
ar
X

iv
:2

21
0.

06
03

8v
1 

 [
ee

ss
.S

Y
] 

 1
2 

O
ct

 2
02

2

Pre
pr

in
t

IEEE CONTROL SYSTEMS LETTERS, VOL. XX, NO. XX, XXXX 2017 1

Approximation-free Prescribed Performance
Control with Prescribed Input Constraints

Pankaj K Mishra and Pushpak Jagtap, Member, IEEE

Abstract—This paper considers the tracking control
problem for an unknown nonlinear system with time-
varying bounded disturbance subjected to a prescribed
performance and input constraints. When performance
and input constraints are specified simultaneously for
such a problem, a trade-off is inevitable. Consequently,
a feasibility condition for prescribing performance and
input constraints is devised to address such difficulties
of arbitrary prescription. In addition, an approximation-free
controller with low complexity is proposed, which ensures
that the constraints are never violated, provided that
the feasibility condition holds. Finally, simulation results
corroborate the effectiveness of the proposed controller.

I. INTRODUCTION

Different methods have been developed by academic and

professional researchers for designing controllers for nonlinear

systems. Despite these efforts, designing controllers for

systems subjected to constraints and unknown time-varying

disturbances remains challenging. Various constraints arise

in most practical systems, including performance constraints,

saturation, physical stoppages, and safety requirements.

Therefore, constraints cannot be avoided while designing

controllers for practical systems. For controller design,

constraints can typically be prescribed in two forms:

prescribed performance constraints (PPC) on some variable

(such as tracking error) and prescribed input constraints (PIC).

A wide variety of methods have been developed to address

PPC, including: reference governors [1], model predictive

control [2], funnel control [3], barrier Lyapunov functions

(BLF) [4], prescribed performance control [5], control barrier

functions [6], and extremum seeking control [7]. As far

as the literature is concerned, BLF has been extensively

used in dealing with constraints. That’s because its design

methodology allows it to incorporate many Lyapunov-based

nonlinear control techniques. However, for uncertain, unknown

systems, the design lacks simplicity. The approach described

in [5] is well-suited to a diverse set of situations [8] since

it is low-complexity, approximation-free, and robust. Much

research and development have gone into the controller design

for nonlinear systems that undergo input saturation. One can

refer to the results in [9]–[11]. It follows that controller design
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for nonlinear systems subjected to either PPC or PIC is a well-

established field of study.

Improving performance with limited resources is always

difficult. Same with PPC and PIC [12], PPC aims for lower

steady-state error, safe transient response, and fast convergence

of tracking error. In contrast, PIC focuses on actuator safety

or control effort minimization. Thus, very few results are

available addressing PPC and input saturation, notably [13]–

[16]. In [13], works are done for linear systems, nonlinear

systems in [14], [16]. Also, in [13]–[15] authors relax the

PPC whenever the input saturation is active, and in [16]

assumptions are made on the existence of a feasible set

of control input for a given initial conditions and actuator

saturation limit. Moreover, given any desired trajectory

for an uncertain nonlinear system with unknown bounded

disturbances and arbitrary PIC, it is certainly impractical to

guarantee that the desired trajectory is trackable. For example,

a large external disturbance or a desired trajectory with a

large upper bound will inevitably necessitate the same level

of opposing control command, which may extend beyond the

PIC [17]. Thus, before prescribing input constraints, one must

look for the feasible condition for PIC. Further, many practical

systems always operate in some specified regions where they

are controllable under PIC [12]. In the presence of PIC, one

cannot globally stabilize the unstable system. There is always

a feasible set of initial conditions for PIC. Also, global results

are not attained in many PPC studies [18]–[20] on tracking

error. The prescribed performance function choice depends on

the constrained variable’s initial state. In [21], global results

were achieved by transiently relaxing the PPC. However, as

discussed, it makes no sense to pursue global results when

there is a PIC. In addition, arbitrary PPC makes no sense

because there may be an initial condition of error variable

within the initial bounds of PPC that does not belong to the

set of initial conditions that are feasible for PIC. Therefore,

we must seek a viable PPC for a PIC.

