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Abstract

This paper synthesizes a gain-scheduled controller to stabilize all possible Linear Parameter-Varying
(LPV) plants that are consistent with measured input/state data records. Inspired by prior work in
data informativity and LTI stabilization, a set of Quadratic Matrix Inequalities is developed to represent
the noise set, the class of consistent LPV plants, and the class of stabilizable plants. The bilinearity
between unknown plants and ‘for all’ parameters is avoided by vertex enumeration of the parameter set.
Effectiveness and computational tractability of this method is demonstrated on example systems.

1 Introduction

This paper performs Data Driven Control (DDC) of discrete-time Linear Parameter-Varying (LPV) systems
using Quadratic Matrix Inequalities (QMIs). The problem setting involves parameter-affine LPV systems
in which the parameter may vary arbitrarily within a polytope and the measured data admits a quadratic
description in its noise. When the system has n states, m inputs, L parameters, and Nv vertices in the
parameter polytope, we propose a non-conservative Linear Matrix Inequality (LMI) to find a quadratically
stabilizing gain-scheduled controller for all consistent LPV plants involving Nv Positive Semidefinite (PSD)
constraints of size n(L + 1) + m (continuous-time) or n(L + 2) + m (discrete-time) and a single Positive
Definite (PD) constraint of size n.

LPVs systems are a class of linear systems whose plant dynamics depend on externally measured pa-
rameters. LPV systems have been employed to model and control nonlinear dynamics such as in vehicle
control [1], missile control [2], and chemical processes [3]. Gain-scheduling control sets the input to be a
function of the state and measured parameter [4]. Examples of quadratically stabilizing gain-scheduling
through a common Lyapunov function include backsubstitution [5], interpolated vertex-controllers when the
LPV dynamics are parameter-affine [2], and the use of a dynamic compensator when the plant dynamics are
a Linear Fractional Transformation of the applied parameter [6]. The work in [7] applied different QMIs for
robust control of a single given continuous-time LPV plant.

DDC is a methodology of formulating controllers for all possible plants that are consistent with measured
input/output relations (data) [8]. Such algorithms avoid an expensive system-identification step to construct
a generalized plant model. A survey of data-driven techniques is provided in [9]. One class of DDC methods
applies Willem’s Fundamental Lemma, which parameterizes all possible system responses by linear combi-
nations of a single trajectory’s Hankel matrices if a rank condition is satisfied (persistency of excitation)
[10]. This Lemma can be used for stabilization/regulation [11] and Model Predictive Control [12, 13] with
optional regularization to reduce sensitivity to noise.
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When the noise corrupting the recorded data admits a quadratic description, QMIs may be used in a
non-conservative manner to describe the noise set and the set of consistent plants [14]. Their work forms a
matrix S-Lemma [15], providing conditions under which the satisfaction of one QMI implies another QMI
[16], in order to perform quadratic stabilization and robust control (H2 and H∞). The QMI-with-S-Lemma
approach has also been used to stabilize nonlinear systems with state-dependent representations [17], to
form a robust-control framework incorporating prior knowledge [18], to analyze and control continuous-time
systems [19], to iteratively stabilize networked systems with block-structured controllers [20], and to impose
LMI-region performance constraints on robust controllers [21].

DDC has been previously applied to LPV systems, as surveyed by [3]. Other instances of DDC for LPV
include using Support Vector Machines [22], hierarchical control [23], and Willem’s Fundamental Lemma
[24]. The related problem of DDC of switched systems was studied in [25] using polynomial optimization.
To the best of our knowledge, QMIs and the matrix S-Lemma have not been used for DDC of LPV systems.

The contributions of our work are

• A presentation of the Data-Driven LPV quadratic stabilization problem parameterized by QMIs

• An LMI to achieve quadratic stabilization via gain-scheduling vertex-QMIs with Kronecker structure
in continuous-time and discrete-time

• An accounting of computational complexity which includes allowances for sparsity

This paper has the following structure: Section 2 reviews preliminaries such as notation, LPV stabiliza-
tion, and the use of QMIs in forming stabilizing controllers. Section 3 applies this QMI method for LPV
stabilization. Section 4 performs worst-case suboptimal H2 control on LPV plants consistent with the noise
structure. Section 5 demonstrates this stabilization approach on example systems. Section 6 concludes the
paper.

