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Abstract—We propose a formulation for approximate con-
strained nonlinear output-feedback stochastic model predictive
control. Starting from the ideal but intractable stochastic optimal
control problem (OCP), which involves the optimization over
output-dependent policies, we use linearization with respect
to the uncertainty to derive a tractable approximation which
includes knowledge of the output model. This allows us to
compute the expected value for the outer functions of the OCP
exactly. Crucially, the dual control effect is preserved by this
approximation. In consequence, the resulting controller is aware
of how the choice of inputs affects the information available in
the future which in turn influences subsequent controls.

I. INTRODUCTION

Model predictive control (MPC) is a powerful form of
feedback control, using a model of the controlled system to
compute control inputs by solving optimal control problems
(OCP) in real-time [1]. Through a sufficiently fast feedback
loop it is in general able to account for disturbances and
model-plant mismatch. However, in its standard form, i.e.,
nominal MPC, it uses no explicit model of uncertainty and thus
may not yield adequate results for highly uncertain systems.
Stochastic and robust MPC (SMPC resp. RMPC) are the
two major paradigms for addressing this issue [1], [2], [3],
by explicitly accounting for the uncertain model predictions.
Nonetheless, they are usually based on static models of
uncertainty: they do not consider the fact that by interaction
with the system information is acquired which can be used to
decrease uncertainty. This is the subject of the field of dual
control [4], which investigates the dual purpose of control
inputs: (a) exploitation of the currently available knowledge
to steer the system into a desired state, (b) exploration by
choosing controls based on the respective knowledge gain, to
be exploited in the future. The latter is only relevant if the
control has a dual effect for this system, i.e., loosely defined,
the control does not only affect the state but also the state
uncertainty. Although dual control is usually presented for
the stochastic case, it can also be formulated in the robust
paradigm [5].

The dual control effect can be captured by explicitly in-
cluding in the OCP formulation that future control inputs
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will depend on the information gathered up to this point [6],
[7], [8]. This amounts to optimizing over output-dependent
policies, which stands in contrast to planning only open-loop
control trajectories, i.e., committing to specific control inputs
for future time points irrespective of the new information
available by then. In consequence, the former formulation
(output-feedback SMPC) is aware of how the choice of
trajectory affects the information gain and how this in turn
influences future control inputs while the latter (open-loop
SMPC) is not. This allows output-feedback SMPC to resolve
the explore-exploit trade-off: It will explore exactly as much as
is beneficial with respect to the objective and the constraints,
as opposed to falling back to a heuristic that encourages
uncertainty reduction in general and thus may unnecessarily
impede performance [9].

Planning over feedback laws further counteracts the quickly
increasing predicted uncertainty sets from which open-loop
SMPC suffers. This is also the motivation for state-feedback
SMPC, which – under the assumption that the system state
is accessible – reduces predicted uncertainty by planning over
state-feedback laws [10]. These can be precomputed [11] or
optimized [12], [13]. However, in situations with significant
state estimation uncertainty, this assumption is clearly violated,
rendering the resulting predictions questionable.

While the output-feedback SMPC problem carries all the
desired properties, it is in general intractable to solve and
needs to be approximated. Here, one distinguishes between
two types of approximations [14]: implicit dual control, which
uses approximations that qualitatively preserve the dual control
effect, and explicit dual control, in which the dual control
effect is lost, but heuristic measures to ensure exploration are
taken. Recent overviews are given in [8], [15]. Closely related
is also perception-aware MPC, which includes some form of
knowledge of the output model in the OCP: this can be ad-
hoc heuristic terms in a nominal OCP [16], or the propagation
of an estimator model alongside the nominal trajectory [17],
[18], [19].

In this paper we present an approximation to the output-
feedback SMPC problem for constrained nonlinear systems.
This approximation is based on linearization but, crucially,
retains the dual control effect. After linearization and for
specific choices of the outer components of the OCP, i.e.,
stage and terminal cost as well as constraint penalization, their
expected value can be computed exactly. The linearization-
based uncertainty approximation can be seen as an extension
of the open-loop or state-feedback formulations used in, e.g.,
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[12], [20], [21], [22], to the case of output feedback. In
[17], [18] estimation uncertainty is propagated in the OCP,
but without explicitly considering a state estimation based
feedback law. An extension to [18], proposed in [19], encodes
a form of implicit feedback via a scenario tree. Further, a
similar formulation to plan over state estimate based feedback
is employed in [23], but for an additively perturbed linear
system such that dual control is not a topic.

