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Abstract— We present a methodology based on mixed-integer
nonlinear model predictive control for a real-time building en-
ergy management system in application to a single-family house
with a combined heat and power (CHP) unit. The developed
strategy successfully deals with the switching behavior of the
system components as well as minimum admissible operating
time constraints by use of a special switch-cost-aware rounding
procedure. The quality of the presented solution is evaluated
in comparison to the globally optimal dynamic programming
method and conventional rule-based control strategy. Based on
a real-world scenario, we show that our approach is more than
real-time capable while maintaining high correspondence with
the globally optimal solution. We achieve an average optimality
gap of 2.5% compared to 20% for a conventional control
approach, and are faster and more scalable than a dynamic
programming approach.

I. INTRODUCTION

Continuous development of energy supply and distribu-
tion systems by decentralisation of generation and storage,
imposition of smart-homes technologies and dynamization
of energy markets significantly complexifies the overall
structural organization. The increasing complexity is par-
ticularly evident with respect to building energy supply
components. In contemporary houses, diverse combinations
of components such as gas boilers, combined heat and
power units, storage units, solar/photovoltaic systems and
many others exist. With the goal of energy efficiency and
living comfort maximization, supervisory control of such
systems with state-of-the-art methods for building energy
management is particularly challenging. According to [1],
where a highly comprehensive literature study on building
energy consumption and intelligent automation systems was
performed, potential savings of up to 30% can be achieved
globally.

An intelligent real-time supervisory control system based
on a model predictive control (MPC) strategy is getting more
widespread. It can be considered as a promising candidate
to exploit potential savings [1] and to replace conventional
building control approaches eventually. In particular, a spe-
cial case of MPC, nonlinear MPC (NMPC), is suitable for the
control of nonlinear multidimensional systems. It is capable
of explicitly operating with the system’s nonlinear dynamics,
objectives and constraints on control and state variables.
It has already been used in various studies with different
building energy system components and configurations, e.g
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in [2], where an NMPC-based controller showed a poten-
tial increase in the specific cooling power by 31.1% for
absorption chillers, or [3], where the application to domestic
micro-grid results in energy savings in the magnitude of 10%.
A predictive controller was implemented as a real building
temperature management system in [4] and achieved more
than 17% savings compared to the conventional control.

In this paper, we present a special setup of a supervisory
control strategy for a residential building energy system with
a combined heat and power plant, based on mixed-integer
nonlinear model predictive control (MI-NMPC). We take into
account the system switching characteristics and along with
continuously modulating operating range of the components,
its minimum admissible operating times, so-called dwell-
times. A procedure to tackle dwell-times restriction within
the solar-driven climate system can be found in [5]. It also
combines the means of MI-NMPC with a rather costly binary
approximation problems solver pycombina [6]. Whilst in our
case, we utilize a sophisticated and rapid rounding procedure
presented in the section III-A.

We show that our strategy is able to handle the resulting
optimization task of energy cost minimization while main-
taining user comfort under the specified system constraints.
We prove the performance of the suggested approach by
comparison to a computationally very expensive but globally
optimal solution obtained by dynamic programming. We
evaluate the quality of the sub-optimal solution obtained by
our approach in a comprehensive closed-loop simulation.

The article is structured as follows. First, we describe
the considered building energy system and the resulting
optimal control problem (OCP). Next, we present the so-
lution approach with general formulations of the mixed-
integer optimal control problem (MIOCP) and details on
the rounding strategy. After that, the additionally required
post-processing algorithm is described. Lastly, the numerical
results illustrate the outcome of the proposed strategy in
comparison to a dynamic programming method. Conclusions
and an outlook on future work close the article.

II. OVERALL PROBLEM CLASS

A. System Description

The energy supply system considered here corresponds to
the system from the authors’ work [7]. Thereby, we provide
only the information needed for the subject understanding
and point out the characteristics not taken into account
previously in the system model.

The energy supply system configuration is common for
the residential sector (Fig. 1). It consists of a gas-driven
modulating micro-CHP (combined heat and power) unit,
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which covers most of the energy demand of the building,
a condensing boiler and a heat storage tank. The storage
tank collects the generated thermal energy, which is then
available for heating as well as for the demand-oriented hot
water supply. The electricity generated by the CHP unit is
consumed in the house itself. Surplus electricity can be fed
into the public grid.