Motivated by the above discussions and aforementioned

works, a controller has been developed in this paper with the

following listed contributions:

1) An approximation-free low complexity controller has

been proposed for the nonlinear system with PPC and

PIC. Below is a representation of the controller structure:

2ῡ

π
arctan

(

π

2ῡ
tan

(

πe

2ψ

)

)

,

where ῡ and ψ represent PIC and PPC respectively, and
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e is tracking error.

2) The above novel control structure consists of both PPC

and PIC in its design. This simplifies the task of deriving

a feasibility condition for PPC and PIC, avoiding the need

to relax PPC when input approaches its constraints.

The remainder of the paper is structured as follows. In Section

II, preliminaries and problem formulation are presented. It

also contains key assumptions for the prescription of input

constraints. Section III presents the design of the controller.

Section IV presents the few lemmas used for the stability

analysis in Section V. Section VI presents the simulation

results and discussion. Finally, Section VII concludes the

paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

Notations: We denote the set of real, positive real,

nonnegative real, and positive integer numbers by R, R
+,

R
+
0 , and N, respectively. Nn: {1, . . . , n}, n is positive integer.

L∞ represents the set of all essentially bounded measurable

functions. For x(t) ∈ R, x ↑ a: x approaches a real value

a from the left side, x ↓ a: x approaches a real value a

from the right side, and x(n) represent nth time derivative

of signal x.
(

m
k

)

= m(m−1)···(m−k+1)
k! denote the binomial

coefficients. L{·} denotes the Laplace transform, and s is the

Laplace variable.

Consider a class of strict-feedback nonlinear system

ξ̇i = ξi+1, ∀i ∈ Nn−1,

ξ̇n = f (ξ) + g (ξ) υ + d,

y = ξ1,

(1)

where ξ(t) = [ξ1(t), . . . , ξn(t)]
T ∈ R

n is the state vector, f :
R
n → R is the unknown smooth nonlinear function, g : Rn →

R is the unknown control coefficient, d(t) ∈ R is the unknown

piecewise continuous bounded disturbance, υ(t) ∈ U ⊆ R and

y(t) ∈ R are the input and output of the system, respectively.

The control problem is to design a control law υ such that

(i) the output ξ1(t) track the desired output ξd(t) ∈ R, ∀t ∈
R

+
0 , (ii) output tracking error defined as ξ̃ := ξ1 − ξd, follow

its prescribed performance constraints ψ(t) ∈ R, defined as

ψ(t) := ψ0e
−µt+ψ∞, such that |ξ̃| < ψ(t), ∀t ∈ R

+
0 , where

ψ0 is a positive constant, and ψ∞ and µ are positive and

nonnegative constants, represent the bounds on the steady-state

error and the decay rate of the tracking error, respectively, and

(iii) all the closed-loop signals are bounded.

In addition, one of our problems will be to seek the

feasibility condition for the PIC and PPC. Obtaining such

a feasibility condition will necessitate specific knowledge of

the system’s dynamics, disturbances, and tracking performance

parameters in terms of their upper bounds on the signals. A

few assumptions are required for this are listed below.

Assumption 1: [22]–[25] The unknown map f satisfies the

Lipschitz continuity condition, that is, for all x,x′ ∈ R
n, there

exists a constant kl ∈ R
+ such that the following holds

|f(x)− f(x′)| ≤ kl||x− x′||p∗ ,

where kl is a known Lipschitz constant and || · ||p∗ known as

the p∗ norm in the R
n.

Note that one can use the Lipschitz constant inference

approaches proposed in [26]–[28] to estimate the Lipschitz

constant of unknown dynamics from a finite number of data

collected from the system.

Assumption 2: There exist a known constant g > 0 and a

constant ḡ ≥ g, such that g ≤ g(x) ≤ ḡ for all x ∈ R
n.

Assumption 3: There exists known constant d̄ ≥ 0 such that

disturbances |d(t)| ≤ d̄ for all t ∈ R
+
0 .

