
ar
X

iv
:2

20
9.

08
56

1v
1

 [
m

at
h.

O
C

]
 1

8
Se

p
20

22

Interpretability of Path-Complete Techniques and Memory-based

Lyapunov functions

Matteo Della Rossa Raphaël M. Jungers ∗†

September 20, 2022

Abstract

We study path-complete Lyapunov functions, which are stability criteria for switched systems, de-
scribed by a combinatorial component (namely, an automaton), and a functional component (a set of
candidate Lyapunov functions, called the template). We introduce a class of criteria based on what we
call memory-based Lyapunov functions, which generalize several techniques in the literature. Our main
result is an equivalence result: any path-complete Lyapunov function is equivalent to a memory-based
Lyapunov function, however defined on another template. We show the usefulness of our result in terms
of numerical efficiency via an academic example.

1 Introduction

Modern engineering systems are increasingly complex, and require safety/stability guarantees, due to their
interaction with humans in the loop as, for example, smart automotive vehicles, smart grids, or articulated
robots. However, typically, these recent advances, such as for instance artificial neural networks, or random
forests, are essentially “black box” algorithms: they are generated by massive iterative optimization schemes,
processing a huge amount of data harvested automatically by sensors or other computerized sources. These
tools rarely come with guarantees in terms of safety or performance, which hampers their implementation
in real-world applications.

In view of this, control theory faces a critical need for interpretable AI, where the output of massive
computations can be analyzed and understood by engineers (or by a smart algorithm) in order to translate
the produced knowledge into an educated analysis, which in turn can lead to a guarantee in terms of safety,
efficiency, or any other objective. A paradigmatic example of powerful blackbox data processing algorithms
are LMIs; in control theory they remain a central tool for engineers. If the control task is not too complex,
it is often possible to rewrite the control problem as a set of LMIs, which can be solved efficiently thanks to
interior point methods. Even more, in more involved situations, when the control task is more intricate, or
for more complicated dynamical systems, relaxation techniques (Sum-Of-Squares, the S-procedure, convex
relaxation,...) often allow to write LMI formulations of the control problem, potentially at the price of adding
conservatism. Typically, the obtained LMIs may become a large set of algebraic inequalities, from which
one can hardly extract physical sense. Being able to interpret (that is, provide a physical meaning) to these
algebraic criteria would enable engineers to verify the obtained solutions in practice, or generalize them to
the real-world problem, beyond the used simplified model.

In this paper, we tackle interpretability for a well-established LMI-based stability analysis technique
for hybrid systems, namely path-complete stability analysis (see Section 2 for definitions). We reinterpret

∗RJ is a FNRS honorary Research Associate. This project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation program under grant agreement No 864017 - L2C. RJ is also
supported by the Innoviris Foundation and the FNRS (Chist-Era Druid-net).

†M. Della Rossa and R. Jungers are with ICTEAM, UCLouvain, Louvain-la-Neuve, Belgium).
matteo.dellarossa@uclouvain.be

1

http://arxiv.org/abs/2209.08561v1

this framework as a compressive memory stability criterion: by making use of tools from automata and
language theory, we show that any Path-complete stability criterion is in fact a Lyapunov function which
takes as argument not only a point in the state space, but also a “memory observation”, which can be of
variable length. Our result is of theoretical interest, because of the interpretability mentioned above, but it
is also of practical interest. Indeed, we show in Section 4 that our result brings more than just a qualitative
interpretation: it can also provide a smart way to improve the numerical efficiency of stability analysis
criteria. This reinterpretation of path-complete criteria in terms of memory also allows to possibly apply
these techniques not only for switched systems but for more general hybrid systems with output.

Our main result bears similarity with several classical and more recent works in the context of hybrid
systems control, where memory (or similar concepts) is used as a proxy for refining an abstract representation
of a dynamical system. In [15, 11] and references therein, a transition system representing the possible
memory-states of an observer is built in order to provide an abstraction of a given system. A novelty of our
work is that we exploit memory-based transition systems, not for the sake of obtaining an abstraction of a
given system, but in order to generate, or analyze, optimization techniques aiming at solving a particular
problem (here, stability). Closer to our setting, in the context of Lyapunov techniques for switched systems,
concepts of memory or the use of information concerning the past switching sequence, were proposed for
example in [8, 4, 12]. However, these works only consider fixed memory length, while our approach, relying
on automata and languages, allows to handle adaptable-length memory, which can dramatically improve
scalability.