2 Preliminaries

DDC Data Driven Control

LMI Linear Matrix Inequality

LPV Linear Parameter-Varying

LPVA LPV A-affine

PD Positive Definite

PSD Positive Semidefinite

SDP Semidefinite Program

QMI Quadratic Matrix Inequality

2.1 Notation

The double dots in 1..L represent the sequence of natural numbers between 1 and L. The n-dimensional
real vector space is Rn. The nonnegative real orthant is Rn≥0 and the cone of positive vectors is Rn>0. The

set of real-valued m × n matrices is Rm×n. The transpose of a matrix M is MT . The kernel (nullspace)
of a matrix M is ker(M). The set of symmetric matrices of size n is Sn, and its subsets of PSD and PD
matrices are Sn+ and Sn++. The vertical concatenation of matrices A and B of compatible dimensions is
[A;B] and their horizontal concatenation is [A,B]. The symmetrization operator applied to M ∈ Rn×n is
sym(M) = (M +MT )/2. The pseudoinverse of a matrix M is M†.

The matrices In, 0m×n, 1m×n are respectively the identity, zeros, and ones matrices of appropriate
dimensions. The dimension subscripts will be dropped when the matrix sizes are unambiguous. The ∗
marking will be used in block matrices to refer to the canonical transpose of oppositely-indexed elements.



The Kronecker product of matrices P and Q is P ⊗Q. The Hadamard (elementwise) product of matrices is
P �Q. The symbol ⊗col will denote the column-wise Khatri-Rao product for matrices A ∈ Rm×n, B ∈ Rp×n
[26]

A⊗col B = (1p×1 ⊗A)� (B ⊗ 1m×1). (1)

The convex hull of a set of points P = {pj}Nj=1 is conv(P ). The notation δx will mean the derivative ẋ
in continuous-time or the next state x+ in discrete-time.

2.2 LPV Stabilization

LPV dynamics with state x ∈ Rn, input u ∈ Rm, and measurable parameter θ ∈ Θ ⊂ RL are

δx = A(θ)x+B(θ)u. (2)

The LPV A-affine (LPVA) structure [27] has B constant and A θ-affine for some set of matrices ∀` : A` ∈
Rn×n if

δx =
(∑L

`=1A`θ`

)
x+Bu. (3)

This preliminary subsection will deliver exposition on the case where ({A`}, B) are known and fixed while
θ is unknown and measured on-line. The main body of the paper will focus on the setting where the plant
({A`}, B) is unknown but consistent with observed data.

Remark 1. LPVA structure may be rendered affine in the parameter by adjoining a new constant θ0 = 1 to
θ.

Let Ω = {ωv}Nv
v=1 be a finite set of Nv points in RL. In this paper, the parameter set Θ will be chosen to

be the compact convex polytope Θ = conv(Ω). We will refer to Ω as the vertices of Θ (or as vertices more
generally).

A vertex-controller Kv ∈ Rm×n is defined at each vertex ωv in Ω, yielding the state-feedback law u = Kvx.
Given a parameter θ ∈ RL, a gain-scheduled controller u = K(θ)x may be found by first solving for a feasible
c ∈ RNv using Linear Programming

find c ∈ RNw
+

∑Nv

v=1 cv = 1
∑Nv

v=1 cvωv = θ, (4a)

and then returning the control policy,

K(θ) =
∑Nv

v=1 cvKv u = K(θ)x. (4b)

Any feasible point c of (4a) will serve: uniqueness of K(θ) is not required. Application of the gain-
scheduled u = K(θ)x to the LPVA system (3) leads to the decomposed dynamics

δx = A(θ)x+BK(θ)x (5a)

=
∑L
`=1 θ`A`x+

∑Nv

v=1 cvBKvx (5b)

=
[∑Nv

v=1 cv

(∑L
`=1 ω`vA`

)
+ cvBKv

]
x. (5c)

The open-loop system Av for each vertex ωv (multiplied in (5) by cv) may be defined as

Av =
∑L
`=1 ω`vA`. (6)

Lemma 2.1. If C is a convex cone with elements z and Θ= conv(Ω) , then the following statements are
equivalent: ∑L