Assumption 4: For a given desired trajectory ξd, there exists

a constant ξ̄d > 0, such that ||ξd(t)||∞ < ξ̄d, for all t ∈ R
+
0

for ξd = [ξd, ξ
(1)
d
, . . . , ξ

(n−1)
d

]T .

III. CONTROLLER DESIGN

This section proposes a robust approximation-free controller

for (1). To begin the controller design, we define a filtered

tracking error,

r := λ1ξ̃ + λ2
˙̃
ξ + · · ·+ λn−1ξ̃

(n−2) + ξ̃(n−1), (2)

where λi, ∀i ∈ Nn−1 is a strictly positive constant and

following the definition of output tracking error mentioned

in the problem statement,

ξ̃(i−1) = ξi − ξ
(i−1)
d

, ∀i ∈ Nn. (3)

Taking the time derivative of (2) and using (3), one has

ṙ = λ1ξ̃
(1) + λ2ξ̃

(2) + · · ·+ λn−1ξ̃
(n−1) + ξ̇n − ξ

(n)
d
. (4)

Using (1) and (4), closed-loop dynamics can be written as

ṙ = φ+ f (ξ) + g (ξ) υ + d− ξ
(n)
d
, (5)

where φ =
∑n−1
i=1 λi ξ̃

(i).

Consider a non-increasing smooth function ψr : R
+
0 → R

+

as a virtual performance constraint (VPC) over r, defined as

ψr(t) := ψr0e
−µrt + ψr∞, ∀t ∈ R

+
0 , (6)

where ψr∞, ψr0 and µr have similar attributes as of ψ∞, ψ0

and µ for PPC. Note that, in (6), ψr and ψ̇r are bounded for

all t ∈ R
+
0 and the bounds are given as

ψr∞ ≤ ψr ≤ ψr0 + ψr∞, and (7)

−µrψr0 ≤ ψ̇r ≤ 0. (8)

The control input is designed as

υ = −
2ῡ

π
arctan

(

π

2ῡ
tan

(

πr

2ψr

)

)

, (9)

where ῡ is PIC, r and ψr are as mentioned in (2), respectively.

In (9), r is designed using (2) and (3), with

λi =

(

n− 1

n− i

)

an−i, a > µ, ∀i ∈ Nn−1, (10)

and ψr, i.e., VPC is chosen based on the PPC defined in the

problem statement, as follows

µr = µ, (11)

ψr0 = (a− µr)
n−1ψ0, (12)

ψr∞ = an−1ψ∞. (13)
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IV. PRELIMINARIES THE STABILITY ANALYSIS

In this section, first, a few results will be established, which

will motivate the idea behind the selection of parameters of

VPC (ψr) in (11)-(13) based on PPC (ψ). Further, a few

lemmas will be presented, which will be later used in stability

analysis. The lemmas are as follows.

Lemma 1: Consider the signals X(t) ∈ R and Z(t) ∈ R,

such that |X(t)| < X0e
−µxt + X∞, where have similar

attributes as of ψ∞, ψ0 and µ for PPC. If z = x
(s+a)p , where

z = L{Z(t)}, x = L{X(t)}, and a > µx and p ∈ Z
+, then

|Z(t)| < Z0e
−µxt+Z∞, with Z0 = X0

(a−µx)p
and Z∞ = X∞

ap .

Proof: Here, z = x
(s+a)p , can be represented as a signal

passing through a series of low pass filters as shown in the

figure below:

1
s+a

1
s+a

1
s+a

x z1 z. . .

p blocks

Let z1 be the output of first filter, then Z1(t) = L−1(z1),
can be written as Z1(t) =

∫ t

0 e
−a(t−τ)X(τ)dτ. Since

|X(t)| < X0e
−µxt + X∞, thus we have |Z1(t)| <

∫ t

0
e−a(t−τ)(X0e

−µxτ + X∞)dτ. Simplifying it, we have

|Z1(t)| <
X0

(a−µx)
(e−µxt − e−at) + X∞

a (1 − e−at). Further

it can be written as |Z1(t)| <
X0

(a−µx)
e−µxt + X∞

a .

