevel optimization.

A. Semidefinite program approach
We first consider the case where the desired equilibrium is a

pure joint strategy, where each player i has a preferred action
i? ∈ [mi]. In particular, suppose there exists x? ∈ Rm and
i? ∈ [mi] for all i ∈ [n] such that [x?i ]k equals 1 if k = i?,
and 0 otherwise.

In this case, perhaps the most direct way to ensure x?

is an equilibrium is to simply make sure that the cost of
action i? is sufficiently lower than any alternatives for player
i. By combining these constraints together with the results in
Proposition 1, we obtain the following semidefinite program:

minimize
C

1
2 ‖C‖

2
F

subject to C + C> � 0, Cii = C>ii , i ∈ [n],
[bi]i? +

∑n
j=1 Ci?j? + ε ≤ [bi]k +

∑n
j=1 Ckj? ,

∀k ∈ [mi] \ {i?}, i ∈ [n].
(8)

where the objective function penalizes large values of the
elements in matrix C, and ε ∈ R+ is a tuning parameter
that separates the cost of the best action from the cost of the

second best action. Intuitively, as the value of ε increases, the
quantal response equilibrium in Definition 1 is more likely to
take a pure form.

The drawback of optimization (8) is that it only applies to
the case where the desired equilibrium is known and close to
be deterministic. If the desired equilibrium is mixed, i.e., each
player has a preferred probability distribution over all actions
rather than one single preferred action, then the semidefinite
program is no longer useful.

B. Bilevel optimization approach
We now consider the case where the desired equilibrium is

described by a performance function, rather than explicitly
as a desired joint strategy. In particular, we consider the
following continuously differentiable function, denoted by
ψ : Rm → R, that evaluates the quality of a joint strategy.
For example, if x? =

[
(x?1)> (x?2)> · · · (x?n)>

]>
is the

desired equilibrium, then a possible choice of function ψ is as
follows:

ψ(x) = DKL(x, x?) :=
∑n
i=1 x

>
i (ln(xi)− ln(x?i )). (9)

The above choice of function ψ(x) measures the sum of
the Kullback–Leibler (KL) divergence between each player’s
strategy and the corresponding desired strategy.

In order to compute the value of matrix C such that the
equilibrium in Definition 1 is unique and minimizes the value
of performance function ψ(x), we introduce the following
bilevel optimization problem:

minimize
x,C

ψ(x)

subject to C + C> � 0, Cii = C>ii , i ∈ [n],
‖C‖F ≤ ρ, x is optimal for optimization (6).

(10)
Here ρ ∈ R+ is a tuning parameter that controls the maximum
allowed Frobenius norm of matrix C. Intuitively, the larger the
value of ρ, the more choices of matrix C from which we can
choose, and the more likely we can achieve a lower value of
function ψ(x).

The drawback of optimization (10) is that, unlike the
semidefinite program in (8), it is nonconvex and, as a result,
one can only hope to obtain a locally optimal solution. Next,
we will discuss how to compute a locally optimal solution
efficiently using the projected gradient method.

1) Differentiating through the equilibrium condition: The key
to solve bilevel optimization (10) is to compute the gra-
dient of ψ(x) with respect to matrix C. In particular, we
let ∇Cψ(x) ∈ Rm×m be the matrix whose pq-th element,
denoted by [∇Cψ(x)]pq , is given by

[∇Cψ(x)]pq := ∂ψ(x)
∂[C]pq

(11)

for all p, q ∈ [m]. Since function ψ is continuously differen-
tiable, the difficulty in evaluating ∇Cψ(x) is to compute the
Jacobian of the equilibrium x with respect to matrix C. To
this end, we introduce the following notation:

u :=− 1
λ (b+ Cx) (12a)

f(u) :=
[
f1(u1)> f2(u2)> · · · fn(un)>

]>
(12b)



where ui ∈ Rmi for all i ∈ [n], and fi is given by Lemma 1.
The following result provides a formula to compute ∇Cψ(x)
using the implicit function theorem [18].