`=1 θ`z` ∈ C ∀θ ∈ Θ (7a)∑L
`=1 ω`vz` ∈ C ∀v = 1..Nv (7b)



Proof. Statement (7a) implies (7b) because each vertex ωv is an element of Θ. Every point θ ∈ Θ may

be represented by a possibly non-unique convex combination of vertices with coordinates θ` =
∑Nv

v=1 cvω`v
given that Θ = conv(Ω) ((4a) and Section 2.1.4 of [28]). Eq. (7b) implies (7a), because

∑L
`=1 θ`z` may be

expressed as the convex combination of C-elements
∑L
`=1

∑Nv

v=1 (cvω`v) z`.

Definition 2.1. The controller u =K(θ)x from Eq. (4) quadratically stabilizes the LPVA system (3) if there
exists a θ-independent Y ∈ Sn++ (for continuous-time) or a P ∈ Sn++ (for discrete-time)

−2 sym(Y (A(θ) +BK(θ))) ∈ Sn++ ∀θ ∈ Θ (8a)[
P (A(θ) +BK(θ))P
∗ P

]
∈ S2n++ ∀θ ∈ Θ (8b)

Lemma 2.2. Equations (8a) and (8b) are equivalent to the following respective conditions,

−2 sym(Y (Av +BKv)) ∈ Sn++ ∀v = 1..Nv (9a)[
P (Av +BKv)P
∗ P

]
∈ S2n++ ∀v = 1..Nv (9b)

Proof. Equivalence of the respective pairs [(8a), (9a)] and [(8b), (9b)] holds by Lemma 2.1 with regard to
the cones Sn++ and S2n++ [2].

Pre- and post-multiplying (9a) by Y −1 yields

−2 sym((Av +BKv)Y
−1) ∈ Sn++ ∀v = 1..Nv. (10)

Problems (9a) and (9b) are convex after substituting Sv = KvY
−1 (using (10)) and Sv = KvP respectively

[29].

2.3 Quadratic Matrix Inequalities

This section reviews QMIs and the matrix S-Lemma approach proposed by [14, 16].

Definition 2.2. Given a matrix M ∈ Sn, a QMI is the quadratic statement in X ∈ Rn×k that XTMX ∈ Sk+.

QMIs can also be strict with XTMX ∈ Sk++. The works in [14, 16] present conditions under which one
QMI implies another QMI, with specific attention on the scenario where X can be partitioned as X = [I;ZT ]
for some Z. In this case, the variable Z is referred to as satisfying a QMI constraint.

Definition 2.3. Let Φ ∈ Sn+k be a partitioned matrix,

Φ11 ∈ Sn, −Φ22 ∈ Sk+. (11a)

A matrix Z ∈ Rn×k satisfies the Quadratic Boundedness Property with respect to Φ (Z ∈ QBP(Φ)) if[
In
ZT

]T [
Φ11 Φ12

ΦT12 Φ22

] [
In
ZT

]
∈ Sk+. (11b)

Lemma 2.3 (Theorem 3.2b of [16]). Assuming that Φ satisfies (11a), let Φ | Φ22 be the Generalized Schur

complement Φ11 − Φ12Φ†22Φ12, ‖·‖F be the Frobenius norm, and λmax (λmin) be the maximum (minimum)
matrix eigenvalue. Then for all matrices Z ∈ QBP(Φ) :

‖Z + Φ−122 Φ12‖2F < kλmax(Φ | Φ22)/λmin(−Φ22).

Z is therefore bounded if −Φ22 ∈ Sk++.



Definition 2.4. The Strict Quadratic Boundedness Property (Z ∈ SQBP(Φ)) holds if the matrix in (11b)
is in Sk++.

Structures of Φ are listed in Section 2 of [16]. Particular instances include energy bounds Φ11−ZZT ∈ Sn+
(with Φ12 = 0, Φ22 = −Ik) and individual sample L2 bounds (adding some conservatism) ∀k′ = 1..k :
‖zk′‖2 ≤ ε, (with Φ11 = ε2kIn,Φ12 = 0,Φ22 = −Ik).