Recursively following the above steps (p− 1) times, it can

be easily found that |Z(t)| < X0

(a−µx)p
e−µxt + X∞

ap .

Corollary 1.1: If in Lemma 1, z = sq

(s+a)q x, q ∈ Z
+; then

|Z(t)| < Z0e
−µxt+Z∞, with Z0 = X0

(

2a−µx

a−µx

)q

and Z∞ =

2qX∞.

Proof: Similar to Lemma 1, z = s
(s+a)q x, can be

represented as a signal passing through a series of filters as

shown in the figure below.

s
s+a

s
s+a

s
s+a

x z1 z. . .

q blocks

Let z1 be the output of the first filter, then we can write z1 =
x(1 − a

s+a ). Further, we have

|Z1(t)| = |L−1(z1)| < |X(t)|+a

∫ t

0

e−a(t−τ)X(τ)dτ. (14)

For the second term of (14), performing a similar analysis as

done in Lemma 1, we have |Z1(t)| < X0

(

2a−µx

a−µx

)

e−µxt +

2X∞. Recursively following the above steps (q−1) times, we

have |Z(t)| < X0

(

2a−µx

a−µx

)q

e−µxt + 2qX∞.

Corollary 1.2: If z = sq

(s+a)p x, and, p ≥ q and p, q ∈ Z
+,

then |Z(t)| < Z0e
−µxt + Z∞, with Z0 = X0

(2a−µx)
q

(a−µx)p
and

Z∞ = 2q

ap−qX∞.

Proof: Following figure below and using Lemma 1, we

can easily obtain the bounds of Z1(t).

1
s+a

1
s+a

s
s+a

s
s+a

x z1. . .

(p− q) blocks

z. . .

q blocks

Further, using Corollary 1.1, it is straightforward to prove the

given result.

Lemma 2: If |r| < ψr and λi =
(

n−1
n−i

)

an−i, a > µr is

a positive design constant, then for all t ∈ R
+
0 and ∀i ∈

{0, 1, . . . , n− 1},

|ξ̃(i)(t)| <
(2a− µr)

iψr0

(a− µr)n−1
e−µrt +

2iψr∞
an−i−1

. (15)

.

Proof: Using the Laplace transformation, (2) can

be written as L{ξ̃(t)} = L{r}
(s+a)n−1 +

∑n−1
k=1 (

1
sk

−
∑k

i=1 (
n−1
n−i)a

n−is(i−1)

sk(s+a)n−1 )ξ̃(k−1)(0). Further, we can have

L{ξ̃(i)(t)} = siL{ξ̃(t)} −
∑i−1

k=0 s
i−k−1ξ̃(k)(0), ∀i ∈ Nn−1.

For the sake of simplicity, the proof will be restricted to the

situation of ξ̃(i)(0) = 0, ∀i ∈ {0, 1, . . . , n − 1}. Now, the

general expression for L{ξ̃(i)(t)}, i ∈ {0, 1, . . . , n − 1}, can

be written as

L{ξ̃(i)(t)} =
siL{r}

(s+ a)n−1
. (16)

Following the hypothesis and Corollary 1.2, one can deduce

from (16) that ∀t ∈ R
+
0 , and i ∈ {0, 1, . . . , n− 1}, |ξ̃(i)(t)| <

(2a−µr)
iψr0

(a−µr)n−1 e
−µrt + 2iψr∞

an−i−1 .

Remark 1: In (15), substituting the parameter given in (11)

- (13) for i = 0, yields |ξ̃| < ψ0e
−µt+ψ∞, or |ξ̃| < ψ, one of

our control goals. Hence, if we can make filtered tracking error

r to follow its VPC ψr, or the hypothesis of the above lemma,

i.e., |r| < ψr, then the goal will be achieved. To achieve

the same, control input is designed in (9), based on filtered

tracking error, VPC and PIC. Next, a few results based on the

above lemma is presented, and further, a few lemmas will be

established to aid the stability analysis in a subsequent section.

