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Abstract—For a broad class of nonlinear systems, we for-
mulate the problem of guaranteeing safety with optimality
under constraints. Specifically, we define controlled safety for
differential inclusions with constraints on the states and the
inputs. Through the use of nonsmooth analysis tools, we show
that a continuous optimal control law can be selected from a set-
valued constraint capturing the system constraints and conditions
guaranteeing safety using control barrier functions. Our results
guarantee optimality and safety via a continuous state-feedback
law designed using nonsmooth control barrier functions. An
example pertaining to obstacle avoidance with a target illustrates
our results and the associated benefits of using nonsmooth control
barrier functions.

I. INTRODUCTION

A powerful approach to guarantee safety for a dynamical
system without computing the solutions consists of using
barrier functions. Stemming from optimization theory and
seminal work by Nagumo in [1], a barrier function ensures
that, when properly initialized, the solutions of the dynamical
system do not reach an unsafe set. This approach has been
exploited for the study of continuous-time, discrete-time, and
hybrid systems; see, e.g., [2]; [3]; and [4], [5], respectively.
The extension of the barrier function concept to the case when
the system has an input, known as control barrier function
(CBF), which is instrumented to synthesize control laws has
been pursued in [6], [7] for continuous-time systems, [3] for
discrete-time systems, and in [8], [9] for differential inclusions.
To facilitate finding suitable barrier functions needed in control
applications, the work in [10], [11] proposed multiple and
nonsmooth barrier functions, but does not consider optimality.

Recent developments in combining optimization techniques
and safety constraints have led to optimization problems that,
when solved numerically, result in a control law that assures
both safety and optimality. In [7], the authors proposed a
quadratic program to find a minimum norm control law that
ensures safety and stability for nonlinear control affine differ-
ential equations. Though powerful, continuity of the resulting
feedback law is not well characterized. In our recent work,
we consider feasibility and continuity of the feedback control
law defined by the multiple continuously differentiable barrier
functions [12]. Here, we consider differential inclusions with
constraints, which are more general than differential equations.
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Differential inclusions are effective at modeling dynamical
systems with uncertainty. Nonsmooth barrier functions emerge
naturally in many control problems, such as obstacle avoid-
ance. The work in [8] and [11] consider nonsmooth CBFs
for differential inclusions, but do not guarantee optimality
or continuity of the control law. Motivated by the need for
feedback controllers that assure safety and optimality with
good regularity properties, we propose methods to design
optimal state-feedback laws using nonsmooth barrier functions
that, notably, are continuous. Specifically, for constrained
differential inclusions, we propose sufficient conditions for
selecting a continuous safe and optimal control law by min-
imizing a cost function and using a nonsmooth CBF. More
precisely, we consider differential inclusions with state and
input constraints given as

ẋ ∈ F (x, u) (x, u) ∈ C := Cx × Cu (1)

where F : Rn × Rm ⇒ Rn, Cx ⊂ Rn, Cu ⊂ Rm.
Let Xu ⊂ Rn be unsafe set and Xo ⊂ Cx indicate the
desirable initial set. Using nonsmooth CBFs w.r.t. (Xo, Xu)
for constrained differential inclusions as in (1), we provide
sufficient conditions for the existence of a continuous safe
control law that minimizes a cost function over the set-valued
map providing safe inputs for each state. More precisely, the
problem we study consists of solving

κ∗(x) = arg min L(x, u)

s.t. u ∈ D(x)
(2)

for each x ∈ Cx so as to synthesize the optimal state-feedback
law κ∗ ensuring safety, where L : Rn × Rm → R denotes
the cost function and the set-valued map D : Rn ⇒ Rm
indicates feasible safe control inputs at the current state. Our
work reveals key properties for the cost function and for
the constraints such that the resulting optimal control law is
continuous.
Contributions. This paper makes the following contributions:

1) In Theorem 1, we specify sufficient conditions for the
existence of the continuous safe control law using a
nonsmooth CBF for (1).

2) In Lemma 2 and Lemma 3, we specify conditions such
that the resulting map κ∗ in (16) is single valued and
continuous.

3) In Theorem 2, we formulate sufficient conditions to
obtain a continuous and safe state-feedback law that
minimizes the given cost function and meets the safety
constraints.

The remainder of the paper is organized as follows. Prelimi-
nary notions are in Section II. Solutions to differential inclu-
sions are recalled in Section II-B. The definitions for safety
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and CBF are given in Section III. Sufficient conditions for
safety using CBF are formulated in Section IV. In the sections
V and VI, we present sufficient conditions for continuous
optimal and continuous optimal safe control law, respectively.
Notation. For x, y ∈ Rn, x> denotes the transpose of x, |x|
the Euclidean norm of x, and 〈x, y〉 denotes the inner product
between x and y; namely, 〈x, y〉 := x>y. For a set K ⊂ Rn,
we use int(K) to denote its interior, ∂K its boundary, cl(K)
its closure, U(K) to denote an open neighborhood around
K, and co(K) to indicate the convex hull of the set K. For
O ⊂ Rn, K\O denotes the subset of elements of K that are
not in O. For a function f : Rn → Rm, dom f denotes the
domain of definition of f , Graph(f) indicates graph of f , and
if f is continuously differentiable, ∇f denotes the gradient of
f . If f is locally Lipschitz, ∂Cf denotes Clarke generalized
gradient of f . Let B denote the closed unit ball in Rn centered
at the origin. By F : Rm ⇒ Rn, we denote a set-valued map
associating each element x ∈ Rm into a subset F (x) ⊂ Rn.