The optimal operation of the energy system central unit,
CHP, appears to be rather challenging. Simultaneous gen-
eration of thermal and electrical energy must be taken into
account along with the currently available storage capacity.
An additional prediction of future heat consumption makes
it possible to shift CHP operation times as well as electricity
purchases and sales depending on the comfort requirements
of the users and energy prices.

Another essential property not considered in previous work
is the minimum operating time of CHP units, which is typi-
cally imposed by the manufacturer for durability reasons. For
the current configuration, 60 minutes dwell time restriction
is recommended by the maintenance instructions [8].

All the aforementioned system features lead to an eco-
nomic optimal control problem with multiple objectives.
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Fig. 1. The residential building energy system

B. System Model

The system model follows the one we presented in [7]. As
understanding the main physical effects within the energy
supply system is essential in the context of this work,
we briefly present it here. We denote electrical power by
P, thermal power by Q̊, input power of the CHP and
boiler units by uuuT = (uchp,uboi), and introduce a binary
control vector vvvT = (vchp,vboi) to represent the CHP and
boiler on/off states. Description of the model parameters
a0,1,2,b0,1,2,A,cw,d0,1,2,3,Hfil,sto,m and ∆Tchp,boi can be found
in [7] with the corresponding values.
Electrical power generated by the CHP unit reads

Pchp(t) = uchp(t)vchp(t). (1)

It can be modulated continuously in the range uchp ∈
[1.65,4.55] (kW) when switched on (vchp = 1) and is zero
when switched off (vchp = 0). Gas power Q̊g,chp consumed

when operating is calculated from the electrical energy
efficiency characteristics ηe of the CHP unit by

Q̊g,chp(t) =
Pchp(t)

ηe(Pchp(t))
=

Pchp(t)
a0 +a1P2

chp(t)+a2Pchp(t)
, (2)

where electric self-consumption of the CHP unit during
operation is already taken into account. Thermal power is
then derived from (2) and the thermal energy efficiency curve
ηq(Pchp(t)) = b0 + b1P2

chp(t) + b2Pchp(t). Thus, a quadratic
relationship for the efficiency curves is assumed according
to [9]. Thermal losses are assumed to be proportional to the
temperature difference ∆Tchp to the ambient. This results in

Q̊chp(t) =
Pchp(t)ηq(Pchp(t))

ηe(Pchp(t))
−Hfil∆Tchpvchp(t). (3)

Similarly, the heating power of the gas-condensing boiler is

Q̊g,boi(t) = uboi(t)vboi(t) (4)

with the modulated input power uboi ∈ [6,32] (kW). The
thermal output power Q̊boi is determined from the linear
efficiency characteristics

Q̊boi(t) = d2Q̊2
g,boi(t)+d3Q̊g,boi(t)−Hfil∆Tboivboi(t), (5)

where, analogous to the CHP unit, thermal losses to the
environment during the generation and distribution processes
are also considered. In addition to gas, the condensing boiler
also consumes a small amount of electrical power Pboi during
operation. This is accounted for by the linear relationship

Pboi(t) = d1Q̊g,boi(t)+d0vboi(t). (6)

The dynamics of the buffer storage tank is modelled by
simple energy balance ODE with Q̊con as the building power
demand, and ambient losses

Q̇sto(t) = Q̊chp(t)+ Q̊boi(t)− Q̊con(t)−Hsto
A

mcw
Qsto(t). (7)

Since we do not explicitly consider the actual volume flows
and their temperatures, effects such as convection and con-
duction are omitted. Also, such effects as heating and cooling
of the components can be neglected due to the large sampling
time selected for the controller.

The energy sinks within the overall system consisting of
the thermal Q̊con and electrical Pcon energy consumption in
the building. From the controller’s point of view, both are
time-varying model parameters. The corresponding data is
provided by measurements (in the current scenario these
quantities are treated as system disturbances) or, when the
model is deployed within a predictive controller, derived
from an external energy demand forecast model.