Theorem 2.4 (Strict Matrix S-Lemma, [Cor. 4.13 of [16]]). Let M,N ∈ Sm+k be matrices satisfying (11a)
with the same partitioning scheme and let Z ∈ Rn×k. The following conditions are equivalent under the
assumptions that kerN22 ⊆ kerN12, N | N22 ∈ Sn+, and −M22 ∈ Sk++:

Z ∈ SQBP(M), ∀Z ∈ QBP(N) (12a)

∃α ≥ 0, β > 0 : (12b)

M − αN −
[
βIm 0
0 0k×k

]
∈ Sm+k

+ .

3 LPV Stabilization with QMIs

3.1 Problem Description

A sampling process records a set of T observations from an unknown LPVA system (3) under a bounded
noise process w(·) (discrepancy) for t = 0..T

δx(t) =
(∑L

`=1A`θ`

)
x(t) +Bu(t) + w(t). (13)

This data is collected into matrices (X−,U,Θ)

X− := [x(0) x(1) . . . x(T − 1)]
U := [u(0) u(1) . . . u(T − 1)]
Θ := [θ(0) θ(1) . . . θ(T − 1)].

(14)

The derivative observations Ẋ (continuous-time) and one-step-ahead records X+ (discrete-time) are

Ẋ := [ẋ(0) ẋ(1) . . . ẋ(T − 1)]
X+ := [x(1) x(2) . . . x(T )].

(15)

The symbol Xδ will refer to Ẋ or X+ as appropriate. The data D will denote the tuple (X−,U,Θ,Xδ).
Let Θ` ∈ R1×T be the row of Θ associated with parameter θ`. The discrepancy W collected from (13)

(mathematically equivalent to process noise for discrete-time) associated with the observations in D for a
given LPVA (A(θ), B) is

W = Xδ −
(∑L

`=1 Θ` ⊗col A`

)
X− −BU. (16)

The following assumptions will be imposed,

A1 n,m,L, T are all finite and known.

A2 The set Θ is a known compact non-empty polytope with vertices Ω.

A3 The ground truth system has LPVA structure (3).

A4 There exists a known Φ ∈ Sn+T satisfying (11a) such that W ∈ QBP(Φ) for the ground-truth system.

The consistency set of plants (A(θ), B) compatible with D given Φ is

ΣD(Φ) = {({A`}L`=1, B) |W from (16) ∈ QBP(Φ)}.



Remark 2. Data matrices arising from multiple trajectories may be horizontally concatenated if the noise
structure in Φ is compatible with the arrangement (Example 2 of [30]).

Our goal is to solve the following problem,

Problem 3.1. Find a gain-scheduled (Eq. (4)) control policy u = K(θ)x such that x+ = (A(θ) + BK(θ))x
is quadratically stable for all ({A`}, B) ∈ ΣD.

Remark 3. Problem (3.1) will be solved by enforcing that (9) holds for all ({A`}, B) ∈ ΣD (Lemma 2.2).

3.2 Data Consistency QMI

The set ΣD(Φ) may be represented as a QMI.
Using the convention that {A`} = [A1, A2, . . . , AL] and {AT` } = [AT1 ;AT2 ; . . . ;ATL], the discrepancy matrix

W from (16) may be represented as

[
In

WT

]
=

 In Xδ

0n×Ln −Θ⊗col X−
0n×m −U

T  In
{AT` }
BT

 . (17)

Defining the matrix Ψ ∈ Sn+(Ln+m) as

Ψ =

 In Xδ

0n×Ln −Θ⊗col X−
0n×m −U

Φ

 In Xδ

0n×Ln −Θ⊗col X−
0n×m −U

T , (18)

it holds that the following two descriptions are identical:

({A`}, B) ∈ ΣD(Φ) ↔ [{A`}, B] ∈ QBP(Ψ). (19)

3.3 Stabilization QMI

This section will form a QMI for stabilization of the subsystem Av ∈ Rn×n at vertex v from (6) by a controller
Kv ∈ Rm×n. The continuous-time LMI criterion in (10) is equivalent to the following QMI

[{A`}, B] ∈ SQBP

 0 ∗ ∗
−ωv ⊗col Y

−1 0 ∗
−KvY

−1 0 0

 , (20)

as obtained by pre- and post-multiplying (9a) by the invertible Y −1 ∈ Sn++. The discrete-time LMI criterion
in (9b) is equivalent to the following QMI by collecting terms