In this manuscript, after having recalled the setting and definitions in Section 2, we present our equivalence
results in Section 3. In Section 4 we apply our result to a simple academic example before concluding in
Section 5 with some final remarks.

Notation: A function α : R≥0 → R≥0 is of class K (α ∈ K) if it is continuous, α(0) = 0, and strictly
increasing; it is of class K∞ if, in addition, it is unbounded. A continuous function β : R+ ×R+ → R+ is of
class KL if β(·, s) is of class K for all s, and β(r, ·) is decreasing and β(r, s) → 0 as s → ∞, for all r. Given
n,m ∈ N, C(Rn,Rm) denotes the set of continuous functions between R

n and R
m.

2 Preliminaries

Given a discrete set of symbols S (called, from now on, the alphabet) and a set F = {fi}i∈S ⊂ C(Rn,Rn) we
consider a discrete-time dynamical system of the form

x(k + 1) = fσ(k)(x(k)), x(0) = x0, (1)

where σ : N → S is the so-called switching signal.

Definition 1. Given {fi}i∈S ⊂ C(Rn,Rn), system (1) is said to be uniformly globally asymptotically stable
(UGAS) if there exists a β ∈ KL such that

∀σ : N → S, ∀x0 ∈ R
n, ∀k ∈ N, |Ψσ(k, x0)| ≤ β(k, |x0|),

where Ψσ(k, x0) denotes the solution of (1) with respect to the signal σ, starting at x0 and evaluated at time
k ∈ N.

Several Lyapunov methods have been proposed in order to study asymptotic stability of system (1),
for an overview see [9] and references therein. In what follows we recall the formal definition of the path-
complete Lyapunov framework, which can be seen as a combinatorial multiple Lyapunov functions approach
that makes use of directed and labeled graphs to encode the structure of the conditions.

Given an alphabet S, a graph G on S is defined by G = (N,E) where N and E ⊆ N × N × S are the
set of nodes and of labeled edges, respectively. Any Lyapunov certificate for (1) needs to ensure asymptotic
stability uniformly over the set of any possible σ : N → S. In the graph framework, this requirement is
formalized by a combinatorial property, the path-completeness introduced in [1] and recalled here.

2

Definition 2 (Path-complete graph). Given an alphabet S, a graph G = (N,E) on S is path-complete if,
for any K ≥ 1 and any sequence ı̂ = (j1 . . . jK) ∈ SK , there exists a path {(ak, ak+1, jk)}k=1,...,K such that
(ak, ak+1, jk) ∈ E, for each 1 ≤ k ≤ K.

Before recalling the application of path-complete graphs to stability analysis of (1), we introduce some
additional notions of graph theory which will be used in what follows.

Properties 1. A graph G = (N,E) on S is said to be:

• complete, if, for any a ∈ N and any i ∈ S, there exists b ∈ N such that (a, b, i) ∈ E.

• deterministic, if, for any a ∈ N and any i ∈ S, there exists at most one b ∈ N such that (a, b, i) ∈ E.

A complete graph is in particular path-complete. Given G = (N,E), its dual graph G⊤ is defined by G⊤ =
(N⊤, E⊤) with N⊤ = N and (a, b, i) ∈ E⊤ ⇔ (b, a, i) ∈ E. A graph G is path-complete if and only if so is
G⊤.

Concluding this section, we recall from [1, 14, 13] the concept of path-complete Lyapunov functions and
the corresponding stability result.