II. PRELIMINARIES

A. Basic Definitions

The semicontinuity definitions are from [13]–[16].

Definition 1. (Semicontinuous set-valued maps) Consider a
set-valued map F : C ⇒ Rn, where C ⊂ Rm.

• The map F is said to be outer semicontinuous at x ∈ C, if
for every sequence {xi}∞i=0 ⊂ C and for every sequence
{yi}∞i=0 ⊂ Rn with limi→∞ xi = x, limi→∞ yi = y ∈
Rn, and yi ∈ F (xi) for all i ∈ N, we have y ∈ F (x).

• The map F is said to be lower semicontinuous (or
equivalently, inner semicontinuous) at x ∈ C when for
every open set V ⊂ Im(F ) such that F (x)∩V 6= ∅, there
exists U(x) such that for each z ∈ U(x), F (z)∩ V 6= ∅.

• The map F is said to be upper semicontinuous at x ∈ C
if, for each ε > 0, there exists U(x) such that for each
y ∈ U(x) ∩ C, F (y) ⊂ F (x) + εB.

• The map F is said to be continuous at x ∈ C if it is both
outer and lower semicontinuous at x.

Furthermore, the map F is said to be upper, lower, outer
semicontinuous, or continuous, if, respectively, it is upper,
lower, outer semicontinuous, or continuous for all x ∈ C.

Remark 1. Based on [14, Lemma 5.15], every upper semicon-
tinuous set-valued map with closed values is outer semicon-
tinuous. Conversely, every outer semicontinuous and locally
bounded set-valued map is upper semicontinuous with com-
pact images.

Definition 2. (Semicontinuous single-valued maps) Consider
a scalar function f : C → R, where C ⊂ Rm.

• The scalar function f is said to be lower semicontinuous
at x ∈ C if, for every sequence {xi}∞i=0 ⊂ C such that
limi→∞ xi = x, we have lim infi→∞ f(xi) ≥ f(x).

• The scalar function f is said to be upper semicontinuous
at x ∈ C, if for every sequence {xi}∞i=0 ⊂ C such that
limi→∞ xi = x, we have lim supi→∞ f(xi) ≤ f(x).

• The scalar function f is said to be continuous at x ∈ C
if it is both upper and lower semicontinuous at x.

Furthermore, f is said to be upper, lower semicontinuous, or
continuous, if respectively, it is upper, lower semicontinuous,
or continuous for all x ∈ C.

Definition 3. (Clarke generalized gradient [17, Theorem
2.5.1]) Let B : Rn → R be a locally Lipschitz function. Let
Ω ⊂ Rn be any subset of zero measure, and let ΩB ⊂ Rn be
the set of points at which B fails to be differentiable. Then,
the Clarke generalized gradient of B at x is given by

∂CB(x) := co
{

lim
i→∞

∇B(xi) : xi → x, xi /∈ ΩB , xi /∈ Ω
}
.

Definition 4. (Sublevel Bounded [13, Definition 1.8]) A func-
tion f : Rn → R∪±∞ is sublevel bounded if for every finite
α ∈ R the set {x ∈ Rn : f(x) ≤ α} is bounded.

Definition 5. (Level Coercive [13, Definition 3.25]) A function
f : Rn → R∪±∞ is level coercive if it is bounded below on
bounded sets and satisfies lim|x|→∞ inf f(x)|x| > 0.

Definition 6. (Convex set-valued map [16, Section 3.4]) The
set-valued map F : X ⇒ Z, where X is convex, is convex if
for each θ ∈ [0, 1] and each x, y ∈ X we have F (θx + (1−
θ)y) ⊂ θF (x) + (1− θ)F (y)

B. Differential Inclusions

Consider differential inclusions with state constraints

Σ : ẋ ∈ F̃ (x) x ∈ Cx (3)

where F̃ : Rn ⇒ Rn and Cx ⊂ Rn. Next, solutions to the
constrained differential inclusion Σ in (3) are defined.

Definition 7. (Concept of Solution to Σ) The function x :
domx → Rn, where domx ⊂ [0,∞), is a solution to Σ in
(3) if

(i) x(0) ∈ cl(Cx)
(ii) t 7→ x(t) is locally absolutely continuous,

(iii) x(t) ∈ Cx for all t ∈ int(domx),
(iv) ẋ(t) ∈ F̃ (x(t)) for almost all t ∈ domx.

A solution t 7→ x(t) to Σ in (3) is said to be complete if
domx is unbounded. Furthermore, it is said to be maximal if
a solution y to Σ does not exist such that x(t) = y(t) for all
t ∈ domx with domx a proper subset of dom y.

Consider the constrained differential inclusion in (1). Let
U : Cx ⇒ Cu be the set-valued map that provides admissible
values in Cu to each x ∈ Cx, namely, U(x) indicates the
feasible control inputs associated with x. Let ΣU indicate the
differential inclusion in (1) explicitly constraining u to take
values from the set-valued feedback map U : Cx ⇒ Cu,

ΣU : ẋ ∈ F (x, u) u ∈ U(x), x ∈ Cx. (4)

Solutions to ΣU are defined as follows.