C. System Control Problem

The overall goal of an energy supply system is a rather
straightforward minimization of the overall energy expenses
while ensuring supply of the required energy. To do so,
we introduce auxiliary control variables uel,buy, uel,sell for
electricity purchases and sales and strive to satisfy the energy
balance

(Pcon(t)+Pboi(t)−Pchp(t))−uel,buy(t)+uel,sell(t) = 0. (8)



Whenever the electricity demand is higher than the produc-
tion, it is optimal to set the variable uel,buy(t) to the missing
amount. A surplus electrical power situation is handled in
just the opposite way using uel,sell(t). To obtain this behavior,
the total expense consists of the costs for gas consumption
at price c1, costs for electrical power purchases from the
grid at price c3 offset by remunerations c4 for self-generated
electricity, and payments for feeding surplus electrical power
into the grid at price c2. This results in the Lagrange-type
objective term

L(t,uuu(t),vvv(t)) = (Q̊g,chp(t)+ Q̊g,boi(t))c1

−Pchp(t)c4 +uel,buy(t)c3 −uel,sell(t)c2.
(9)

The resulting system control problem is a mixed-integer
optimal control problem (MIOCP), cf. [10], and reads

min
uuu(·),vvv(·)

∫ tf

t0
L(uuu(t),vvv(t)) dt (10a)

s.t. ẋxx(t) = f (xxx(t),uuu(t),vvv(t)), t ∈ [t0, tf] (10b)
xxx(t0) = x̂xx0, (10c)
xxx(t) ∈ [xxxmin,xxxmax], t ∈ [t0, tf] (10d)
uuu(t) ∈ [uuumin,uuumax], t ∈ [t0, tf] (10e)

000 ≤ ccc(xxx(t),uuu(t),vvv(t)), t ∈ [t0, tf] (10f)

vvv(t) ∈ {0,1}2, t ∈ [t0, tf] (10g)

where xxx = (Qsto) represents the system state corre-
sponding to the thermal energy stored in the tank, uuuT =
(uchp,uboi,uel,buy,uel,sell) and vvvT = (vchp,vboi) denote the vec-
tors of continuous and binary control functions. Constraint
(10b) represents the system dynamics with (10d), (10e) as the
state and input bounds and (10f) as the balance constraint.

III. SOLUTION APPROACH

The system control problem (10) is a typical MIOCP
instance. Binary control functions vvv enter nonlinearly and
in a non-convex way in Eqs. (2, 3, 5). Hence, the problem is
an NP-hard non-convex MINLP, cf. [11], after discretization
in time. Moreover, it also is not immediately amenable
to relaxation of the binary constraint, as the lower bound
provided by such a relaxation could be arbitrarily bad [10].
Therefore, we make use of a partial outer convexification ap-
proach according to [10]. We introduce the one-hot encoding
ωωω(t) : S4 → Ω := {0,1}2 defined by

ωωω(t) 7→ vvv(t) = ∑
4
i=1 ωi(t) · vi, t ∈ [t0, tf], (11a)

φ(·,vvv(t)) = ∑
4
i=1 ωi(t) ·φ(·,vi), t ∈ [t0, tf] (11b)

where the set S4 lists the extremals of the 4-simplex exclud-
ing the origin, vi ∈ Ω = {0,1}2 = {(0,0),(0,1),(1,0),(1,1)}
encodes the choices for vvv, and φ is some arbitrary function
of vvv. Applying this to (10) results in an MIOCP that is linear
and convex in the indicator function ωωω point-wise in time.
A relaxation is then obtained by replacing ωωω ∈ {0,1}4 with
ααα ∈ [0,1]4. The resulting problem is a continuous OCP:

min
xxx,uuu,ααα

∫ tf

t0
L0(xxx(t),uuu(t))+ ∑

i∈Ω

αi(t) ·Li(xxx(t),uuu(t)) dt (12a)

s.t. ẋxx(t) = fff 0(xxx(t),uuu(t)), t ∈ [t0, tf], (12b)
+ ∑

i∈Ω

αi(t) fff i(xxx(t),uuu(t)),

xxx(t0) = x̂xx0, (12c)
0 ≤ ccc(xxx(t),uuu(t),α(t)), t ∈ [t0, tf], (12d)

ααα(t) ∈ [0,1]4, ∑
4
i=1 αi(t) = 1 t ∈ [t0, tf]. (12e)

Herein, Li, fi and ci denote evaluations of L, f , and c in
(10) in mode vvv(t) = vi ∈ Ω, while L0 and f0 are the mode-
independent parts. One of the resulting relaxed indicator
controls ααα can be omitted since it can be directly calculated
from the constraint (12e). Problem (12) can be solved
using an established method for direct optimal control, e.g.,
direct multiple shooting [12] or direct collocation [13]. Let
(xxxN ,uuuN ,αααN) denote an optimal solution of a discretization
of (12) on N elements in time. It is a property of formulation
(12) shown in [14], that if a binary control ωωωN with

d(ωωωN ,αααN) := max
t∈[t0,tf]