Definition 3 (Path-complete Lyapunov Function). Given a switching system F = {fi}i∈S ⊂ C(Rn,Rn), a
path-complete Lyapunov function (PCLF) for F is given by (V,G) with G = (N,E) a path-complete graph
on S, and V = {Vs | s ∈ N} ⊆ C(Rn,R) such that, for some α1, α2 ∈ K∞ and some γ ∈ [0, 1), the following
inequalities are satisfied:

α1(|x|) ≤ Vs(x) ≤ α2(|x|), ∀s ∈ N, ∀x ∈ R
n; (2a)

Vb(fi(x)) ≤ γVa(x), ∀ (a, b, i) ∈ E, ∀x ∈ R
n. (2b)

Proposition 1 (Stability result, [1, 13]). Given any F = {fi | i ∈ S} ⊂ C(Rn,Rn); if there exists a PCLF
for F , then system (1) is UGAS.

Remark 1. Here and in what follows, we focus on the UGAS concept only, and the corresponding path-
complete Lyapunov characterization. The same ideas and techniques can be adapted, mutatis mutan-
dis, for the stability (without convergence), and or local/practical notions of convergence. These exten-
sions/adaptations are not explicitly developed here, for the sake of clarity. Indeed, this work does not focus
on stability of particular dynamical systems, but rather we provide a meta-analysis of the stability criteria
themselves.

3 Memory-based Lyapunov functions and Equivalence with PCLF

In this section we introduce memory-based Lyapunov functions and we provide our main result: the equiva-
lence between path-complete stability techniques and memory-based criteria.

3.1 Memory-based Lyapunov functions

In this subsection, we give a language-based interpretation of Lyapunov stability criteria for (1): we will
interpret the (admissible) past switching events as sequences/strings (rather than functions/signals). We
thus introduce the following formal definition.

Definition 4. Given an alphabet S, by S⋆ we denote the language generated by S, defined by

S⋆ :=
⋃

k∈N

Sk,

i.e. the set of all finite strings1 of elements of S. We adopt the convention that S0 = {ǫ}, with ǫ an additional
symbol, denoting the empty string.

1S⋆ is also called the Kleene-closure of S.

3

q0Start q1 qK

i1 i2 iK

h1

...

hS

Figure 1: Automaton recognizing a prefix class ı̂ = [i1, . . . , iK] ⊂ S⋆, with S = {h1, . . . , hS}. The “Start”
symbol denotes the starting nodes, while the double circle denotes an accepting node.

With an abuse of notation, when needed, we interpret elements of S⋆ as partial functions σ : N → S,
with the convention that, if σ ∈ SK (for some K ∈ N), we write σ(k) = ⊥, for k > K.

Given ı̂ = (i1, . . . , iK) ∈ SK and a symbol h ∈ S, we denote by hı̂ ∈ ΣK+1 the string defined by
(h, i1, . . . , iK).

We provide the following definition, which will allow us to consider finite partitions of S⋆.

Definition 5. A subset B ⊂ S⋆ is said to be a regular language if it is recognized by a finite-state automaton.

We do not give the formal definition of finite state automata, for which we refer to [2, Section 2.4],
where more insight into regular languages can also be found. Intuitively, a finite state automaton is a graph
G = (N,E) on an alphabet S, with some states in N marked as initial nodes and some marked as accepting
nodes, see Figure 1 for an example.

Given a regular language B and any symbol h ∈ S, hB denotes the regular language hB := {hı̂ | ı̂ ∈ B}.

Example 1. We provide a particular case of regular languages. A prefix class of length K ∈ N of S⋆ is a
regular language defined by a multindex ı̂ = (i1, . . . , iK) ∈ SK , by

[̂ı] := {σ ∈ S⋆ | σ(k) ∈ {ik,⊥} ∀k ∈ [1,K]} .

It is clear that any prefix class [̂ı] is a regular language, since it is recognized by the finite state automaton
depicted in Figure 1. Prefix classes are particularly convenient in our context, since, given a prefix class
of length K denoted by ı̂ = [i1, . . . , iK], its concatenation hı̂ is the prefix class of length K + 1 given by
[h, i1, . . . , iK].

We now introduce a particular class of partitions of S⋆.