[{A`}, B] ∈ SQBP

P ∗ ∗
0 −(ωvω

T
v )⊗ P ∗

0 −(ωTv )⊗ (KvP ) −KvPK
T
v

 . (21)

Theorem 3.2 (Continuous-Time). Under assumptions A1-A5, QMI (20) holds for all ({A`}, B) ∈ ΣD(Φ)
if and only if ∃αv ≥ 0, βv > 0 such that −βvIn ∗ ∗

−ωv ⊗col Y
−1 0 ∗

−KvY
−1 0 0

− αvΨ ∈ S(L+1)n+m
+ . (22)

Proof. This will follow a similar proof strategy as Sections IV of [14] and V.I of [16]. The (αv, βv) structure
follows from Theorem 2.4. It remains to affirm the assumptions under which this theorem is valid. Given



that Y ∈ Sn++ and −Φ22 ∈ ST+ (A4), the lower-right corner of the matrix in (20) and Ψ may each be expressed
as

−0(L+1)n+m ∈ SLn+m+ (23a)

−
[
Θ⊗col X−

U

]
Φ22

[
Θ⊗col X−

U

]T
∈ SLn+m+ . (23b)

The final condition is that kerΨ22 ⊆ kerΨ12 with

kerΨ22 = ker

[
Θ⊗col X−

U

]
(24a)

kerΨ12 = ker(Φ12 + Φ22Xδ)

[
Θ⊗col X−

U

]
. (24b)

All conditions are satisfied, so Theorem 3.2 is proven.

Theorem 3.3 (Discrete-Time). Under assumptions A1-A5, QMI (21) is satisfied ∀({A`}, B) ∈ ΣD(Φ) if
and only if ∃αv ≥ 0βv > 0 such thatP − βvIn ∗ ∗

0 −(ωvω
T
v )⊗ P ∗

0 −(ωTv )⊗ (KvP ) −KvPK
T
v

− αvΨ
∈ S(L+2)n+m

+ . (25)

Proof. This proof follows the same pattern as in the above Theorem 3.2. The only modification required is
demonstrating that the negative of the lower right-corner matrix in (21) is PSD, which holds by[

(ωvω
T
v )⊗ P ∗

(ωTv )⊗ (KvP ) KvPK
T
v

]
=

[
ωv ⊗ In
KvP

]
P

[
ωv ⊗ In
KvP

]T
. (26)

All other conditions are valid, completing the proof.

3.4 Controller Generation Program

This subsection will pose a pair of Semidefinite Programs (SDPs) to solve data-driven LPV stabilization
under continuous-time and discrete-time, as introduced by Remark 3 under assumptions A1-A5. In the
language of [30], the tuple (D,Φ,Ω) is informative for LPV quadratic stabilization if the respective LMI is
feasible.

3.4.1 Continuous-Time

The first matrix of (22) admits the substitution P = Y −1, Sv = KvP to form the LMI −βvIn ∗ ∗
−ωv ⊗col P 0 ∗
−Sv 0 0

− αvΨ ∈ S(L+1)n+m
+ . (27)

The continuous-time stabilization SDP with gain-scheduled control matrices {Kv = SvP
−1}Nv

v=1 is

find P ∈ Sn++ (28a)

α ∈ RNv

≥0 , β ∈ RNv
>0 , (28b)

Sv ∈ Rm×n ∀v = 1..Nv (28c)

LMI (27) holds ∀v = 1..Nv. (28d)



3.4.2 Discrete-Time

The first matrix in (25) may be expressed using a substitution Sv = KvP (with KvPK
T
v = SvP

−1STv )P − βvI 0 0
0 −(ωvω

T
v )⊗ P −ωv ⊗ (STv )

0 −(ωTv )⊗ Sv SvP
−1STv

 , (29)

followed by a Schur Complement

→


P − βvI 0 0 0

0 −(ωvω
T
v )⊗ P −ωv ⊗ (STv ) 0

0 −(ωTv )⊗ Sv 0 Sv
0 0 Sv P

 . (30)

Letting Γv(βv) be the matrix in (30), the LMI (25) from Theorem 3.3 may be restated as,

Γv(βv)− αv
[
Ψ 0
0 0n×n

]
∈ Sn(L+2)+m

+ . (31)

The discrete-time stabilization SDP with gain-scheduled control matrices {Kv = SvP
−1}Nv

v=1 is

find P ∈ Sn++ (32a)

α ∈ RNv

≥0 , β ∈ RNv
>0 , (32b)

Sv ∈ Rm×n ∀v = 1..Nv (32c)

LMI (31) holds ∀v = 1..Nv. (32d)

Remark 4. In the specific discrete-time case where L = 1 and Θ = {θ = 1}, Eq. (32) is identical to Thm.
14 of [14].