Corollary 2.1: If |r| < ψr and λi =
(

n−1
n−i

)

an−i, a > µr is

a positive design constant, then in (5),

|φ| <
ψr0c̄1

(a− µr)n−1
+
ψr∞c̄2

(a)n−1
, (17)

where c̄1 = (2a − µr)
(

(3a− µr)
n−1 − (2a− µr)

n−1
)

and

c̄2 = 2a
(

(3a)n−1 − (2a)n−1
)

.

Proof: Following φ in (5) and using Lemma 2,

we have |φ| < ψr0

(a−µr)n−1

∑n−1
i=1

(

n−1
n−i

)

an−i(2a − µr)
i +

ψr∞

an−1

∑n−1
i=1

(

n−1
n−i

)

an−i(2a)i. Further following the identity

given in Appendix I, i.e.,
∑n−1
i=1

(

n−1
n−i

)

an−ihi = h((a +
h)n−1 − hn−1), with h = 2a − µr and h = 2a, for the first

and second terms, respectively, one can readily obtain (17).

Corollary 2.2: If |r| < ψr and λi =
(

n−1
n−i

)

an−i, a > µr is

a positive design constant, then in (5),

|f
(

ξ(t)
)

|<kln
1/p∗

(

(2a− µr)
n−1ψr0

(a− µr)n−1
+

(2a)n−1ψr∞

an−1
+ ξ̄d

)

.

(18)
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Proof: Since ξ(t) ∈ R
n, i.e., finite-dimensional vector

space, so all norms are equivalent or one can find constant

c1 such that ||ξ(t)||p∗ ≤ c1||ξ(t)||∞, for all t ∈ R
+
0 Further,

using Holder inequality, one can find c1 = n1/p∗ , holds the

equivalence relation. Now using the Assumption 1, we have

|f
(

ξ(t)
)

| ≤ kln
1/p∗ ||ξ(t)||∞. (19)

Let ξ̃ = [ξ̃,
˙̃
ξ, . . . , ξ̃(n−1)]T and ξd = [ξd, ξ

(1)
d
, . . . , ξ

(n−1)
d

]T ,

then following (3), we have ξ̃ = ξ − ξd. Substituting ξ =
ξ̃ + ξd in (19), and applying triangular inequality, we have

|f
(

ξ(t)
)

| ≤ kln
1/p∗(||ξ̃(t)||∞ + ||ξd(t)||∞), for all t ∈ R

+
0 .

Further using the Lemma 2 and Assumption 4, one can readily

obtain (18).

Corollary 2.3: If |r| < ψr and λi =
(

n−1
n−i

)

an−i, a > µr is

a positive design constant, then

ṙ < ψr0c1 + ψr∞c2 + ξ̄dc3 + d̄+ gυ, and

ṙ > −ψr0c1 − ψr∞c2 − ξ̄dc3 − d̄+ gυ.
(20)

where c1 = c̄1+kln
1/p∗(2a−µr)

n−1

(a−µr)n−1 , c2 = c̄2+kln
1/p∗ (2a)n−1

an−1 ,

and c3 = kln
1/p∗ + 1 are positive constants.

Proof: It is straightforward to write

|φ+ f (ξ) + d− ξ
(n)
d

| ≤ |φ|+ |f (ξ) |+ |d|+ |ξ
(n)
d

|. (21)

Using the corollaries 2.1 and 2.2, and following assumptions

3 and 4, one can have the following inequality

|φ+ f (ξ) + d− ξ
(n)
d

| < ψr0c1 + ψr∞c2 + ξ̄dc3 + d̄. (22)

Further, using (22) in (5), one gets (20).

Lemma 3: If the filtered tracking error r given in (2) is

transgressing its upper bound mentioned in (6), then (r−ψr)
will approach 0 from the left side and

lim
(r−ψr)↑0

ṙ ≥ −µrψr0. (23)

Proof: It is straightforward to assume that before

transgressing any bounds, the tracking error must be within

its prescribed performance bounds (i.e., −ψr < r < ψr). This

implies that −2ψr < r − ψr < 0. Thus, we can analyze that

if r is transgressing its upper bound, i.e., ψr then (r − ψr)
will approach 0 from the left side. Consequently, it is easy to

know that when (r−ψr) approaches 0 from the left side, the

time derivative of (r−ψr) will be greater than equal to 0. As

a result, we have

lim
(r−ψr)↑0

ṙ ≥ ψ̇r. (24)

Noting (8), we can infer from (24) that lim(r−ψr)↑0 ṙ ≥
−µrψr0.