Definition 6 (Covering family of languages). Given a finite set of regular languages C = {B1, . . . , BM},
with Bi ⊂ S⋆ we say that C is a covering family of languages if

M
⋃

j=1

Bj = S⋆; (3a)

∀B ∈ C, ∀h ∈ S, ∃C ∈ C such that hB ⊆ C. (3b)

Intuitively, condition (3a) formalizes the fact that the family C covers the whole set of possible strings,
while condition (3b) specifies that, given B ∈ C, for any symbol h ∈ S, there is (at least) a subset of the
family containing all the corresponding concatenations.

Definition 7 (Memory-based LF). Given a covering family of languages C = {B1, . . . , BN}, suppose there
exist a continuous function W : C × R

n → R, functions α1, α2 ∈ K∞, scalar γ ∈ [0, 1) such that

α1(|x|) ≤ W (B, x) ≤ α2(|x|), ∀ (B, x) ∈ C × R
n; (4a)

W (C, fh(x)) ≤ γW (B, x), ∀B ∈ C, ∀h ∈ S, ∀C ∈ C, s.t. hB ⊆ C, ∀x ∈ R
n. (4b)

Then W is said to be a C-memory-based Lyapunov function (C-MBLF) for system (1).

Any memory-based Lyapunov function provides a sufficient criteria for UGAS, as proven in the following
statement.

4

[b] [ab]

[aa]

b

a

b

b a

a

Figure 2: Graph H, path-complete representation of memory-based Lyapunov conditions arising considering
D = {[aa], [ab], [b]}, as in Example 2.

Lemma 1. Given a covering family of language C, if there exists a C-memory-based Lyapunov function
W : C × R

n → R for (1), then system (1) is UGAS.

Proof. Consider any x0 ∈ R
n, any σ : N → S and any k ∈ N. From conditions (4a), (4b), we have

α1(|Ψσ(k, x0)|) ≤ W (Bk, fσ(k−1)(Ψσ(k − 1, x0)) ≤ . . .

≤ γkW (B0, x0) ≤ γkα2(|x0|),

where B0, . . . Bk ∈ C are chosen such that ǫ ∈ B0, σ(0) ∈ B1, ... , (σ(k − 1), . . . , σ(0)) ∈ Bk and such that
σ(h)Bh−1 ⊂ Bh for any h ∈ {1, . . . k}, which is possible by properties of C in Definition 6. We thus have
|Ψσ(k, x0)| ≤ β(|x0|, k), where we defined β(s, k) := α−1

1 (γkα2(s)). It is easy to see that β ∈ KL, and it
does not depend on σ : N → S nor x0 ∈ R

n, thus proving UGAS of (1).

3.2 From MBLF to Path-complete Lyapunov functions

We prove here that memory-based Lyapunov functions can be re-interpreted as path-complete Lyapunov
functions.

Theorem 1. Given an alphabet S, consider any covering family of languages C. There exist a complete
graph GC = (NC , EC) and a 1-to-1 map Φ : NC → C such that, for any system F = {fi}i∈S ⊂ C(Rn,Rn), the
following holds:

W : C × R
n → R is a C-memory-based Lyapunov function for F if and only if ({W (Φ(s), ·)}s∈NC

,GC) is
a path-complete Lyapunov function for F .

Proof. Let us consider a covering family of regular languages C. We define a graph GC = (NC , EC) with
|NC | = |C| nodes in a 1-to-1 correspondence to the languages in C: for any B ∈ C we denote by sB ∈ NC the
corresponding node in GG , i.e. Φ(sB) = B. We then define the edge set EG by the following condition:

(sB , sC , h) ∈ EC ⇔ hB ⊆ C.

By the properties in Definition 6, the graph is complete. Then, we define {Vs}s∈NC
⊂ C(Rn,Rn) by VsC (x) :=

W (C, x). Given any F = {fi}i∈S , conditions in Definition 3 are satisfied if and only if conditions in
Definition 7 are.

Example 2. Consider S = {a, b}, a particular covering family of regular languages is given by D :=
{[aa], [ab], [b]}, i.e. a covering of prefix classes, as introduced in Example 1. The corresponding complete
graph given by Theorem 1, denoted by H, is depicted in Figure 2. Since, in this case, for any prefix class B
in D and any h ∈ S there exists a unique prefix class C ∈ D such that hB ⊂ C, the corresponding graph is
also deterministic.