Definition 8. (Concept of Solution to ΣU ) Given a pair of
functions x : domx → Rn and u : domu → Rm, where
dom(x, u) := domx = domu ⊂ [0,∞), (x, u) is a solution
to ΣU in (4) if
• x(0) ∈ cl(Cx),
• t 7→ x(t) is locally absolutely continuous,



• t 7→ u(t) is Lebesgue measurable and locally essentially
bounded,

• (x(t), u(t)) ∈ C for all t ∈ int(domx),
• u(t) ∈ U(x(t)) for all t ∈ domu, and
• ẋ(t) ∈ F (x(t), u(t)) for almost all t ∈ domx.

Given a selection κ(x) ∈ U(x) for each x ∈ Cx, the (closed-
loop) differential inclusion is given by

Σκ : ẋ ∈ F (x, κ(x)) x ∈ Cx. (5)

III. CONTROLLED SAFETY NOTIONS AND CBFS

A. Safety Notions

Given Σ in (3) and a set K ⊂ Cx following [18], we
employ the following forward pre-invariance and controlled
pre-invariance notions.

Definition 9. (Forward pre-Invariance) The set K is said to
be forward pre-invariant for the differential inclusion Σ in (3)
if for each xo ∈ K, each maximal solution x to Σ starting
from xo satisfies x(t) ∈ K for all t ∈ domx.

Definition 10. (Controlled pre-Invariance) A set K is control
pre-invariant for ΣU in (4) if there exists a selection κ(x) ∈
U(x) for each x ∈ Cx such that K is forward pre-invariant
for the resulting differential inclusion Σκ in (5).

Suppose that Xo∩Xu = ∅. Safety and controlled safety are
defined as follows.

Definition 11. (Safety) Given Σ in (3), and Xo ⊂ Cx and
Xu ⊂ Rn such that Xo ∩Xu = ∅, Σ is safe with respect to
(Xo, Xu) if for each solution x to Σ starting from xo ∈ Xo,
we have x(t) ∈ Rn\Xu for all t ∈ domx.

Definition 12. (Controlled Safety) Given ΣU in (4), and
Xo ⊂ domU and Xu ⊂ Rn such that Xo ∩ Xu = ∅, ΣU
is controlled safe with respect to (Xo, Xu), if there exists
a selection κ(x) ∈ U(x) for each x ∈ Cx such that the
resulting differential inclusion Σκ in (5) is safe with respect
to (Xo, Xu).

Remark 2. If we can find a forward pre-invariant (controlled
pre-invariant) set K ⊂ Rn for Σ (respectively, ΣU ), such that
Xo ⊂ K and K∩Xu = ∅, then safety (respectively, controlled
safety) is verified with respect to (Xo, Xu).

Remark 3. The controlled invarince term is mentioned in [19]
and [20].

B. CBFs

Following [6], we define control barrier candidates and
CBFs.

Definition 13. (Barrier Function Candidate) A function B :
Rn → R is said to be a barrier function candidate with respect
to (Xo, Xu) if

B(x) > 0 ∀x ∈ Xu, B(x) ≤ 0 ∀x ∈ Xo. (6)

The zero sublevel set of B is defined as Ke := {x ∈ Rn :
B(x) ≤ 0}. Consider ΣU in (4). Suppose B is a barrier

function candidate with respect to (Xo, Xu). Let the set K
be defined as

K := Ke ∩ Cx. (7)

If K is controlled pre-invariant for ΣU , then according to
Remark 2, ΣU is controlled safe.

Definition 14. (Control Barrier Function) A locally Lipschitz
barrier function candidate B with respect to (Xo, Xu) is a
CBF for ΣU in (4) if there exists a neighborhood of the
boundary of the set K, U(∂K), where K is defined in (7),
such that the following condition holds:

inf
u∈U(x)

sup
η∈F (x,u),ζ∈∂CB(x)

〈ζ, η〉 ≤ 0

∀x ∈ (U(∂K)\ int(K)) ∩ Cx.
(8)

Remark 4. If the barrier function candidate is continuously
differentiable, condition (8) is written as

inf
u∈U(x)

sup
η∈F (x,u)

〈∇B(x), η〉 ≤ 0

∀x ∈ (U(∂K)\K) ∩ Cx.
(9)

Let the function B be a CBF for ΣU in (4) with respect
to (Xo, Xu), defining the set K in (7). Suppose B is locally
Lipschitz. We define the function g : Cx × Cu → R as

g(x, u) := sup{〈ζ, η〉 : ζ ∈ ∂CB(x), η ∈ F (x, u)}. (10)

For some continuous function γ : Cx → R, we define the
set-valued map Dγ : Cx ⇒ Cu as

Dγ(x) := {u ∈ U(x) : g(x, u) + γ(x) < 0}. (11)

The set-valued map D for each x gives the set of all feasible
control inputs, that makes the function g + γ negative; there-
fore, it provides the possible control inputs for which the CBF
decreases along the solutions.

Assumption 1. The set C = Cx × Cu is closed.

Assumption 2. The map F : C ⇒ Rn is upper semicontin-
uous and F (x, u) is nonempty, compact, and convex for all
(x, u) ∈ C.

Assumptions 1 and 2 are known as tight requirements in
the literature for the existence of solutions and the structural
properties for the set of solutions of differential inclusion; see
[19], [21], [22]. For Assumption 4, (see Definition 6).

Assumption 3. The feedback map U : Cx ⇒ Cu is lower
semicontinuous with nonempty, closed, and convex values.

Assumption 4. The map F is convex in u.