We formulate the ideal output-feedback stochastic OCP in
Section II. In Section III we derive a tractable approximation,
the properties of which are demonstrated on an illustrative
example in Section IV, followed by a concluding Section V.

II. OUTPUT-FEEDBACK STOCHASTIC OPTIMAL CONTROL

Consider the following stochastic nonlinear system,

x0 “ p0pξ0q, (1a)
xk`1 “ fkpxk, uk, wkq, k “ 0, . . . , N ´ 1, (1b)
yk`1 “ gk`1pxk`1, vk`1q, k “ 0, . . . , N ´ 1, (1c)

with initial state uncertainty ξ0, process noise w “

pw0, . . . , wN´1q and output noise v “ pv1, . . . , vN q, collec-
tively distributed as ξ “ pξ0, w, vq „ N p0, Iq. For choosing
control uk at time k, we have the information Ik available,
defined recursively as

I1 “ pu0, y1q, Ik “ pIk´1, uk´1, ykq, k “ 2, . . . , N. (2)

Our aim is to find a policy π “ pū0, π1p¨q, . . . , πN´1p¨qq

defining the controls u0 “ ū0, uk “ πkpIkq, k “ 1, . . . , N´1,
as a function of the available information. Information about
the initial state distribution is assumed to be implicitly given
via p0pξ0q. Further, we assume that no more information will
become available before we have to commit to a specific
u0, i.e., the measurement y0 is already subsumed in p0pξ0q.
Therefore, the decision for u0 is a real valued vector ū0 P Rnu .

Denote the simulation of system (1) under policy π and
random variable realization ξ by

xπ0 pξq “ p0pξ0q, u
π
0 pξq “ ū0, (3a)

xπk`1pξq “ fkpx
π
k pξq, u

π
k pξq, wkq, (3b)

for k “ 0, . . . , N ´ 1, and, for k “ 1, . . . , N ´ 1,

yπk pξq “ gkpx
π
k pξq, vkq, (3c)

Iπk pξq “ pI
π
k´1pξq, u

π
k´1pξq, y

π
k pξqq, (3d)

uπk pξq “ πkpI
π
k pξqq. (3e)

For simplicity of notation, each of the above quantities is
defined as a function of the full vector ξ. However, from the
recursion it is clear that the resulting system is causal, i.e., no
quantity depends on the future. The policy π should minimize
some deterministic measure of the stochastic cost

Jπpξq “
N´1
ÿ

k“0

lkpx
π
k pξq, u

π
k pξqq ` lN px

π
N pξqq, (4)

with l0p¨, ¨q, . . . , lN p¨q convex linear quadratic, while respect-
ing the constraints

hkpx
π
k pξq, u

π
k pξqq ď 0, hN px

π
N pξqq ď 0, (5a)

with hk : Rnx ˆ Rnu Ñ Rnhk , for k “ 0, . . . , N´1, and
hN : Rnx Ñ RnhN . We use hπpξq to denote their concate-
nation in stagewise order, with nh the dimension of the
corresponding output vector. As the disturbances may be
arbitrarily large, strict constraint satisfaction for every possible
disturbance can in general not be enforced. This leads to a
trade-off with the performance as measured by (4), since a
higher desire to avoid constraint violation usually leads to
more conservative control inputs. Here, we choose a linear
penalty on their violation,

φipηq :“ ρi maxp0, ηq, (6)

with constraint function value η P R and weight ρi. A popular
alternative would be chance-constraints, which specify that
the probability of constraint violation should be below some
prespecified value [3].

Finally, choosing the expected value as our criterion to
obtain a deterministic (and thus well-defined) objective, we
obtain the output-feedback stochastic OCP

min
πp¨q

Eξ

#

Jπpξq `
nh
ÿ

i“0

φiph
π
i pξqq

+

(7)

as the problem we would ideally like to solve. Since this
problem fully retains the dual control effect of model (1), i.e.,
how future information can be affected as well as the possible
reactions to it, it perfectly encodes the explore-exploit tradeoff
as induced by the objective. However, due to the nonlinear
transformations of the random variable ξ and the optimization
over general policies in infinite dimensional function spaces,
this problem is in general intractable.