∥∥∥∥∫ t

t0
ααα

N(s)−ωωω
N(s) ds

∥∥∥∥
∞

≤ ε (13)

can be found, then under Lipschitz assumptions one has

|Φ(xxxN ,uuuN ,αααN)−Φ(xxx(uuuN ,ωωωN),uuuN ,ωωωN)| ≤Cε.

for some constant C depending on bounds and Lipschitz
constants. Herein, xxx(uuuN ,ωωωN) denotes the state trajectory
obtained by solving (12b) using the binary control ωωωN .

A. Switch-Cost Aware Rounding (SCARP)

In order to find such a binary control ωωωN , [10] proposed a
sum-up rounding (SUR) strategy with approximation bound
ε ∈ O(log |Ω|), cf. [14]. SUR controls come with high
switching costs and have difficulties satisfying dwell time
constraints, as observed in [15]. Since we have to ensure the
durability of the CHP unit, it has a minimum operating time
of Tuptime = 60 minutes when activated. We hence make use
of a novel switch-cost minimizing reconstruction procedure
first described in [16], [17]. To find ωωωN , we solve the
reconstruction problem

min
ωωω

Γ

(
∑

N
i=1 ω

N
i vi

)
s.t. d(ωωωN ,αααN)≤ θ . (14)

Herein, Γ is an objective function measuring a general
switch cost term. In the present case, Γ penalizes violations
of the CHP minimum uptime after every activation. The
constraint on the approximation distance d defined in (13)
ensures improving approximations as we choose finer grids.
θ is a tuning factor that trades lower switch costs for better
approximations of the relaxed optimal control. In the present
case, it is set to θ = D (2|Ω|−3)h/(2|Ω|−2), where h is the
ratio of the largest non-equidistant interval to the smallest
interval in the discretization and D the largest dwell time
constraint. For the examined problem this leads to θ = 25/3

as D = 10, |Ω| = 4 and h = 1 as the grid is equidistant.
This choice guarantees the existence of a binary control,
see [18]. Computationally, problem (14) is solved using



the shortest-path approach of [17] with runtime complexity
O(N

√
|Ω|2θ +3)|Ω|) [19], which is linear in N, the number

of discretization points.

B. Post-processing

One of the main drawbacks of SCARP in practice is the
lack of knowledge of the influence of rounding decisions
on the system’s state, and hence on path constraints. This
can lead to constraint infeasibility when a binary control
output is directly applied to the real system. In the performed
simulation study, constant violation of the state constraints
has been noticed at times of low thermal storage load.
In order to prevent this from happening, we propose the
following post-processing algorithm:

1) Set the number of future time steps for which the integer
control must remain constant according to the dwell times
count provided by SCARP to enforce the feasibility of all
dwell time constraints;

2) Include an additional constraint to maintain the dwell
times restriction ∑

Nd
k=1 αk − pdwt ≤ 1, where Nd is the number

of controls following a dwell time restriction and the param-
eter pdwt is set to 1 to force αk = 0 during an active dwell
time restriction;

3) For SCARP, all binary indicators after convexification
that correspond to the active state of one of the initial integer
controls are considered identical. For instance, we have two
controls α2 encoding vvv= (1,0)T and α3 encoding vvv= (1,1)T

that both encode an ON state of the CHP unit and therefore
must be considered together when CHP dwell times are
handled. We initialize the relaxed indicators with αk =

1
Nd

(in our case, α2 = 1
2 ; α3 = 1

2 ) in order to satisfy (12e);
4) Solve the resulting relaxed continuous OCP;
5) In most cases, we observed integrality already after

solving the relaxed continuous OCP, cf. [10] for an ex-
planation based on the bang-bang principle. If, however, a
fractional feedback control vector is obtained, the common
rounding to the nearest integer procedure is performed for
this control only, and the continuous optimization problem
is solved again with fixed binary controls to find the corre-
sponding continuous controls and the differential state. The
remaining degrees of freedom in the continuous controls
suffice to satisfy the path constraints if the box [uuumin,uuumax]
is sufficiently large and if ∂c/∂u(·,α(t)) has full row rank.
In absence of this regularity property, however, this final step
is of heuristic nature.