Based on Michael’s Theorem [16, Theorem 2.18], Assump-
tion 3 guarantees the essential requirement to find a continuous
selection from U . In the following lemma, we indicate the
regularity of the maps g and Dγ under the said assumptions.

Lemma 1. Consider ΣU in (4) such that Assumptions 1-3
hold. Let B : Rn → R be locally Lipschitz and γ : Cx → R
be a continuous function. Suppose the set-valued map Dγ :
Cx ⇒ Cu is defined in (11) and g : Cx × Cu → R is defined
in (10). Then, the following hold:



1.a The function g is upper semicontinuous,
1.b The map Dγ is lower semicontinuous,
1.c When Assumption 4 holds, for each x ∈ Cx the function

u 7→ g(x, u) is convex and lower semicontinuous.

Proof. To prove 1.a, using Assumption 2, we obtain that F
has nonempty compact values, and using [17, Proposition
2.6.2], we conclude that ∂CB is nonempty and has convex
compact values. Therefore, g is well-defined. Since B is
locally Lipschitz, from [23, Lemma 4.6] we conclude that g
is upper semicontinuous.

To prove 1.b, from 1.a, we have that g is upper semicon-
tinuous and since γ is continuous, we conclude that g + γ is
upper semicontinuous. Since, by Assumption 3, U is a lower
semicontinuous, [16, Corollary 2.13] implies that Dγ is lower
semicontinuous.

To prove 1.c, first we show that g is convex in u. Using
Assumption 4, for each θ ∈ [0, 1], x ∈ Cx, and u1, u2 ∈ Cu,
we have

g(x, θu1 + (1− θ)u2)

= sup
ζ∈∂CB(x), η∈F (x,θu1+(1−θ)u2)

〈ζ, η〉

≤ sup
ζ∈∂CB(x), η∈θF (x,u1)+(1−θ)F (x,u2)

〈ζ, η〉

= sup
ζ∈∂CB(x), η1∈F (x,u1),η2∈F (x,u2)

〈ζ, θη1 + (1− θ)η2〉

≤ θ sup
ζ∈∂CB(x), η1∈F (x,u1)

〈ζ, η1〉

+ (1− θ) sup
ζ∈∂CB(x), η2∈F (x,u2)

〈ζ, η2〉

= θg(x, u1) + (1− θ)g(x, u2)
(12)

To prove that g is lower semicontinuous, let h : Rn × Rm ×
Rn → R be defined as h(x, u, ζ) := supη∈F (x,u)〈η, ζ〉. For
fixed ζ, the map η 7→ 〈η, ζ〉 is continuous and convex. Further-
more, since F has bounded values and ∂CB is bounded, we
conclude that h is bounded. Then, [24, Theorem 9.4] implies
that u 7→ h(x, u, ζ) is lower semicontinuous. Therefore, since
g is equal to

g(x, u) = sup
ζ∈∂CB(x)

h(x, u, ζ) (13)

u 7→ g(x, u) is lower semicontinuous for each x ∈ Cx.

Remark 5. In general, when B is not continuously differen-
tiable, Dγ is not necessarily outer semicontinuous, therefore,
Dγ is not continuous. Since the Clarke generalized gradient
of the locally Lipschitz function B, ∂CB, is upper semicontin-
uous, with correct regularity of F , the function g can only be
upper semicontinuous. In general, Dγ cannot be continuous
without continuity of g.

IV. SUFFICIENT CONDITIONS FOR SAFETY

Under (8), using the CBF in Definition 14, we define a set-
valued map that indicates feasible and safe feedback control
inputs for each x. Then, we provide sufficient conditions to
guarantee the existence of a continuous selection from this
set-valued map to ensure safety for the system.

Theorem 1. Consider ΣU in (4) such that Assumptions 1-4
hold. Let B : Rn → R be a locally Lipschitz CBF with respect
to (Xo, Xu) ⊂ Rn × Rn defining the set K in (7). Suppose
there exists a neighborhood of ∂K, denoted by U(∂K), such
that the set-valued map Dγ : Cx ⇒ Cu defined in (11) for γ
identically zero is nonempty on

(
U(∂K)\int(K)

)
∩Cx. Then,

there exists a continuous control law κ : Cx → Cu that makes
ΣU controlled safe with respect to (Xo, Xu).

Proof. Let g : Cx × Cu → R be defined in (10), and from
(11), let the map D0 : Cx ⇒ Cu for x 7→ γ(x) = 0 be defined
as

D0(x) := {u ∈ U(x) : g(x, u) < 0}. (14)

Since B is a CBF for ΣU , suppose U1(∂K) is a neighborhood
such that (8) holds. Let U2(∂K) be a neighborhood such
that U2(∂K) ⊂ U1(∂K) and U2(∂K) ⊂ U(∂K). From 1.a
and 1.c in Lemma 1, we have that g is continuous in u;
therefore, for each x, its sublevel sets are closed. Then, since
also for each x ∈ Cx, U(x) has closed values, we obtain
that cl(D0(x)) = {u ∈ U(x) : g(x, u) ≤ 0} =: D̄0. Let
S = cl(