Remark 1. Here, we formulate the problem explicitly as
optimization over policies, as this is in line with the approx-
imation which we will derive in the following. A common
alternative formulation would be to define the solution via
a dynamic programming recursion such that the policy is
implicitly represented, where the state is either augmented
by the information vector [9], or propagated as a hyperstate
representing the posterior distribution after having processed
the new information through a Bayesian update [6], [8].

Remark 2. Since the first applied control ū0 is deterministic,
it is straightforward to enforce hard constraints on ū0. For
simplicity of notation, we assume here that the corresponding
penalty weight is chosen sufficiently high such that strict con-
straint satisfaction is guaranteed. Further, control constraints
are often a property of the system and thus impossible to
violate. In this case, a prediction with non-zero probability
of control constraint violation is clearly wrong. Conceptually,
this can be handled by including the input saturation in the dy-
namics, or by restricting the space of policies to those that map
only to the set of feasible controls, cf., e.g., [24]. However,
both of these approaches will not survive the linearizations
central to this paper, so we instead strive for a (negligibly)
low probability of constraint violation.



III. TRACTABLE STOCHASTIC OCP APPROXIMATION

We will now derive an approximation to the stochastic OCP
(7) based on linearization. Crucially, the dual control effect
will be preserved by these approximations.

A. Policy and uncertainty propagation

We obtain the nominal trajectory x̄ “ px̄0, . . . , x̄N q with
nominal outputs ȳ “ pȳ1, . . . , ȳN q by simulation of the
nonlinear system without disturbance, ξ “ 0, for an open-loop
control trajectory ū “ pū0, . . . , ūN´1q as

x̄0 “ p0p0q, (8a)
x̄k`1 “ fkpx̄k, ūk, 0q, k “ 0, . . . , N ´ 1, (8b)
ȳk`1 “ gk`1px̄k`1, 0q, k “ 0, . . . , N ´ 1. (8c)

The uncertainty propagation is based on a linearization of the
system at this nominal trajectory, yielding the linear system

x0 ´ x̄0 “ P̂ r
0ξ0, (9a)

xk`1 ´ x̄k`1 “ Ākpxk´x̄kq ` B̄kpuk´ūkq ` Γ̄kwk, (9b)
yk`1 ´ ȳk`1 “ C̄k`1pxk`1´x̄k`1q ` D̄k`1vk`1, (9c)

for k “ 0, . . . , N´1, with P̂ r
0 “

Bp0
Bξ0
p0q, Āk “ Bfk

Bxk
px̄k, ūk, 0q,

B̄k “
Bfk
Buk
px̄k, ūk, 0q, Γ̄k “

Bfk
Bwk
px̄k, ūk, 0q, C̄k “ Bgk

Bxk
px̄k, 0q,

D̄k “
Bgk
Bvk
px̄k, 0q, where the dependency of this linear system

on the nominal trajectory px̄, ūq is indicated by the overset
bar.

With respect to this linearized system the information vec-
tors I1, . . . , IN can be perfectly summarized by state estimates
x̂k with covariances P̂k, obtained from a time-variant Kalman
filter. A few manipulations of the standard Kalman filter
equations [25] reveal that the estimation error evolves as

x̂0 ´ x0 “ ´ P r
0ξ0, (10a)

x̂k`1 ´ xk`1 “ pI´ K̂k`1C̄k`1qĀkpx̂k ´ xkq (10b)

`pK̂k`1C̄k`1 ´ IqΓ̄kwk ` K̂k`1D̄k`1vk`1,

with Kalman filter gains K̂k and for k “ 0, . . . , N ´ 1. The
index shift on the right-hand side is due to the estimate x̂k`1

being dependent on the observation yk`1. The Kalman gains
K̂k are computed based on the linear system matrices and thus
are essentially functions of the nominal trajectory px̄, ūq.