Lemma 4: If the tracking error is transgressing its lower

bound, then (r+ψr) will approach 0 from the right side, and

lim
(r+ψr)↓0

ṙ ≤ µrψr0. (25)

Proof: The proof is similar to that of Lemma 3.

V. STABILITY ANALYSIS

In this section, stability analysis will be shown based on the

results of the lemmas presented in the previous section.

Theorem 1: Consider a system (1), with desired state

trajectory ξd, PPC on output tracking error, ψ = ψ0e
−µt+ψ∞

and a PIC ῡ. If the system (1) satisfies Assumption 1-4, and

the control input is designed as in (9), then system output will

follow its desired trajectory, tracking error and input will never

transgress its PPC and PIC, respectively, and all the closed-

loop signals will remain bounded, provided the following

feasibility conditions for PIC and PPC are true.

PIC: ῡ >
1

g
(ψr∞c2 + ξ̄dc3 + d̄), (26)

PPC: |r(0)|(a−µ)1−n <ψ0<
gῡ−ψr∞c2− ξ̄dc3− d̄

(c1+µ)(a−µ)n−1
. (27)

Proof: Stability analysis is done using proof-by-

contradiction. To begin with the proof, we will first establish

proposition P1 as follows.

P1: If the (26) and (27) is true, input is designed as (9),

and initially r is within its designed constraints ψr, then there

exists at least a time instant at which r violates its constraints,

or,

∃ tj such that |r(tj)| > ψr(tj), ∀tj ∈ (t1, . . . , ti, . . . , tn̄),

where ti < ti+1, ti represent ith instant of violation of

performance constraint, i ∈ N, and n̄ ∈ N. We are now

prepared for the proof. Suppose that P1 is true, then we have

the following.

|r(t)| < ψr(t), ∀t ∈ [0, t1). (28)

Suppose that at the instant of time t1, the tracking error is

transgressing its performance constraints (i.e., upper or lower

bounds). With the following analysis, we will see that error

never transgresses its performance constraints.

Noting (28), and using (20) of Corollary 2.3, for all t ∈
[0, t1), we have

ṙ < ψr0c1 + ξ̄dc2 + gυ + d̄, and (29)

ṙ > −ψr0c1 − ξ̄dc2 + gυ − d̄. (30)

Following (9), we infer that

lim inf
(z−ψ)↑0

υ = −ῡ, (31)

lim sup
(z+ψ)↓0

υ = ῡ. (32)

Consequently, following Assumption 2, we have

−ḡῡ ≤ lim inf
(r−ψr)↑0

gυ ≤ −gῡ, (33)

gῡ ≤ lim sup
(r+ψr)↓0

gυ ≤ ḡῡ. (34)

Using (33) and (29), we can infer that for all t ∈ [0, t1),

lim inf
(r−ψr)↑0

ṙ < ψr0c1 + ψr∞c2 + ξ̄dc3 − gῡ + d̄. (35)

Similarly, using (34) and (30), ∀t ∈ [0, t1), we obtain

lim sup
(r+ψr)↓0

ṙ > −ψr0c1 − ψr∞c2 − ξ̄dc3 + gῡ − d̄. (36)
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Now, recalling (11), (12), and (27), it follows

ψr0(c1 + µr) < gῡ − ψr∞c2 − ξ̄dc3 − d̄. (37)

Further, (37) can be written as,

ψr0c1 + ψr∞c2 + ξ̄dc3 − gῡ + d̄ < −µrψr0, or (38)

−ψr0c1 − ψr∞c2 − ξ̄dc3 + gῡ − d̄ > µrψr0. (39)

Now incorporating (38) in (35), and (39) in (36), it can inferred

that over [0, t1)
lim inf
(r−ψr)↑0

ṙ < −µrψr0, (40)

lim sup
(r+ψr)↓0

ṙ > µrψr0. (41)

Recalling lemmas 3 and 4, it can be inferred that (40)

contradicts (23), and (41) contradicts (25). Hence, over [0, t1),
tracking error will never approach its performance constraints.