(
U2(∂K)\K

)
∩ Cx). To prove that there exists a

continuous selection from D̄0 on S, based on [16, Theorem
2.18], we show that D̄0 is lower semicontinuous and nonempty
on S, with closed convex values. Since Assumptions 1-3 hold,
1.b in Lemma 1 implies that D0 is lower semicontinuous.
Using [25, Proposition 2.3], we conclude that D̄0 is lower
semicontinuous. Furthermore, D̄0 is nonempty on S and has
closed values. Finally, using Assumption 3, we obtain that
x 7→ U(x) has convex values and using the assumption that
u 7→ g(x, u) is convex, we conclude that D̄0 has convex
values. Therefore, [16, Theorem 2.18] implies that there exists
a continuous selection κ1 : S → Cu such that κ1(x) ∈ D̄0(x)
for each x ∈ S. Furthermore, since for each x ∈ S, we have
D̄0(x) ⊂ U(x), then κ1 is also a selection from U . Then,
using Assumption 3 and Lemma A.1 in the Appendix, κ1 can
be extended continuously to the entire Cx. Let κ : Cx → Cu
be the extension of κ1. Finally, to prove that Σκ as defined in
(5) is safe with respect to (Xo, Xu), from (8) we have

sup
η∈F (x,κ(x)),ζ∈∂CB(x)

〈ζ, η〉 ≤ 0 ∀x ∈ U2(∂K)\K.

Therefore, 〈ζ, η〉 ≤ 0 for each x ∈ U2(∂K)\K, ζ ∈ ∂CB(x),
and for each η ∈ F (x, κ(x)). Hence, using Assumption 2 and
the fact that κ is continuous, we conclude that x 7→ F (x, κ(x))
is upper semicontinuous with nonempty, compact, and convex
values. Using Lemma A.2 in the Appendix, we conclude
that upper semicontinuous maps with compact images are
outer semicontinuous and locally bounded set-valued maps.
Therefore, based on [5, Theorem 4], K is forward pre-invariant
for Σκ. Then, Σκ is safe with respect to (Xo, Xu). Therefore,
ΣU is controlled safe with respect to (Xo, Xu).

Remark 6. For a continuously differentiable function B and
single-valued function f : Cx × Cu → Rn, the condition

inf
u∈U
〈∇B(x), f(x, u)〉 ≤ −α(B(x)) (15)

has been used in the literature; see, e.g., [8] and [26], where
α : R→ R is an extended class K∞ function; namely, α(0) =
0 and α is strictly increasing. Note that condition (8) or (9)



is more general than (15), in the sense that the inequality
in (8) or (9) does not need to hold on the entire set Cx;
however, in (15), the safety constraint is imposed globally,
though it may get relaxed in the interior of the safe set. Another
advantage of (8) is that the barrier function needs only to be
locally Lipschitz in a neighborhood of the boundary of K.
Furthermore, using the presented framework, a combination
of multiple intersecting and non-intersecting barriers can be
addressed independently.

V. GUARANTEEING CONTINUITY OF
THE OPTIMAL SOLUTION

Given a set-valued map D : Rn ⇒ Rm indicating all safe
and feasible control actions for each x, and the desired cost
function L, an optimal control law is given by solving the
following optimization problem:

κ∗(x) = arg min L(x, u)

s.t. u ∈ D(x).
(16)

In the following, we give two sets of conditions concerning
the cost function L and the set-valued map D, such that the
optimal control law κ∗ is continuous.

Berge’s Maximum Theorem [27, Maximum Theorem] pro-
vides conditions such that the optimal solution map κ∗ in
(16) is upper semicontinuous and has compact values. In the
following lemma, we specify conditions such that the optimal
solution to (16) is single valued and continuous.

Lemma 2. Suppose the function L : Rn × Rm → R is
continuous and strictly convex in its second argument. Let
the set-valued map D : Cx ⇒ Cu be continuous and have
nonempty and compact convex values. Then, the function
κ∗ : Cx → Cu, defined in (16), for each x ∈ Cx is single
valued and continuous.

Proof. Since L is continuous and the set-valued map D is
continuous, and has nonempty compact values, [27, Maximum
Theorem] implies that the set-valued map κ∗ in (16) is
nonempty and upper semicontinuous, with compact values.
Since L is strictly convex in u, [13, Theorem 2.6] implies that
for each x, κ∗(x) in (16) has at most one value. Therefore,
κ∗ is nonempty and single valued. Using Lemma A.2 in
the Appendix, we conclude that upper semicontinuous maps
with compact images are outer semicontinuous with locally
bounded values. From Lemma A.3 in the Appendix, we
conclude that κ∗ is continuous.

The following lemma is more general than Lemma 2 in the
sense that in Lemma 3, L can be sublevel bounded in u when
D does not have bounded values.

Lemma 3. Suppose the function L : Rn × Rm → R is
proper, lower semicontinuous, convex, and strictly convex in
its second argument. Let the set-valued map D : Cx ⇒ Cu be
continuous, nonempty and have convex values. Let the function
κ∗ : Cx → Cu be defined in (16) for each x ∈ Cx. If one of
the following conditions holds,

1) L is sublevel bounded in u (see Definition 4);
2) D has bounded values, namely, for each x ∈ Cx, D(x)

is bounded.

then κ∗ is single valued on Cx and continuous on int(Cx).