5

Remark 2 (Prefix classes conditions in the literature). The relations between covering of prefix classes (as
defined in Example 1) of the same length, stability conditions for switched systems based on “memory” and
graph theory was partially illustrated in [8, 4, 7]. In these works, the Authors use a covering made by the
|S|K prefix classes of length K, thereby formalizing the idea of storing, at each instant, information on the
previous K values of the switching signal. From a graph-theory point of view, these conditions based on
fixed length prefix classes give rise to the De-Bruijn graph structure. This family of directed graphs was
introduced in the seminal paper [3], in a language theory-context, to formalize the idea of words/strings
“with the same prefixes/past”; it is thus not surprising that it arises in this context. One of our main
contribution is that we generalize the results based on fixed-length prefix classes memory (which are now
re-obtained as corollary) obtaining a general equivalence between graph-based and memory-based Lyapunov
conditions.

3.3 From Path-Complete Lyapunov functions to MBLF

In this subsection we show that any path-complete Lyapunov structure leads to a memory-based Lyapunov
function.

We present our main result first, developing its proof in the remainder of this subsection.

Theorem 2. For any path-complete graph G = (N,E) there exists a covering family CG such that the
following holds:

Given any F = {fi}i∈S ⊂ C(Rn,Rn), if there exists a function V = {Vs | s ∈ N} ⊆ C(Rn,R) such that
(V,G) is a PCLF for F then there exists a CG-memory-based Lyapunov function W : CG × R

n → R
n such

that W (B, ·) ∈ M(V) := {maxs∈P Vs(·) | P ⊆ N} for all B ∈ C.

The proof of this Theorem is broken into technical lemmas, for the sake of readability.

Lemma 2 (Adapted from [13]). Given any path-complete graph G = (N,E) on S, there exists a graph
OG = (NO, EO), called the observer graph, with NO ⊂ P(N) (i.e. nodes of OG correspond to subsets of
nodes of G) which is deterministic and complete, such that the following property holds:

Consider any system F = {fi}i∈S . If V = {Vs | s ∈ N} ⊆ C(Rn,R) is such that (V,G) is a PCLF for F

then, defining W = {maxs∈P Vs | P ∈ NO} one has that (W,OG) is a PCLF for F .

Proof. The construction of the observer graph is sketched in what follows. We point out that it is recalled
here from [13, Theorem III.8] for the sake of self-containment and in a version more suited for our purposes.
Similar construction in a more general context can be found in [2, Section 2.3.4.].

Given G = (N,E), the graph OG = (NO, EO) is constructed by steps. We recursively define the observer
graph OG = (NO, EO) as follows: first, we consider NO := {N}, EO = ∅ and for any h ∈ S, defining the set

N(h) := {q ∈ N | ∃p ∈ N s.t (p, q, h) ∈ E} ⊆ N,

we add to NO and EO, respectively, the nodes and edges

N(h) ∈ NO, (N,N(h), h) ∈ EO.

Then we iterate the procedure, considering strings of length K: for any ı̂ = (h1, h2, . . . , hK) ∈ SK , we
introduce the notation ı̂− := (h2, . . . , hK) and we define

N (̂ı) =

{

q ∈ N
∣

∣

∣

∃p ∈ N(h2, h3, . . . , hK)

s.t (p, q, h1) ∈ E

}

⊆ N,

and we add the nodes and edges

N (̂ı) ∈ NO, (N (̂ı−), N (̂ı), h) ∈ EO. (5)

6

We underline that the same subset Q ⊂ P can correspond to several (and in general infinite) strings ı̂ ∈ SK .
By path-completeness of G, this procedure will never reach the empty set ∅ ∈ P(N): if, by contradiction,
for some ı̂ ∈ S⋆ we have N (̂ı) = ∅, then there exists no path in G (starting from any node) labeled by ı̂, this
contradicting Definition 3.

By finiteness of P(N) (the power set of N), this procedure ends after a finite number of set. For the
explicit implementation of the algorithm, we refer to [13]. By construction, the obtained graph is complete
and deterministic.