Restricting the space of policies to that of linear feedback
κkp¨q based on the current state estimate,

u0 “ ū0,

uk “ κkpx̂kq :“ ūk `Kkpx̂k ´ x̄kq

“ ūk `Kkpx̂k ´ xkq `Kkpxk ´ x̄kq,

(11)

for k “ 1, . . . , N ´ 1 and with feedback gain matrices Kk,
the combined dynamics of the linearized system (9) and the
estimation error (10) under this policy κ are given by the
augmented linear system

x̃κ0 pξq “

„

P̂ r
0

´P̂ r
0



ξ0, x̃κk`1pξq “ Ãκk x̃
κ
kpξq ` Γ̃kw̃k, (12)

for k “ 0, . . . , N ´ 1, where

x̃κk :“

„

xκk ´ x̄k
x̂κk ´ x

κ
k



, w̃k :“

„

wk
vk`1



, (13a)

Ãκk :“

„

Āk ` B̄kKk B̄kKk

0 pI´ K̂k`1C̄k`1qĀkq



, (13b)

Γ̃k :“

„

Γ̄k 0

pK̂k`1C̄k`1 ´ IqΓ̄k K̂k`1D̄k`1



. (13c)

The state of this system has zero mean, Eξtx̃kpξqu “ 0, k “
0, . . . , N , and covariance

Σk “ Covξtx̃kpξqu “

„

Pk P̆Jk
P̆k P̂k



, (14)

where Pk “ Covξtx
κ
k ´ x̄ku is the predicted uncertainty for

deviations of the true state xk from the nominal trajectory
x̄k, P̂k “ Covξpx̂

κ
k ´ xκkq is the predicted estimation error

covariance and P̆k “ Eξtpx̂κk ´ xκkqpx
κ
k ´ x̄kq

Ju is their
correlation. The overall covariance Σ propagates as

Σ0 “

„

P̂0 ´P̂0

´P̂0 P̂0



looooooomooooooon

“:Σ̂0pP̂0q

, Σk`1 “ ÃκkΣkÃ
κJ
k ` Γ̃kΓ̃Jk

loooooooooomoooooooooon

“:ψkpx̄k,ūk,Kkq

, (15)

for k “ 0, . . . , N ´ 1 and with P̂0 “ P̂ r
0 P̂

rJ
0 .

Summarizing, we approximate the evolution of the original
system (3) under policy π by (a) propagating a nonlinear
nominal trajectory px̄, ūq and (b) with respect to the uncertain-
ties considering a linearization around this nominal trajectory
for which we use linear feedback based on a Kalman filter
estimate. Starting from the current state estimate x̂0 associated
with covariance P̂0, this results in the dynamics

x̄0 “ x̂0, x̄k`1 “ fkpx̄k, ūk, 0q, (16a)

Σ0 “ Σ̂0pP̂0q, Σk`1 “ ψkpx̄k, ūk,Kkq, (16b)

for k “ 0, . . . , N ´ 1. The system state at time k is approxi-
mately distributed as xk „ N px̄k, Pkq, where Pk is the upper
left block of Σk. Due to the zero block in the lower left of
(13b) the estimation covariance P̂k evolves independently from
the rest of the linearized system. Via the feedback law (11)
the estimation covariance P̂k is fed back into the underlying
system such that larger estimation uncertainty leads to larger
predictive uncertainty of the true system state xk. While for
linear systems the evolution of uncertainty is independent of
the state trajectory, in our case the linear system depends
on the nominal trajectory px̄, ūq. Therefore the approximation
retains a mechanism through which (a) the choice of nominal
controls ū influences the estimation uncertainty and (b) the
estimation uncertainty impacts the predictive uncertainty of
the true state. In consequence, the dual control effect of (1) is
qualitatively preserved.

B. Expectation of cost and constraint penalization

We will now compute the expected value of the objective
in (7), which – with respect to the approximated dynamics
(16) – we can do exactly. The augmented linear system (12)



in combination with linear feedback (11) follows a normal
distribution for both state and control,

„

xk
uk



loomoon

“:zk

„ N

˜

„

x̄k
ūk



loomoon

“:z̄k

,

„

I 0
Kk Kk



Σk

„

I 0
Kk Kk

J

looooooooooooooooomooooooooooooooooon

“:Σ̃kpΣk,Kkq

¸

, (17)

for k “ 0, . . . , N ´ 1, and xN „ N px̄N , PN q. We start with
the convex quadratic stage and terminal cost functions, for
which the expectation can be computed as