Remark 5. Programs (28) and (32) can be normalized by constraining Tr(P ) = 1.

3.5 Computational Considerations

The per-iteration complexity of solving an SDP using an interior point method up to arbitrary (nonzero)
accuracy with a single PSD variable of size N with M affine constraints is O(N3M + M2N2) [31]. The
continuous-time SDP in (28) has 1 PSD constraint of size n (28a) and Nv PSD constraints of size n(L+1)+m
(28d). The discrete-time SDP in (32) has 1 PSD constraint of size n (32a) and Nv PSD constraints of size
n(L+ 2) +m (32d).

The performance of SDPs (28) and (32) therefore scales linearly in Nv, polynomially in (n,L,m), and
independently of T . Linear dependence on Nv may result in an exponential scaling on L (e.g. a hypercube
with Nv = 2L).

4 H2 Optimal Control

A continuous-time LPVA state-space system with external input ξ ∈ Re and regulated output z ∈ Rr given
matrices C ∈ Rr×n, D ∈ Rr×m, F ∈ Rn×e is

ẋ =
∑L
`=1 θ`A`x+Bu+ Fξ, z = Cx+Du. (33)

The recorded data in D has ξ = 0 while W ∈ QBP(Φ). The input ξ is applied during system execution.
Define the H2 norm of (33) as the worst-case (over all parameter trajectories) expected root-mean-square

value of ‖z‖2 when the input ξ is a white noise process with identity covariance. Then we have the following
bound:



Proposition 4.1. There exists a gain-scheduled controller u = K(θ)x such that the closed-loop H2 norm of
the LPVA system (33) is bounded above by γ ∈ R+ if for all v = 1..Nv the following LMI is feasible [32]

find
P,Z,S

−2 sym(AvP +BSv)− FFT ∈ Sn++ (34a)[
Z CP +DSv
∗ P

]
∈ Sn+r++ (34b)

Tr(Z) ≤ γ2 (34c)

P ∈ Sn++, Z ∈ Sr+, Sv ∈ Rm×n. (34d)

The gain-scheduled controller K(θ) may be recovered from {∀v : Kv = SvP
−1} and Eq. (4). The

variables (Z,P ) and given entries (C,D, F ) are independent of (A,B) ∈ ΣD.−βvIn − FFT ∗ ∗
−ωv ⊗col P 0 ∗
−Sv 0 0

− αvΨ ∈ S(L+1)n+m
+ . (35)

Constraint (35) is equal to (27) when F = 0n×e, given that conditions (34a) and (9a) are identical under
this restriction.

Worst-case H2 control of (33) for all (A(θ), B) ∈ ΣD given (C,D, F ) may be conducted by solving

γ2 = inf Tr(Z) (36a)

P ∈ Sn++, Z ∈ Sr+ (36b)

α ∈ RNv

≥0 , β ∈ RNv
>0 , (36c)

LMIs (34b) and (35) hold ∀v = 1..Nv. (36d)

The resultant H2 norm is upper-bounded by γ =
√

Tr(Z) when using gain-scheduled control matrices

{Kv = SvP
−1}Nv

v=1. All results in this section may be extended to discrete-time H2 control with appropriate
LMIs.

5 Numerical Examples

Experiments were written in Matlab R2021a and are available at https://github.com/jarmill/lpv_qmi

in the folder experiments. Dependencies include Mosek [33] and YALMIP [34]. For both examples, the
problem of finding a θ-independent controller Kc ∈ Rm×n with ∀v : Kv = Kc that stabilizes all plants
({A`}, B) in the consistency set ΣD is infeasible.