The second statement in Lemma 2, leading to the construction of a path-complete function (W,OG)
composed by pointwise maxima of a path-complete function (V,G) is proven in [13, Proposition III.1], to
which we refer.

It can be shown that there exists a unique strongly connected subgraph of OG (and thus, also complete
and deterministic), as proven in [13]. This graph will provide somehow a more concise memory-based
representation of the considered path-complete Lyapunov function, but, for the sake of clarity, we do not
develop the argument in this submission.

We now show that given a path-complete graph G, its observer OG allows to define a particular covering
family of languages, which will be a crucial step for the proof of Theorem 2.

Lemma 3. Consider any path-complete graph G = (N,E), and its observer graph OG = (NO, EO) defined in
proof of Lemma 2. To any P ∈ NO we can associate a regular language BP ⊂ S⋆ such that the corresponding
CG = {BP }P∈NO

, is a covering family of languages, with the property that, for any P,Q ∈ NO, we have

(P,Q, h) ∈ EO ⇔ hBP ⊆ BQ. (6)

Proof. Given G = (N,E), we consider its observer graph OG = (NO, EO) as defined in proof of Lemma 2.
For any P ∈ NO, we define the corresponding regular language, BP ⊂ S⋆ by defining an automata AP as
follows:

• Reverse the graph OG , i.e., consider the dual graph O⊤
G , (recall the definition in Properties 1).

• Mark the node P as the unique initial state.

• Mark the node N as the unique accepting state.

Then, BP is the set of strings recognized by AP .
We then prove that CG := {BP }P∈NO

is a covering family of languages. First, observe that the definition
of the observer graph in proof of Lemma 2 implies condition (3a). Indeed, in this definition, we consider
all the possible strings ı̂ ∈ S⋆. Also, condition (3b) is implied by completeness of OG and by condition (6)
which is proven in what follows:

Suppose that (P,Q, h) ∈ EO, for some P,Q ∈ NO and h ∈ S. Consider any string ı̂ ∈ BP , i.e. there exists
a path p in O⊤

G starting at P , ending at N and labeled by ı̂. Then, there also exists a path in O⊤
G starting

at Q labeled by hı̂ and ending at N : simply concatenating the edge (Q,P, h) ∈ E⊤
O to the previously chosen

path p. Thus we have proven that hı̂ ∈ BQ. For the other direction suppose hBP ⊆ BQ, then consider a
string ı̂ ∈ BP ; by definition of BP there is a path in O⊤

G from the node P to the node N labeled by ı̂. The
fact that hı̂ ∈ BQ implies that there is a path in O⊤

G from the node Q to the node N labeled by hı̂. This,
by the construction provided in proof of Lemma 2, implies that (P,Q, ı̂) ∈ EO concluding the proof.

We can now prove our “translation” result.

Proof of Theorem 2. Given any G = (N,E) we build the corresponding observer graph OG = (NO, EO),
as presented in the proof of Lemma 2. We then consider the corresponding covering family of languages
CG = {BP }P∈NO

as in Lemma 3. Consider any system F = {fi}i∈S and suppose that V = {Vs | s ∈ P} is
such that (G, V) is a PCLF for F . We define W : CG × R

n → R, by

W (BP , x) := max
s∈P

{Vs(x)},

7

By the second statement in Lemma 2 and by equation (6) the function W satisfies the conditions in Defini-
tion 7, concluding the proof.

Concluding this section, we discuss the possibility of having “dual” results, involving the concept of
“future” based Lyapunov functions.

Remark 3 (Memory vs Future Characterization). In this work, we focus on memory-based Lyapunov func-
tions (as defined in Definition 7), and we prove that this formalism is equivalent to the path-complete
Lyapunov functions framework (cfr. Definition 3), in Theorem 1 and Theorem 2. To prove this equivalence,
it is necessary, given a path-complete Lyapunov function, to consider pointwise maxima of the original com-
posing functions. By duality, i.e. developing the arguments for the dual graphs (and considering pointwise
minima), similar results can be obtained for “future”-based Lyapunov functions; this will be the topic of
future research.