Proof. To prove the lemma, we use Corollary A.1 in the
Appendix. Let the function δ̃ : Rn × Rm → R̄ be defined
as

δ̃(x, u) := δD(x)(u) =

{
0 if x ∈ Cx, u ∈ D(x)
∞ otherwise

for each (x, u) ∈ Rn × Rm. Note that δS is an indicator
function of the set S. Let f : Rn × Rm → R̄ be given by
f(x, u) := L(x, u) + δ̃(x, u). Then, since D is nonempty, f
is proper. The sublevel sets of f for α ∈ R are defined as

{(x, u) ∈ Rn × Rm : f(x, u) ≤ α} (17)
= Graph(D) ∩ {(x, u) ∈ Rn × Rm : L(x, u) ≤ α}.

Since L is lower semicontinuous, from [13, Theorem 1.6] its
sublevel sets are closed. Since Graph(D) is closed, then the
sublevel sets of f in (17) are closed. Thus, from [13, Theorem
1.6] f is lower semicontinuous. Since D has convex values
and L is convex, then f is convex. Furthermore, since L is
strictly convex in u, f is strictly convex in u. If either D has
bounded values or the sublevel sets of L in u are bounded,
then the level sets of f in u are bounded. Namely, let B ⊂
Cx be a bounded set and let L = {(x, u) : x ∈ B, u ∈
D(x)}, for α ∈ R. The sublevel sets of f in u are defined
by {(x, u) ∈ B × Rm : f(x, u) ≤ α} = L ∩ {(x, u) ∈
B×Rm : L(x, u) ≤ α}. Using Corollary A.2 in the Appendix
and the fact that f is sublevel bounded in u, we conclude that
f is level coercive in u. Then, using [13, Theorem 3.26], we
conclude that f∞(0, u) > 0 (see the horizon function in [13,
Definition 3.17]) for all u 6= 0. Then, using Corollary A.1 in
the Appendix, we conclude that κ∗ is single valued on domκ∗

and it is continuous on the interior of its domain. Since f
is proper, lower semicontinuous, and sublevel bounded in u,
using [13, Theorem 1.9] we conclude that domκ∗ = Cx.

VI. GUARANTEEING CONTINUITY OF THE OPTIMAL SAFE
CONTROL LAW

Building from the results in Sections IV and V, we formu-
late conditions for synthesizing an optimal, safe, and continu-
ous control law. The constraint map D is induced using CBF
(safety constraint) as well as control and state constraints.

A. Continuous, Safe, and Optimal Control Law

As indicated in Theorem 1, to ensure safety, the selection of
the control law in the outer neighborhood of the zero sublevel
set of the CBF should be restricted appropriately. Let the set-
valued map D : Cx ⇒ Cu be defined as

D(x) :=

{
D̄0(x) if x ∈ S1

U(x) otherwise, (18)

where D̄0 ⊂ U is given in the proof of Theorem 1 and
indicates all safe feedback control laws on the set S1, and
S1 := cl(U(K)\K ∩ Cx) indicates the corresponding outer
neighborhood of the set K. Then, the set-valued map D
contains all feasible and safe feedback control laws. To select a
continuous control law from D by minimizing a cost function,
based on Lemma 3, D should be continuous.



As explained in Remark 5, the map D̄0 generally is not
continuous. Here, we construct a continuous set-valued map
Ũ from D. To do this, we should design Ũ such that it is a
subset of D̄0 when x ∈ S1 and also it blends smoothly with
the set-valued map U on the boundary of S.

Assumption 5. The set-valued map U is outer semicontinuous.

In the following result, we formulate conditions guarantee-
ing the selection of a continuous control law by minimizing a
cost function and simultaneously ensuring safety.

Theorem 2. Consider ΣU in (4) such that Assumptions 1-5
hold. Let B : Rn → R be a locally Lipschitz CBF with respect
to (Xo, Xu) ⊂ Rn × Rn defining the set K in (7). Suppose

1) The function g : Cx × Cu → R defined in (10) is convex
in u,

2) There exists a neighborhood of ∂K such that the set-
valued map D0 : Cx ⇒ Cu defined in (14) for γ
identically zero is nonempty.

Let S1 = cl(U(K)\K ∩ Cx) be a neighborhood of ∂K
such that D0 is nonempty and (8) holds. Suppose Ũ :
Cx ⇒ Cu satisfies the following properties:

3) Ũ is continuous with nonempty, closed, and convex val-
ues,

4) For each x ∈ S1, Ũ(x) ⊂ D̄0(x),
5) For each x ∈ Cx, Ũ(x) ⊂ U(x).

Let L : Rn × Rm → R be proper, lower semicontinuous,
convex in both arguments, and strictly convex in its second
argument. Let κ∗ : Cx → Cu be defined by

κ∗(x) = arg min L(x, u)

s.t. u ∈ Ũ(x).
(19)

If one of the following conditions holds
1) L is sublevel bounded in u;
2) The set-valued map Ũ has bounded values,

then κ∗ is continuous on int(Cx), and the resulting differential
inclusion Σκ∗ is safe with respect to (Xo, Xu), namely, κ∗ is
the optimal safe control law.

Proof. Lemma 3 implies that κ∗ is single valued on Cx and
continuous on int(Cx). Since κ∗ is a continuous selection from
a subset of D̄0 on U(∂K)\K, then Σκ∗ satisfies

〈ζ, η〉 ≤ 0 ∀x ∈ (U(∂K)\K) ∩ Cx, ζ ∈ ∂CB(x),

∀η ∈ F (x, κ∗(x)).

Therefore, [5, Theorem 4] implies that K is forward pre-
invariant for Σκ∗ . Then, Σκ∗ is safe w.r.t. (Xo, Xu).