Proposition 2. Suppose C + C> � 0 and λ > 0. Let x :=[
x>1 x>2 . . . x>n

]>
be such that (3) holds for all i ∈ [n],

ψ : Rm → R be a continuously differentiable function, u and
f(u) given by (12). If Im + 1

λ∂uf(u)C is nonsingular, then

∇Cψ(x) = − 1
λ∂uf(u)>(Im + 1

λ∂uf(u)C)−>∇xψ(x)x>.

Proof. Let F (x,C) := x−f(u) and Cq denote the q-th column
of matrix C. Proposition (1) implies x is the unique vector
that satisfies F (x,C) = 0m. Since f is a continuously dif-
ferentiable function, the implicit function theorem [18, Thm.
1B.1] implies the following: if ∂xF (x,C) is nonsingular, then
∂x
∂Cq

= −(∂xF (x,C))−1∂Cq
F (x,C). Using the chain rule we

can show ∂xF (x,C) = Im + 1
λ∂uf(u)C and ∂CqF (x,C) =

1
λ [x]q∂uf(u). The rest of the proof is due to the chain rule
and the definition of ∇Cψ(x) in(11).

The gradient formula in Proposition (2) requires computing
matrix inverse, which can be numerically unstable, In practice,
we use the following formula:

∇Cψ(x) = − 1
λ∂uf(u)>((Im + 1

λ∂uf(u)C)†)>∇xψ(x)x>,
(13)

where † denotes the Moore–Penrose pseudoinverse. Note that
if Im + 1

λ∂uf(u)C is nonsingular, then Proposition 2 implies
∇̂Cψ(x) = ∇Cψ(x); otherwise, the value of ∇̂ψ(x) provides
only an approximation of ∇Cψ(x).

2) Approximate projected gradient method: Equipped with
Proposition 2 and the projection formula in (13), we are now
ready to introduce the approximate projected gradient method
for bilevel optimization (10). To this end, we define the set
D ⊂ Rm×m:

D := {C|C + C> � 0, ‖C‖F ≤ ρ, Cii = C>ii , i ∈ [n]}.
(14)

We summarize the approximate projected gradient method
in Algorithm 1, where the projection map ΠD : Rm×m →
Rm×m is given by

ΠD(C) = argmin
X∈D

‖X − C‖F (15)

for all C ∈ Rm×m. At each iteration, this method first solve
the nonlinear least-squares problem in (6), then update matrix
C using the approximate gradient in (13).

Algorithm 1 Approximate projected gradient method.

Input: Function ψ : Rm → R, vector b ∈ Rm, scalar weight
λ ∈ R++, step size α ∈ R++, stopping tolerance ε.

1: Initialize C = 0m×m, C+ = 2εIm
2: while ‖C+ − C‖F > ε do
3: C ← C+

4: Solve optimization (6) for x.
5: C+ ← ΠD(C − α∇̂Cψ(x))
6: end while

Output: Equilibrium x and cost matrix C.

A key step in Algorithm 1 is to compute the projection in
(15). The following lemma provides the explicit computational
formula for computing this projection via eigenvalue decom-
position and matrix normalization.

Lemma 2. Let set D be given by (14) and matrix C ∈ Rm×m
be partitioned as in (7), where Cij ∈ Rmi×mj , for all I, j ∈
[n]. Let B = C − blkdiag(C11, . . . , C

>
nn), U ∈ Rm×m, and

s ∈ Rm be such that U diag(s)U> = 1
2 (C + C>). Let Then

ΠD(C) =
ρ

max{ρ, ‖A‖F }
A, (16)

where A := 1
2 (B −B>) + U diag(max(s, 0))U>.

Proof. Let tr(M) denote the trace of matrix M . First, let
K1 := {M ∈ Rn×n|M = M> � 0}, K2 := {M ∈
Rn×n|M = −M>, Mii = M>ii , ∀i ∈ [n]} where Mii ⊂
Rmi×mi denotes the i-th principal submatrix of M , and
B := {M ∈ Rn×n| ‖M‖F ≤ ρ}. Then one can verify
that D = (K1 + K2) ∩ B where + denotes the direct sum,
and that K1 + K2 is a closed convex cones. By using the
results on the projection onto the intersection of a ball and
a closed convex cone [19, Thm. 7.1], we can show that
ΠD(C) = ΠB(ΠK1+K2

(C)).
Second, observe that C ∈ K1 + K2 if and only if C̃ :=

( 1
2 (C + C>), 1

2 (C − C>)) ∈ K1 ×K2, where × denotes the
Cartesian product. By using the results on the projection onto
the Cartesian product of sets [20, Prop. 29.4], we can show
that ΠK1×K2(C̃) = (ΠK1( 1

2 (C + C>)),ΠK2( 1
2 (C − C>))).