4 Numerical Example

In this section, we present a numerical example, showing how memory-based Lyapunov functions and their
path-complete counterparts can be beneficial for the analysis of dynamical systems. We consider a linear
switched system already studied in [1, Example 5.4], and show how a particular (and non-standard) memory
structure can provide a numerically appealing stability criterion with respect to more classical approaches,
without losing in conservatism.

Example 3. We consider the alphabet S = {a, b}, and we consider the linear switched system

x(k + 1) = Aσ(k)x(k) (7)

where σ : N → S, and

Aa :=

[

3 3
−2 1

]

, Ab :=

[

−1 −1
−4 0

]

.

We want to use quadratic memory-based Lyapunov functions (as in Definition 7) to estimate the maximal
growth rate of solutions of (7), a.k.a. the joint spectral radius of {Aa, Ab} denoted by ρ(Aa, Ab), see [6]
for more discussion. More formally, we consider the set of quadratic functions Q = {f(x) := x⊤Px | P ∈
R

2×2, P ≻ 0}. Given a covering family C on S, we consider the corresponding graph GC = (NC , EC) given
by Theorem 1. Then, the best upper bound of ρ(Aa, Ab) given by quadratic C-based Lyapunov functions,
denoted by ρC,Q(Aa, Ab}, is given by the solution of the following semi-definite optimization problem:

min
ρ>0,Ps∈R2×2

ρ, s.t.

Ps ≻ 0, ∀s ∈ NC

A⊤
h PqAh − ρ2Pr ≺ 0, ∀(r, q, h) ∈ EC ,

(8)

i.e. we search quadratic functions satisfying the conditions in Definition 7, minimizing the parameter ρ. We
compare three different coverings: C1 = {[a], [b]} made of all the prefix classes of length 1 (with its graph
structure depicted in Figure 3); C2 = {[aa], [ab], [ba], [bb]} i.e. the partition of all the prefix classes of length
2 (with its graph structure depicted in Figure 4), and the partition D = {[aa], [ab], [b]}, already considered
in Example 2, and represented in Figure 2. We underline that the conditions arising from the coverings
C1 and C2, since they are composed by fixed-length prefix classes, correspond to particular instances of the
conditions proposed in [5, 4], as already underlined in Remark 2. One can see that the memory information
contained in C1 is lesser than the one contained in D, which is lesser than the one in C2. As a result, one
can show that

ρC2,Q(Aa, Ab) ≤ ρD,Q(Aa, Ab) ≤ ρC1,Q(Aa, Ab)

i.e. the estimation of the JSR of {Aa, Ab} given by the memory structure C2 is not worst than the one
provided by D, which in turn is not worst than the one given by C1. We leave the formalization of this result

8

[a] [b]

b

a

a b

Figure 3: The graph G1, corresponding to the covering C1 = {[a], [b]}, a.k.a. the De Bruijn graph of order 1.

[aa] [bb]

[ba]

[ab]

a

b

a

a

b

a

b

b

Figure 4: The graph G2, corresponding to the covering C2 := {[aa], [ab], [ba], [bb]}, a.k.a. the De Bruijn graph
of order 2.

for further work because of space constraints. In TABLE I we report the values obtained by solving the
optimization problem, using SeDuMi solver in Matlab, see [10].

The results in the table show the following: memory-based conditions arising from D and C2 are strictly
better than the ones induced by C1. On the other hand, there is no remarkable difference between the upper
bound provided by D and C2. In other words, in this particular case, the fact of storing strings of length 2
is not beneficial with respect to conditions requiring to store strings of length 2 only if the previous active
system is a (i.e. the conditions encoded in D). We stress that, from a numerical point of view, the conditions
induced by D are preferable, since the corresponding semidefinite optimization problem (8) (for a fixed ρ > 0)
has 3 semidefinite variables and 6 LMIs (as constraints) while the optimization problem corresponding to C2
has 4 semidefinite variables and 8 constraints inequality.

This simple example showed that, even in very restricted settings (2-mode planar linear switched systems),
considering non-uniform memories (as it was the case for the partition given by D) can improve, from a
numerical point of view, the stability conditions arising when considering conditions based on fixed-length
memories as in [5, 4].