B. A Sample Construction of Ũ
Because D consists of two set-valued maps D̄0 and U , to

construct the continuous set-valued map Ũ from D, we need to
apply two types of blending. In general, D̄0 is not continuous,
as a result of discontinuity in g with respect to x. In obstacle
avoidance, for example, when the barrier function is defined
as the minimum or maximum of some hyperplanes, there are
discontinuities in g as different constraints are active in the
different regions around the obstacle. First, we should find

some continuous map Ds
0 : S1 → Cu such that Ds

0(x) ⊂
D̄0(x) for each x ∈ S. Second, we must blend continuously
two continuous maps, Ds

0 and U .
In Example 1, we present an approach to smoothen D̄0

when the unsafe set is defined as a system of linear inequali-
ties, and the barrier function is defined as the minimum of the
hyperplanes corresponding to the unsafe set.

Here, we present an approach for continuously blending two
continuous maps using the Minkowski sum. Let S ⊂ Rn and
ε : S → R>0 be continuous. The ε-neighborhood of S, Uε(S),
is defined as

Uε(S) :=
⋃
x∈S

(x+ ε(x)B). (20)

Given S1, S2 ⊂ Rn and α1, α2 ∈ R, based on Minkowski sum
of sets, define α1S1 +α2S2 := {α1s1 +α2s2 : s1 ∈ S1, s2 ∈
S2}.

Lemma 4. Consider a closed set K ⊂ Rn, and set-valued
maps F1 : K ⇒ Rm and F2 : Uε(∂K) ⇒ Rm that are
continuous with closed and convex values, where ε : ∂K →
R>0 is a continuous function such that ε(x) > ε1 for each
x ∈ ∂K, where ε1 ∈ R>0. Then, the set-valued map G :
K ∪ Uε(∂K) ⇒ Rm defined as

G(x) :=

F1(x) if x ∈ K\Uε1(∂K)
F3(x) if x ∈ K ∩ Uε1(∂K)
F2(x) if x ∈ Uε(∂K)\K

(21)

where F3(x) := d(x,∂K)
ε1

F1(x) + (1− d(x,∂K)
ε1

)F2(x), is lower
and outer semicontinuous with closed and convex values.

Proof. Since ∂K is a closed set, then the distance function
x → d(x, ∂K) is continuous [13]. Therefore, F3 is con-
tinuous. Since F1 and F2 have closed and convex values,
using the Minkowski sum of two closed and convex sets is
closed and convex [28], we conclude that F3 has closed and
convex values. For each x ∈ ∂K, F3(x) = F2(x) and for
each x ∈ ∂(K\Uε1(∂K)), F3(x) = F1(x), therefore, G is
continuous with closed and convex values.

Example 1. Consider the system

ΣU : ẋ = Ax+Bu x ∈ R2.

Suppose we have a rectangular shape obstacle. Let p0 be the
central point of the obstacle and, for each i ∈ {1, · · · , 4},
qi denotes the middle point of each edge of the obstacle. The
unsafe set is defined as the intersection of the halfspaces (p0−
qi)
>(x− qi) > 0 for i = 1, · · · , 4. We have

Xu = {x ∈ R2 : Aux > bu} (22)

where Au =


(p0 − q1)>

(p0 − q2)>

(p0 − q3)>

(p0 − q4)>

, and bu =


(p0 − q1)>q1
(p0 − q2)>q2
(p0 − q3)>q3
(p0 − q4)>q4

. Let

U : R2 ⇒ R2 be defined as U(x) = [−5, 5]2.
We set the initial set, Xo, to be the complement of the unsafe

set with an extra distance as Xo = R2\{x ∈ R2 : Aux >



bu − d1}, where 1 denotes a vector of ones, and d denotes
the extra distance. Next, we define K = X0 and CBF as

B(x) := min
i∈{1,··· ,4}

Bi(x) ∀x ∈ R2,

where the Bi is given by

Bi(x) := (p0 − qi)>(x− qi) + d i ∈ {1, · · · , 4}.

The gradient of the Bi is

∇Bi(x) = (p0 − qi) i ∈ {1, · · · , 4}. (23)

Based on [17, Proposition 2.3.12], the Clarke generalized
gradient of B is given by

∂CB(x) = co({∇Bi(x) : i ∈ I(x)})

where I : R2 ⇒ {1, · · · , 4} indicates the active Bi’s

I(x) := {i : B(x) = Bi(x), i ∈ {1, · · · , 4}}.

Therefore, ∂CB(x) is given by

∂CB(x) = {
∑
i∈I(x)

θi∇Bi(x) : θi ≥ 0,
∑
i∈I(x)

θi = 1}

The function g from Theorem 2 is

g(x, u) = sup
ζ∈∂CB(x)

〈ζ,Ax+Bu〉

= sup 〈
∑
i∈I(x)

θi(p0 − qi), Ax+Bu〉

s.t. θi ≥ 0 i ∈ I(x),
∑
i∈I(x)

θi = 1

(24)

The optimization (24) is over θ and of the form of a linear
function over the probability simplex. Then, the dual problem
for (24) is

min ν

s.t. ν ≥ 〈p0 − qi, Ax+Bu〉 ∀i ∈ I(x).
(25)

Therefore ν = maxi∈I(x)〈p0− qi, u〉 and the optimal solution
to the primal problem is θi∗ = 1, where i∗ is the index of the
maximum 〈p0 − qi, Ax+Bu〉 for i = {1, · · · , 4}. Therefore,

g(x, u) = max{〈∇Bi(x), Ax+Bu〉, i ∈ I(x)}.