Consequently, it can be concluded that there is no t1 in which

the r violates its designed constraint ψr. Since there does not

exist the first instant of violation of the designed constraint,

there does not exist any time at which r will violate its

constraints ψr. Therefore, it can be concluded that P1 is false.

Now following (11), (12) and (27), it follows ψr0 > |r(0)|,
and following (6), ψr(0) > |r(0)|. Thus initially r is within

its designed VPC (ψr), and further noting that Proposition P1
is false, we have the following.

|r(t)| < ψr(t), ∀t ≥ 0. (42)

Now, following Lemma 2 and using (11)-(10), we have

|ξ̃(i)(t)|<(2a− µr)
iψ0e

−µrt+(2a)
i
ψ∞, i∈ {0, 1, . . . , n−1}.

(43)

Using (43), it can be concluded that ξ̃(i) will converge

asymptotically to a set, Γi := {ξ̃(i) ∈ R : |ξ̃(i)| < (2a)
i
ψ∞}

and output tracking error ξ̃ will follow its PPC, i.e., ψ(t),
∀t ∈ R

+
0 . Now, we will seek the boundedness of all the closed-

loop signals.

Following (42) and (43) we have r ∈ L∞ and ξ̃(i) ∈ L∞.

Consequently, following assumption 4 and recalling from (3)

that ξi = ξ̃
(i−1)
i + ξ

(i−1)
d

, we have ξi ∈ L∞, ∀i ∈ Nn.

Knowing the fact that f(ξ) in (1) is smooth nonlinear function,

as a result, we have f(ξ) ∈ L∞. Also, it is straightforward

to follow from (9) that if |r| < ψr, then |υ| < ῡ, thus we

have υ ∈ L∞. Following (1) and (5), and with the help

of established boundedness of the signal, and assumptions

2 and 3, that g(ξ) and disturbance are bounded, we have

ξ̇i ∈ L∞, ∀i ∈ Nn and ṙ ∈ L∞, respectively. Thus, all

closed-loop signals are bounded. This completes the proof.

VI. SIMULATION RESULTS AND DISCUSSION

In this section, a simulation study is presented to show the

effectiveness of the proposed approach. Consider a control-

affine nonlinear system

ξ̇1 = ξ2,

ξ̇2 = −0.5(sin ξ1 + ξ2) + (3 + cos ξ2)υ + d,

y = ξ1,

(44)
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Fig. 1: Top: output tracking performance ( ξ1 for ξ(0) =
[0.4 0.29]T , ξ1 for ξ(0) = [0.6 0.29]T , ξd(desired output));

Bottom: prescribed performance of tracking error( PPC (ψ),
ξ̃1 for ξ(0) = [0.4 0.29]T , ξ̃1 for ξ(0) = [0.6 0.29]T .)

where ξ(t) ∈ R, υ(t) ∈ U ∈ R and y are the state, the

input, and the output of the system (44), respectively, and

d(t) = 0.5 sin2t is a disturbance. The desired output is

ξd(t) = 0.5 sin t. For (44), correspondingly, following (1), we

can note that f(ξ) = −0.5(sin ξ1+ ξ2) and g(ξ) = 3+cos ξ2,

and are assumed to be unknown. For (44), one can readily

obtain kl = 0.5, g = 2, d̄ = 0.5, and for the given desired

output, we have ξ̄d = 0.5. The design parameter a is chosen

as a = 2, accordingly following corollary 2.3, c1 = 9, c2 = 6,

and c3 = 2. Now, following the feasibility conditions (26),

we have PIC: ῡ > 0.78. The goal is to design control law

υ such that the output tracks the desired trajectory without

transgressing PIC: ῡ = 6, and PPC: ψ(t) = ψ0e
−µt + ψ∞,

(with ψ0 = 1, ψ∞ = 0.01 and µ = 1), on tracking error. It can

be easily verified using (27) that PPC satisfies its feasibility

condition for a given PIC, i.e. ψ0 < 1.1. The controller is

designed using (9), υ = − 2ῡ
π arctan

(

π
2ῡ tan

(

πr
2ψr

)