5 Conclusion

In this work, we presented a new interpretation of path-complete Lyapunov functions, in terms of time-
dependent Lyapunov function structure, whose dependence in time is restricted to the last values taken by
the switching signal (the “memory”). Our result provides interpretability for the path-complete Lyapunov
techniques, and this may be useful for control engineers, in that it relates stability properties with the nature
of the observation. From a more quantitative point of view, our results allow to compress Lyapunov criteria,
as seen in Section 4. In the future, we will leverage this new interpretation of Path-Complete Lyapunov
functions to handle more general systems for which information about the state can be compressed in
a discrete set of observations. We will also leverage our results in order to formalize performance order
relations between different path-complete Lyapunov functions.

Table 1: Numerical upper bounds of maximal growth rate of (7), obtained with different finite-memory
structures.

Mem. Structure : C1 D C2
ρC,Q(A,G) 3.9224 3.9174 3.9174

9

References

[1] A. A. Ahmadi, R. M. Jungers, P. A. Parrilo, and M. Roozbehani. Joint spectral radius and path-complete
graph Lyapunov functions. SIAM Journal on Control and Optimization, 52:687–717, 2014.

[2] C.G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Springer, New York, 2
edition, 2008.

[3] N.G. de Bruijn. A combinatorial problem. Proceedings of the Section of Sciences of the Koninklijke
Nederlandse Akademie van Wetenschappen te Amsterdam, 49(7):758–764, 1946.

[4] R. Essick. Receding-horizon switched linear system design: a semidefinite programming approach with
distributed computation. PhD thesis, University of Illinois at Urbana-Champaign, 2018.

[5] R. Essick, J.-W. Lee, and G.E. Dullerud. Control of linear switched systems with receding horizon
modal information. IEEE Trans. Autom. Control., 59(9):2340–2352, 2014.

[6] R.M. Jungers. The Joint Spectral Radius: Theory and Applications, volume 385 of Lecture Notes in
Control and Information Sciences. Springer-Verlag, 2009.

[7] D. Lee, G.E. Dullerud, and J. Hu. Graph Lyapunov function for switching stabilization and distributed
computation. Automatica, 116:108923, 2020.

[8] J.-W. Lee and G.E. Dullerud. Uniform stabilization of discrete-time switched and Markovian jump
linear systems. Automatica, 42(2):205–218, 2006.

[9] D. Liberzon. Switching in Systems and Control. Systems & Control: Foundations & Applications.
Birkhäuser, 2003.

[10] J. Lofberg. YALMIP : a toolbox for modeling and optimization in MATLAB. In 2004 IEEE International
Conference on Robotics and Automation (IEEE Cat. No.04CH37508), pages 284–289, 2004.

[11] R. Majumdar, N. Ozay, and A.-K. Schmuck. On abstraction-based controller design with output feed-
back. In Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control,
New York, NY, USA, 2020. Association for Computing Machinery.

[12] M. L. C. Peixoto, M. J. Lacerda, and R.M. Palhares. On discrete-time LPV control using delayed
lyapunov functions. Asian Journal of Control, 23(5):2359–2369, 2021.

[13] M. Philippe, N. Athanasopoulos, D. Angeli, and R.M. Jungers. On path-complete Lyapunov functions:
Geometry and comparison. IEEE Transactions on Automatic Control, 64(5):1947–1957, 2019.

[14] M. Philippe, R. Essick, G.E. Dullerud, and R.M. Jungers. Stability of discrete-time switching systems
with constrained switching sequences. Automatica, 72:242–250, 2016.

[15] A.-K. Schmuck, O. Tabuada, and J. Raisch. Comparing asynchronous l-complete approximations and
quotient based abstractions. In 2015 54th IEEE Conference on Decision and Control (CDC), pages
6823–6829, 2015.

10

	1 Introduction
	2 Preliminaries
	3 Memory-based Lyapunov functions and Equivalence with PCLF
	3.1 Memory-based Lyapunov functions
	3.2 From MBLF to Path-complete Lyapunov functions
	3.3 From Path-Complete Lyapunov functions to MBLF

	4 Numerical Example
	5 Conclusion