Figure 2 illustrates the state trajectory resulting from this
strategy for a time slice particularly difficult to handle. High
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Fig. 2. State trajectories for different strategies. Qw/ PP /LB indicate the
resulting trajectory with the presented post-processing algorithm (w/ PP)
and the lower state bound (LB), respectively.

energy consumption leads the energy level in the storage to
be drowned to its permitted minimum. Even if the violation
of the constraint is only minor, the consequences of this
violation can be rather serious in individual cases. As a
decisive improvement, the proposed approach guarantees the
compliance of the solution with all path and dwell time
constraints.

IV. RESULTS

A. Dynamic Programming

To evaluate the performance of the proposed control
approach, we compare the approximate solution with the
globally optimal one determined by dynamic programming
(DP). To do so, OCPs are solved by means of the dpm-
function from [20] in Matlab. For this purpose, the model
and cost function described in equations (1-9) are discretized
by an Euler forward approximation using a step-size of
TS = 600 s. The minimum operating time of the CHP unit is
maintained via a counter cdwt realized by an additional state
variable and is set to zero after each shutdown of the CHP
unit according to cdwt,k+1 = vintm(vintmcintm + cdwt,k), where

vintm =

{
1 if 0 < cdwt,k < Tuptime/TS
vchp else (15)

and
cintm =

{
1 if cdwt,k < Tuptime/TS
0 else . (16)

The distinction between feed-in and purchase of electrical
power is modelled by means of sign-functions within the cost
function. We have chosen the resolutions ∆uchp = 150 W,
∆vchp = 1, ∆Qsto = 1014 Wh and ∆cdwt = 1 to discretize the
continuous input and state variables to obtain manageable
dpm runtimes. The boiler and its control variables are ne-
glected here, since backup heating is not needed during the
particular period under consideration. However, for periods
with higher thermal consumption the boiler must be taken
into account, by which DP runtimes would become much
slower. These settings result in a total number of N =
21 · 2 · 37 · 7 > 104 discretization points to be evaluated per
feedback iteration.

B. Simulation results

In order to achieve real-time behavior of the controller,
the aforementioned model is implemented in the state-of-
the-art numerical optimal control software package aca-
dos [21]. A direct multiple shooting algorithm is used for
the discretization and parameterization of the OCP. The
resulting nonlinear programming problem is solved by an
early-terminated sequential quadratic programming (SQP)
approach using the interior-point solver HPIPM [22] for the
underlying quadratic programs (QP). Standard parameters of
acados solver are used except for Hessian calculation, where
the exact Hessian method with mirror [21] regularization
strategy is applied.

The long-term simulation run of the system with the
presented control approach is depicted in Figure 3. The
simulation has been performed with a sampling time of
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Fig. 3. Total electricity demand PCon, production Pchp,Res accumulated
by 6 hours (top) and storage state Qsto (bottom) for a one-month system
simulation using the proposed strategy.

TS = 600s and a prediction horizon of 24 hours. We show
total electricity demand and production with the thermal
energy storage state aggregated by 6 hours. An important
observation here is that the thermal energy generation is
clearly shifted to the high electricity demand periods. Of
course, this corresponds to the expected behavior, as the CHP
electrical efficiency peaks with its high production value.

We compare the proposed solution with the globally opti-
mal dynamic programming method described in the previous
section. Evaluation takes place for different scenarios using
energy data for one week from a single-family building. We
additionally show the corresponding results for the state-
of-the-art conventional rule-based control strategy (SoA).
This heat-led strategy is based on the documentation in the
CHP unit manufacturer’s manual [8]. The CHP is modulated
subject to the current production level (low, medium and
high) and the storage state.

Table I shows the resulting cost differences and calculation
times for 6 days. We provide calculation times needed for
one-day closed-loop simulation, hence, for 144 simulation
steps. The average feedback time is given in the table as
well. It can be seen that the dynamic programming method
is comparatively fast and is also real-time capable for the
particular system. However, it must be taken into account
that such a result was possible only due to the simplicity
of the considered problem and resulting solution trajectory.
For more sophisticated, more dimensional systems ”curse of
dimensionality” would lead to a strong increase in the com-
putation time, which diminishes its practical applicability.

Whereas the design of the presented algorithm ensures its
scalability properties and therefore practical relevance even
for relatively complex systems.