)

, where,

as mentioned in (2) r = λ1ξ̃1 +
˙̃
ξ1, with ξ̃1 = ξ1 − ξd and

˙̃
ξ1 = ξ2 − ξ̇d as mentioned in (2), and ψr = ψr0e

−µrt+ψr∞.

The parameter µr, ψr0, ψr∞, and λ1 are given by (11)-(10),

the aforementioned parameters, and the simulation study is

done for two sets of initial conditions, i.e., ξ(0) = [0.4 0.29]T

and ξ(0) = [0.6 0.29]T . For both sets of initial conditions, it

can be observed from Fig. 1 that the output tracks the desired

trajectory along with its tracking error following the PPC.

Also, from Fig. 2, it can be seen that that input follows its PIC.

Further, it can be observed from Fig. 2 the filtered tracking

errors follow its VPC. It is to note that, since ξd(0) = 0 and

ξ̇d(0) = 0.5, so with change in the initial condition ξ(0) from

[0.4 0.29]T to [0.4 0.29]T , ξ̃(0) = [ξ̃1(0)
˙̃
ξ1(0)] changes from

[0.4 − 0.21]T to [0.6 − 0.21]T , respectively. Consequently,

r(0) changes from 0.59 to 0.99, and also |r(0)|(a − µ)1−n

changes from 0.59 to 0.99. It can be calculated that a further

increase in ξ1(0) from 0.6 will violate the feasibility condition

|r(0)|(a − µ)1−n < ψ0, also it can be observed from Fig. 2

that initially control input is near to its PIC, thus motivating

the feasibility condition. The observation made from the Fig.

1 and 2 was as expected and stated in Theorem 1.
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Fig. 2: Top: control input ( ῡ for ξ(0) = [0.4 0.29]T , ῡ for

ξ(0) = [0.6 0.29]T ); Bottom: performance of filtered tracking

error ( r for ξ(0) = [0.4 0.29]T , r for ξ(0) = [0.6 0.29]T )

for the designed VPC ( ψr).

VII. CONCLUSION

A controller has been proposed for the tracking problem

of control affine nonlinear system subjected to PPC and PIC.

The structure of the controller is simple as it does not require

any adaptive laws, calculation of any derivatives, system

knowledge or approximation. Hence, the controller is easy

to implement and an approximation-free controller. Also, the

derived feasibility condition for the prescription of constraint

restricts arbitrary prescription. The simulation results confirm

these facts. In future, the work will be extended for multiagent

systems.

APPENDIX I
PROOF FOR

∑n−1
i=1

(

n−1
n−i

)

an−ihi = h((a+ h)n−1 − hn−1).

Using the binomial identity
(

m
k

)

=
(

m
m−k

)

, we have
∑n−1

i=1

(

n−1
n−i

)

an−ihi =
∑n−1

i=1

(

n−1
i

)

an−ihi. Further using the

binomial identity
(

m
k

)

=
(

m−1
k

)

+
(

m−1
k−1

)

, it can be written

as
∑n−1
i=1

(

n−1
n−i

)

an−ihi =
∑n−1
i=1

(

(

n
i

)

−
(

n−1
i−1

)

)

an−ihi.

Substituting
∑n−1
i=1

(

n
i

)

an−ihi = (a + h)(n) − hn − an and
∑n−1

i=1

(

n−1
i−1

)

an−ihi = a(a + h)(n−1) − an, it can be written

as
∑n−1

i=1

(

n−1
n−i

)

an−ihi = (a + h)(n) − hn − a(a + h)(n−1).

Further simplifying, we have
∑n−1

i=1

(

n−1
n−i

)

an−ihi = h((a +
h)n−1 − hn−1).
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