Ezk„N pz̄k,Σ̃kqtlkpzkqu “ lkpz̄kq `
1
2 TrpBkΣ̃kq, (18)

with constant Hessian Bk :“ ∇2lkp¨q, for k “ 0, . . . , N ,
z̄N :“ x̄N , Σ̃N :“ PN , and where in a slight overload
of notation we use lkpzkq “ lkpxk, ukq. Due to convexity
we have Bk ľ 0, such that the cost on variance Σ̃k is
always nonnegative. In consequence, the approximation of the
expectation of the trajectory cost (4) is

J̃px̄, ū,Σ,Kq :“
N´1
ÿ

k“0

lkpx̄k, ūkq `
1
2 Tr

´

BkΣ̃kpΣk,Kkq

¯

` lN px̄N q `
1
2 Tr

`

BN Σ̃N pΣN q
˘

. (19)

We now turn our attention to the penalization (6) of the
constraints (5). An additional linearization of the constraint
around the nominal trajectory leads to

Ezk„N pz̄k,Σ̃kqtφiph
i
kpzkqqu

«Ezk„N pz̄k,Σ̃kqtφiph
i
kpz̄kq `∇hikpz̄kqpz ´ zkqqu

“Eη„N ph̄ik,β
i
kq
tφipηqu,

(20)

for i “ 1, . . . , nhk , k “ 0, . . . , N , where h̄ik :“ hikpz̄kq is
the nominal constraint value and βik :“ ∇hikpz̄kqJΣ̃k∇hikpz̄kq
the variance of the trajectory in the direction orthogonal to the
constraint boundary. For our choice of penalty function (6) the
expectation can be computed analytically as

Eη„N pµ,σ2qtmaxp0, ηqu “ Eν„N p0,1qtmaxp0, σν ` µqu

“ σ

ż 8

´
µ
σ

νpN pνqdν ` µ

ż 8

´
µ
σ

pN pνqdν

“ σpN

´µ

σ

¯

` µPN

´µ

σ

¯

“: φ̃pµ, σq (21)

for σ ą 0 and with pN the probability density function (PDF)
and PN the cumulative distribution function (CDF) of the
standard normal distribution. Note that the expectation over
the normal distribution has a smoothing effect on the originally
nonsmooth penalty: the resulting function φ̃ resembles a
smoothed maxp0, ¨q in the direction of both positive µ and
σ, cf. Fig. 1. Overall this yields, as a function of the nominal
value h̄ and the corresponding variances β of all constraints,
the approximation to the penalty term of the stochastic OCP
(7) as

Φ̃ph̄, βq :“
N
ÿ

k“0

nhk
ÿ

i“1

ρiφ̃

ˆ

h̄ik,
b

βik

˙

. (22)

Remark 3. Here we present only the case of quadratic stage
resp. terminal cost and a linear penalty on constraint violation.
In principle, this can be generalized to any functions for which

−4 −2 0 2 4

mean µ

0

2

4

max(0, µ)

φ̃(µ, 0.1)

φ̃(µ, 1.0)

φ̃(µ, 2.0)

φ̃(µ, 5.0)

Fig. 1. Illustration of the expected constraint violation φ̃pµ, σq :“
Eη„N pµ,σ2qtmaxp0, ηqu for several values of σ, cf. (21).

the expectation over a normal distribution can be computed
analytically, e.g., an indicator function on constraint violation
(yielding a penalty on the violating probability mass) or a
quadratic penalty. These functions are part of the problem
definition and thus a design choice, and as such not discussed
in this paper.

C. Resulting OCP formulation

We are now ready to state the main contribution of this
paper: a linearization based approximation to the original
output-feedback stochastic OCP (7). This implicit dual OCP
is

min
x̄, ū, β,Σ,K

J̃px̄, ū,Σ,Kq ` Φ̃phpx̄, ūq, βq

` rpKq

(23a)

s.t.

x̄0 “ x̂0, Σ0 “ Σ̂0pP̂0q, (23b)
x̄k`1 “ fkpx̄k, ūk, 0q, k “ 0, . . . , N ´ 1, (23c)
Σk`1 “ ψkpx̄k, ūk,Σk,Kkq, k “ 0, . . . , N ´ 1, (23d)

0 ě hukpūkq, k “ 0, . . . , N ´ 1, (23e)

β ě ε2
σ1, (23f)