Hence ΠK1+K2(C) = ΠK1( 1
2 (C +C>)) + ΠK2( 1

2 (C −C>)).
The rest of the proof is a direct application of the formulas
for projecting onto norm balls [20, Ex. 3.18] and projecting a
symmetric matrix onto the positive semidefinite cone [20, Ex.
29.32].

IV. NUMERICAL EXAMPLES

We demonstrate the application of the numerical methods in
Section III using two examples. In these examples, we assume
that vector b is known and C is a zero matrix before our design
process. We aim to design a nonzero matrix C—which can be
interpreted as subsidies and tolls—that encourages the desired
behavior. We note that if the value of either vector b or matrix
C is unknown before design, one can first infer the values of b
and C using the approaches in Section III, then proceed with
the results in this section.

Throughout, we compute the entropy regularized equilib-
rium in Definition 1 by solving optimization (6) using the
Gauss-Newton method with line search [21, Sec. 10.3], where
we terminated the algorithm when the objective function value
in (6) is less than 10−10. We note that, depending on the
problem settings, other solution algorithms may have better
performance. We refer the interested readers to [21, Ch. 10]
for a detailed discussion on nonlinear least-squares.

A. Encouraging collision avoidance
We consider four ground rovers placed in a two-dimensional

environment, at coordinate (0, 1), (0,−1), (1, 0), and (−1, 0),
respectively. Each rover wants to reach the corresponding



target position with coordinates (0,−1), (0, 1), (−1, 0) and
(1, 0), respectively. Each rover can choose one of three candi-
date paths that connect its initial position to its target position:
a beeline path of length 2; two semicircle paths, each of
approximate length π, and one in the clockwise direction, the
other one in the counterclockwise direction. We assume all
rovers move at the same speed and start at the same time.

We model the decision-making of each rover using the
entropy-regularized matrix game in Section II. In particular,
we let λ = 0.1, n = 4, m = 12, and bi =

[
2 π π

]>
for all i = 1, 2, 3, 4. Here the elements in bi denote the
length of each candidate path, regardless of other players’
strategies; if no other player exists, then action one (beeline
path) is the optimal shortest path. If C = 012×12, one can
verify—by solving an instance of optimization (6)—that the
quantal response equilibrium in Definition 1—assuming λ is
sufficiently small—is approximately

xi =
[
1 0 0

]
, i = 1, 2, 3, 4. (17)

In other words, all players tend to choose the beeline path since
it has the minimum length. However, this causes collisions
among the rovers at coordinate (0, 0).

By adjusting the value of matrix C, we aim to change the
equilibrium above to the following

x?i =
[
0 0 1

]
, i = 1, 2, 3, 4. (18)

In other words, we want all players to choose the
counterclockwise semicircle path. See Fig. 2 for an il-
lustration and https://www.youtube.com/watch?v=
EvtPp_DWqgU for an animation.

We note that one can change the equilibrium from (17) to
(18) by simply letting C = 0m×m and modifying the value
of b. However, such a choice of parameter implies that all
rovers will voluntarily choose a longer path regardless of other
rovers’ strategies, which has no meaningful interpretation in
path planning.

Fig. 2: An illustration of the equilibrium strategies in (17) (red
arrows) and (18) (blue arrows).

Since the equilibrium in (18) is of the form in Section III-
A, we can compute matrix C using either the semidefinite
program (8) or the bilevel optimization (10); in the latter case,
we choose the performance function to be the KL-divergence
in (9).