5.1 Two-Parameter, Two-State

The experiment ground truth with Θ = [0, 2]× [−1, 1] is

Atrue
1 =

[
−0.2396 −0.5845
0.5845 −0.2396

]
Atrue

2 =

[
−0.1696 0.8434
0.8434 0.4140

]
Btrue =

[
0 −1.0072

0.4848 0

]
(37)

The plant A2 in (37) is open-loop unstable for both continuous-time and discrete-time with eigenvalues
of −0.7703, 1.0146. Data D with T = 35 was collected under an individual-sample noise bound of ε = 0.1.

5.1.1 Continuous-Time

https://github.com/jarmill/lpv_qmi


Eq. (28) synthesizes the following continuous-time vertex-controllers

K(0,1) =

[
−4.5348 −10.0625
9.9319 6.7597

]
K(0,−1) =

[
−4.7998 −10.5553
10.7794 7.1231

]
K(2,1) =

[
−4.7566 −9.8257
9.5553 6.4091

]
(38)

K(2,−1) =

[
−4.7646 −9.7462
9.8597 6.4104

]
.

The LMI parameters associated with K in (38) are

P =

[
0.0738 −0.0149
−0.0149 0.0361

]
∈ S2++ (39)

α = [0.0535, 0.0577, 0.0518, 0.0530] ∈ R4
≥0

β = [10−5, 10−5, 10−5, 10−5] ∈ R4
>0.

The blue trajectories in Figure 1 are system executions from 15 plants in the set ([A1, A2], B) ∈ ΣD starting
from the point x(0) = [−2; 1.5]. The parameter values θ are drawn uniformly from [0, 2] × [−1, 1] with
exponentially distributed switching times (mean switching time is 0.05). The red dotted-line in the top plot
is the ground truth system from (37) given the fixed parameter sequence. The bottom plot contains system
trajectories for 30 parameter sequences on the ground truth and each of the 15 sampled plants.

Figure 1: Plots of controlled trajectories using (38)



5.1.2 Discrete-Time

Eq. (32) with the same data Xδ creates the following discrete-time vertex-controllers

Kθ=(0,1) =

[
−1.2258 −0.6755
−0.1672 0.7948

]
Kθ=(0,−1) =

[
1.2258 0.6755
0.1672 −0.7948

]
Kθ=(2,1) =

[
−3.4132 0.1113
−0.6730 −0.3555

]
(40)

Kθ=(2,−1) =

[
−0.5723 1.4858
−0.3528 −1.9440

]
.

The resultant P matrix is [0.0588, 0.0014; 0.0014, 0.1022].
Figure 2 visualizes a discrete-time trajectory of the ground truth ground-truth and 15 sample plants

when the controller (40) is applied to a single parameter sequence starting at x(0) = [−2, 1.5]. The bottom
plot displays a sampled reachable set attained from 30 parameter sequences and all plants (15 sample plants
plus ground truth).

Figure 2: Plots of controlled trajectories using (38)

The discrete-time worst-case controlled H2 norm with C = [I2; 02], D = [02;
√

2I2], F = I2 is bounded
by γ = 9.334 by Eq. (36).

5.2 Three-Parameter, Five-State

The second experiment involves a system with n = 5,m = 3, L = 3. The parametric set is Θ = [−0.3, 0.3]×
[0.2, 0.8]× [0.5, 1.5] with Nv = 8. A trajectory is recorded with a time horizon of T = 50 and an individual-
sample noise bound of ε = 0.1. The associated P matrix to the controller is



P =


0.268 0.141 −0.112 0.113 −0.171
0.141 0.322 −0.151 0.250 −0.277
−0.112 −0.151 0.410 0.210 −0.130
0.113 0.250 0.210 1.226 −1.138
−0.171 −0.277 −0.123 −1.138 1.191

 .

6 Conclusion

This work considered quadratic stabilization of all LPV systems ({A`}, B) ∈ ΣD(Φ). SDPs (28) and (32)
perform this task by solving a set of Nv + 1 LMIs in order to recover a gain-scheduled controller. The
unknown LPVA plants may be regulated using a worst-case H2-optimal controller. Sparsity of the LMIs
may be employed to speed up computation of these controllers. Future work involves finding K(θ) policies
using methods that scale based on the number of faces of Θ rather than on Nv and reducing the conservatism
of K(θ)-controllers by letting P depend on θ.
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