βk ě Hkpx̄k, ūk,Σk,Kkq, k “ 0, . . . , N ´ 1, (23g)
βN ě HN px̄N ,ΣN q, (23h)

where β “ pβ0, . . . , βN q, βk P Rnhk , Σ “ pΣ0, . . . ,ΣN q,
K “ pK1, . . . ,KN´1q, K0 “ 0, 1 “ p1, . . . , 1q, and with
Hk the concatenation of the variances in constraint direction,
given by, for i “ 1, . . . , nhk , k “ 0, . . . , N ,

Hi
kpx̄k, ūk,Σk,Kkq :“

∇hikpx̄k, ūkqJΣ̃kpΣk,Kkq∇hikpx̄k, ūkq,
(24a)

Hi
N px̄N ,ΣN q :“ ∇hiN px̄N qJΣ̃N pΣN q∇hiN px̄N q. (24b)

The first term in the objective is the approximation to the
expectation of the trajectory cost, cf. (19), followed by the
penalty on expected constraint violation (22). Here, β is an
intermediate slack variable corresponding to the variance in
constraint direction. Its purpose is to allow for a decoupling of
the uncertainty dynamics (23d) from the square-root in (22).
While the variances Σ are guaranteed to be positive semi-
definite at every solution to (23), they may have arbitrarily
negative eigenvalues throughout the solver iterations, since
the dynamics (23d) are necessarily feasible only at solutions.
In consequence, (24) may output arbitrarily negative values



which would be passed on to the square-root in (22). Non-
negativity of the slack variable β (23f) on the other hand
can be easily enforced throughout the iterations [26]. Here,
the regularization parameter σ2

ε is included for numerical
robustness, and may be seen as a minimum variance to be
considered for each constraint. Since (21) resp. (22) impose
a larger penalty for larger variance, this acts as downward
pressure on β. Further, a regularization term for discouraging
aggressive feedback,

rpKq “ εK
ÿN´1

k“1
‖Kk‖2

F, (25)

was found to be beneficial for convergence, but the weight
should be chosen small as to not perturb the solution too
strongly. Finally, hukp¨q in (23e) denotes the constraints which
are purely on the controls, enforced on the nominal trajectory.
This can be seen as guiding constraints for the solver, since –
for sufficiently large constraint penalization weight ρi – these
constraints are already ensured by the penalty function Φ̃ such
that (23e) will be inactive or only weakly active [26].

In summary, we essentially used two types of simplification
to obtain a tractable approximation of (7): (i) restriction of
the decision space to that of affine feedback of the given
structure, which – after elimination of the Kalman gains – is
parametrized by ū and K. This results in a suboptimal solution
compared to the original problem but does not introduce error
per se. (ii) linearization of the dynamics with respect to the
uncertainties in order to compute the expectation (while keep-
ing the outer structure of cost and constraint penalty intact).
This neglects the curvature of the dynamics and will be less
valid for more nonlinear dynamics. Further, the linearization
is computed at the approximated mean but the full distribution
is propagated with respect to this linearization. The higher the
variance, i.e., the higher the expected distance of a sample
from the mean, the less valid will this linearization be.

Remark 4. Note that the variance regularization ε2
σ ą 0 in

(23f), the feedback regularization (25) as well as the guiding
constraints (23e) are added for the purpose of numerical
robustness of the resulting OCP. Conceptually, they are not
necessary components of our proposed approximation of (7).

Remark 5. In the derivation of the approximation we simply
posited that the Kalman filter is the adequate filter to be used
with respect to the linearized system. While this is clear from
an information perspective, it is not immediately obvious that
the Kalman filter is the optimal linear filter of this structure
(10), i.e., the structure of a Luenberger observer, to be used
in the context of (23), as opposed to leaving the filter gain
as a degree of freedom to be optimized. However, note that
the Kalman filter achieves minimal covariance in a matrix
sense [25]: If the Kalman gain K̂ results in estimation error
covariance P̂ , it holds that P̂ ĺ P̂ 1 for all P̂ 1 that can be
achieved by any other gain K̂ 1. Given that all Hessians Bk
in (19) are positive semi-definite, there is no advantage in
having larger estimation uncertainty in (23). In consequence,
the Kalman gain is optimal in this context.