We solve the semidefinite program (8) using the off-the-
shelf solver, and the bilevel optimization (10) using Algo-
rithm 1. Fig. 3 shows the trade-off between DKL(x, x?)—
which measures the distance between the equilibrium x that
corresponds to matrix C and the desired equilibrium x?—and
‖C‖F of the computed matrix C when tuning the parameter in

(8) and (10). These results confirm that both the semidefinite
program approach and the bilevel optimization approach apply
to the cases where the desired Nash is pure and known
explicitly. Furthermore, both approaches require careful tuning
of algorithmic parameters to achieve a preferred trade-off
between DKL(x, x?) and ‖C‖F .

(a) Semidefinite program (8). (b) Bilevel optimization (10).

Fig. 3: The trade-off between DKL(x, x?) and ‖C‖F when
tuning the parameter ε in the semidefinite program (8) and the
parameter ρ in bilevel optimization (10).

B. Encouraging fair resource allocation
We now consider a case where the desired equilibrium

is not of the explicit form in Section III-A. Instead, we
only have access to a performance function that implicitly
describes the desired equilibrium. To this end, we consider the
following three-player game. Each player is a delivery drone
company that provides package-delivery service, located in
the southwest, southeast, and east area of Austin, respectively.
Each strategy demotes the distribution of service allocated to
the nine areas of Austin; we assume all three companies have
the same amount of service to allocate. For each company,
within its home area (where it is located), the operating cost
of delivery service is one unit; outside the home area, the
operating cost increases by 50% in an area adjacent to the
home area, and 80% otherwise. See Fig. 4 for an illustration1.
We model the joint decision of the three companies using the
matrix game in Section II, where n = 3, mi = 9 for i = 1, 2, 3,
and m = 27; we set λ = 0.1 and vector b according to the
aforementioned operating cost.

If all companies consider only the operating cost, they will
only allocate services to their respective home area. We aim to
infer the value of matrix C using Algorithm 1 that encourages
a fair allocation to other areas. In particular, we choose the
performance function as follows:

ψ(x) = 1>9 (x1 + x2 + x3)−1, (19)

where vector (x1 + x2 + x3)−1 denotes the elementwise
reciprocal of vector x1 + x2 + x3. Function ψ(x) is based on
the the potential delay function from the resource allocation
literature; the latter is a special case of the more general α-
fairness function [22, Sec. 2.4]. Here function ψ(x) measures

1Picture credit: https://en.wikipedia.org/wiki/List_of_
Austin_neighborhoods

https://www.youtube.com/watch?v=EvtPp_DWqgU
https://www.youtube.com/watch?v=EvtPp_DWqgU
https://en.wikipedia.org/wiki/List_of_Austin_neighborhoods
https://en.wikipedia.org/wiki/List_of_Austin_neighborhoods


Fig. 4: Three drone delivery companies (red, green, and blue)
located in different areas in the city of Austin.

the overall fairness of the delivery service allocation. Here
we implicitly assume that the demand for delivery services is
much higher than the supply, and we aim to allocate all supply.
Such an assumption is common in the resource allocation
literature [22]. The competition is among different suppliers
(companies), not between supply and demand.

We compute the cost matrix using Algorithm 1 and illustrate
the percentages of the delivery service allocated to each area
at the equilibrium in Fig. 5. The results show that when ρ ≈
0, all the drone fleets will almost only serve their respective
home areas. As we increase the value of ρ, the computed
matrix encourages a more fair joint strategy where all nine
areas receive an almost equal amount of service.

Fig. 5: The percentages of the total amount of delivery
service allocated to each area at the equilibrium computed
by Algorithm 1.

V. CONCLUSION

We study the inverse game problem in the context of
multiplayer matrix games. We develop efficient numerical
methods to compute the cost matrices that ensure a unique
quantal response equilibrium.

However, the current work only provides a preliminary
proof of concept with limited applications. For example, it
requires an exhaustive enumeration of all actions, which is
computationally unscalable and makes the cost inference of
a pure target equilibrium trivial: one can simply assign the

lowest cost to the target actions. Furthermore, it only provides
the cost functions that induce one desired equilibrium, rather
than multiple equilibria with common desired properties.
We aim to address these limitations by considering games
with more complicated decision-making models. We will also
consider simultaneously optimizing multiple equilibria using
robust optimization.
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