Since g is the pointwise maximum of affine functions in u, it
is convex in u. Then, D0 in Theorem 2 is given by

D0(x) = {u ∈ U(x) : g(x, u) < 0}
= {u ∈ [−5, 5]2 : 〈p0 − qi, Ax+Bu〉 < 0, ∀i ∈ I(x)}.

We observe that since, based on the position of system w.r.t. the
obstacle, one or two of the constraints are active, the map D0

is nonempty. First, we want to smoothen the discontinuities of
D̄0, which is induced by changing the active constraints. We
define Iα for some α > 0 as Iα(x) := {i : |B(x)−Bi(x)| ≤
α, i ∈ {1, · · · , 4}}. When I(x) = Iα(x), the conditions to
satisfy are ∇Bi(x)>(Ax + Bu) ≤ 0, for each i ∈ I(x). Let
φ(x) :=

π|B(x)−Bj(x)|
2α for j ∈ Iα(x)\I(x). Then, we have(

sin(φ)∇Bi(x) + cos(φ)∇Bj(x)
)>

(Ax+Bu) ≤ 0,

∀i ∈ I(x), j ∈ Iα(x)\I(x)

Fig. 1: Trajectories for Example 1. The obstacle is the green
rectangle, and the initial set is the area outside of the yellow
and green regions.

At x’s such that I is not equal to Iα, means that we are
near to changing the active constraints. Using sin and cos
functions, we smoothen these transitions. We define Ũ(x) =
{u ∈ [−5, 5]2 : H(x)>u ≤ h(x)}, where H is defined based
on the conditions we explained above as

H(x) =

(
(p0 − qi)>B

(sin(φ)(p0 − qi) + cos(φ)(p0 − qj))>B

)
(26)

where ∀i ∈ I(x), j ∈ Iα(x)\I(x). The h is defined as

h(x) =

(
−(p0 − qi)>Ax

−(sin(φ)(p0 − qi) + cos(φ)(p0 − qj))>Ax

)
(27)

, and we add max{0,−MB(x)} to every row of h for some
sufficiently large positive number M to make the constraint
H(x)>u ≤ h(x) ineffective when we are in the safe region. We
used this method instead of the one in Lemma 4 since that can
result in a set-valued map with nonconvex values. Considering
that all the constraints defining Ũ are affine with respect to
u at each x, and the constraints with strict inequality are
nonempty, [13, Example 5.10] implies that Ũ is continuous.
Furthermore, Ũ has nonempty and compact values. Theorem
2 implies that if the cost function L is lower semicontinuous,
convex and strictly convex in u, then the optimal control law
κ∗ is continuous and safe. Figure 1 shows trajectories using
L(x, u) = 1

2u
>u and control Lyapunov function V (x) := 1

2x
2

for A =

(
0 1
−1 −1

)
, B = I , α = 0.01, and M = 100.

VII. CONCLUSION

This paper studies controlled safety of constrained differen-
tial inclusions using nonsmooth CBFs. We develop sufficient
conditions to select a continuous control law using CBFs.
Furthermore, we study conditions to find optimal safe control
laws while minimizing the cost function. We illustrate the
results in an obstacle avoidance example. We extend the results
for hybrid control systems and consider conditions for robust
controlled safety for future work.



APPENDIX

Lemma A.1. (Selection Theorem [25]) Consider a closed set
K ⊂ Rn and a set-valued map Φ : K ⇒ Rm that is lower
semicontinuous with Φ(x) nonempty, closed, and convex for
all x ∈ K. Then, for each closed set A ⊂ K and for each
φ : A → Rm that is a selection of Φ on A; namely, φ is
continuous and φ(x) ∈ Φ(x) for every x ∈ A, there exists
φe : K → Rm extending φ to K that is a selection of Φ on
K; namely, φe is continuous, φe(x) = φ(x) for every x ∈ A,
and φe(x) ∈ Φ(x) for every x ∈ K.

Theorem A.1. (Attainment of a minimum [13, Theorem 1.9])
Suppose f : Rn → R is lower semicontinuous, sublevel
bounded and proper. Then the value inf f is finite and the
set arg min f is nonempty and compact.

Lemma A.2. [14, Lemma 5.15] Let F : Rn ⇒ Rm be a
upper semicontinuous set-valued mapping. Consider x ∈ Rn
such that F (x) is closed. Then, F is outer semicontinuous at
x. If F is locally bounded as x, then the reverse implication
is true.

Lemma A.3. [13, Corollary 5.20] For any single-valued
mapping F : Rn → Rm, viewed as a special case of a set-
valued mapping, the following properties are equivalent:
• F is continuous at x;
• F is outer semicontinuous and locally bounded at x;
• F is inner semicontinuous at x.

Corollary A.1. [13, Corollary 7.43] Let f : Rn × Rn →
R ∪ {±∞} be proper, lower semicontinuous, convex, and
such that f∞(0, u) > 0 for all u 6= 0. Suppose κ(x) =
arg minu f(x, u). If f(x, u) is strictly convex in u, then κ
is single valued on domκ and continuous on int(domκ).

Corollary A.2. [13, Corollary 3.27] For any proper, lower
semicontinuous, and convex function f on Rn, level coercivity
is equivalent level boundedness.
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