Remark 6. Here we do not exploit the specific structure
of (23) arising from the separation into nominal and tube

dynamics. Howevever, introducing the augmented state x̆k “
px̄k, vec Σkq P Rnx` 1

2nxpnx`1q, k “ 0, . . . , N , where the vec
operation exploits the symmetry of Σ, and the augmented
controls ŭ0 “ ū0, ŭk “ pūk, vecKk, βkq P Rnu`nxnu`nhk ,
k “ 1, . . . , N ´ 1, ŭN “ βN , we see that (23) has the
structure of a standard OCP in simultaneous formulation.
The complexity depends on the choice of algorithm, and
standard considerations apply, cf., e.g., [1]. The augmented
state dimension depends quadratically on the original state,
which has a strong effect on the computation times already
for moderate state dimensions. For OCP formulations similar
to (23) tailored algorithms without this quadratic dependency
exist [12], [20], [21], but for the specific structure of (23) this
is reserved for future work.

IV. ILLUSTRATIVE EXAMPLE

We now illustrate the properties of the proposed formulation
on a simple example. All optimization problems are modeled
via the Python interface of CasADi [27], which allows for
efficient derivative computation via algorithmic differentiation,
and solved with IPOPT [28]. The code can be found at
https://github.com/fmesserer/ofsmpc.

We consider a nonholonomic robot with position prx, ryq

that can move only in direction of its current orientation θ.
The controls are the speed v in this direction as well as its
angular velocity ω,

x “

»

–

rx

ry

θ

fi

fl , 9x “

»

–

v cos θ
v sin θ
ω

fi

fl` w, u “

„

v
ω



. (26a)

The noise w is piecewise constant on the discretization in-
tervals, wptq “ wk for t P rtk, tk`1s and wk „ N p0,Σwq.
The full state can be measured, but crucially the measurement
noise increases approximately linearly with the distance to the
rx-axis,

yk “ xk ` σypxqvk, (26b)

with σypxq :“ 1` 10

ˆ

b

ry
k ` ε

2 ´ ε

˙

(26c)

and vk „ N p0,Σvq. The aim is to drive the state as much to
the left as possible,

lkpxk, ukq “ rx
k ` εu‖u‖2

2, lN pxN q “ rx
N , (27)

while not crossing the ry-axis and with banded controls,

0 ď rx
k`1, ´umax ď uk ď umax, k “ 0, . . . , N ´ 1, (28)

with constraint violation weighted by ρ “ 103. The control
regularization term with εu “ 10´6 is added to always ensure
a well-defined problem. The best strategy will be a trade-off
between moving quickly towards the left to lower the direct
cost and towards the rx-axis to reduce estimation uncertainty.

We compare three MPC formulations, each with a receding
horizon of T “ 3 (in continous time), discretized into N “ 10
intervals with piecewise constant controls: (a) nominal MPC,
which does not take into account uncertainty at all, (b)
open-loop SMPC, which considers predictive uncertainty, but
only plans an open-loop control trajectory, (c) the proposed

https://github.com/fmesserer/ofsmpc
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Fig. 2. Left: Sample of a closed loop trajectory for each controller. The orange
markers indicate the true state of the system, the blue ones the EKF estimates
with the shaded regions corresponding to their 99% confidence regions. Right:
A closer view at the state constraint for twenty simulations per controller.
Shown is the true state.

formulation for output-feedback SMPC. The state estimates
(mean and covariance) are obtained from an Extended Kalman
Filter (EKF).

Fig. 2 shows on its left an example trajectory of 20 timesteps
for each MPC (with identical random variable realizations)
and on its right takes a closer look at the state constraint
over 20 sampled trajectories. The first two controllers are not
aware of the output model and thus only head left. Nominal
MPC keeps no safety distance from the constraint, leading
to frequent constraint violation. Open-loop SMPC has no
concept of actively reducing uncertainty and thus keeps a
large back-off. Only output-feedback SMPC knows the output
model: it navigates to the rx-axis such that it is able to
significantly lower the estimation uncertainty and thus the
necessary backoff from the ry-axis.

V. CONCLUSIONS

We presented an approximation to the ideal output-feedback
stochastic OCP that preserves the dual control effect. As the
resulting formulation is aware of the output model, it can
navigate to regions of the state space with low estimation
uncertainty as far as is advantageous with respect to the control
goal leading to behavior qualitatively different from controllers
not aware of the output model. This is especially useful in
scenarios with possibly large estimation uncertainty, in which
state-feedback stochastic MPC would struggle due to a wrong
underlying assumption.
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