For one-day closed-loop simulation, an average optimality
gap of 2.5% in the objective was achieved for the presented
control strategy in contrast with 20% for the SoA approach.
Continuous simulation for the whole week brings a 2.5%
cost difference in comparison to the SoA with 18.9%.

TABLE I
COMPARISON OF RUNTIMES AND OBJECTIVE DIFFERENCE

Calculation Time [s] Objective Difference
Day per Feedback Total to DP

NMPC DP NMPC DP NMPC SoA

1 0.40 1.41 57.3 203.0 3.5% 13.0%
2 0.41 1.39 59.1 200.6 1.2% 25.4%
3 0.41 1.39 58.6 200.5 3.8% 29.6%
4 0.42 1.38 59.8 199.4 2.8% 11.5%
5 0.40 1.38 57.6 198.2 2.1% 19.3%
6 0.40 1.32 58.0 190.6 1.1% 20.2%

1-6 0.40 1.38 347.4 1192.3 2.5% 18.9%

As mentioned, the problem is solved by means of an early
terminated SQP approach. While it would have been prefer-
able to utilise an SQP real-time iterations (RTI) approach, the
key challenge for the nonlinear solver here is the adaptation
to the changing energy consumption data, which corresponds
to rapidly nonlinear disturbances. A representative example
is shown with PCon in Figure 4. In our case, under the
specified sampling times, an SQP RTI method was unable to
quickly reject these disturbances and led to inferior objective
function values. In order to tackle this problem, we increased
the number of SQP iterations for the continuous problem
at each time step. A value of 20 iterations was found to
allow the solver to converge with correspondence to the
incoming disturbance data and yielded satisfactory results.
Larger values provided only diminishing extra returns. To
cope with a poor initial trajectory guess that does not make
use of scenario data, the number of SQP iterations is set to
a higher value of 100 on the first time step only.

Obviously, the number of SQP iterations could be de-
creased based on the disturbance strength, i.e., it could
be lowered at time steps where the disturbance does not
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Fig. 4. Trajectories of the power supply system with electrical power demand from the customer PCon, power Pchp generated by the CHP, and thermal
energy state Qsto of the storage. Results for DP and the proposed approach (Res) respectively. (UB) and (LB) are upper and lower state bounds.



exceed several percentage points of the maximum power
output. A solution here might be a termination factor, which
depends on the current KKT (Karush–Kuhn–Tucker) residual
retrieved from the solver. When the desired KKT threshold
has been reached, the solver proceeds with the next time
step. This modification is subject to further work.

Figure 4 illustrates the resulting trajectories for the gen-
erated electrical power as well as the energy level in the
storage. We omit the trajectories for the boiler power output,
as its operation is uneconomical for the current period and all
the control strategies follow this behavior. Apart from that,
it can be seen that CHP unit operation trajectory tends to be
bang-bang. Since there is a higher need for electrical energy
and its production efficiency is maximum when the CHP is
operating at full power (see the efficiency curve in [7]), this
corresponds to the beforehand expected behavior. Deviations
in the trajectories of the achieved solution from the globally
optimal results, obviously, persist. Yet, the method, proposed
in this paper, still shows high agreement with the globally
optimal solution. For the presented period the total energy
costs difference is 3.5% contrary to 13% for the SoA strategy.
Furthermore, with a computational time of less than one
minute for the simulation period of one whole day, the
presented approach has proven to be real-time capable even
on lean embedded hardware.

V. CONCLUSIONS

A novel approach for building energy supply systems
supervisory control has been presented. It enables real-time
operation management of sophisticated building energy sys-
tems without the need for additional technical modifications.
Combining mixed-integer nonlinear optimal control methods
with an advanced switch-cost-aware rounding approach, we
were able to achieve notable performance results. We have
shown that the presented strategy shows high agreement with
the globally optimal solution in a closed-loop simulation. In
comparison to dynamic programming, an average optimality
gap of 2.5% in objective for the selected period was achieved
while state-of-the-art control strategy shows an average 20%
difference in cost. At the same time, we have taken into
account the requirement for a minimum admissible operating
time of the system components which is particularly common
in building energy management. As a result, our approach
makes it possible to exploit almost the entire cost and
energy-saving potential of the system while ensuring real-
time capability as an essential prerequisite for use in practice.

Future work consists of an investigation of the perfor-
mance and stability properties of the presented algorithm
as well as the practical implementation of the strategy in
a real building. Application of the developed strategy to a
more complex system of multifamily residential units is also
a subject of further work.
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