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Abstract— This paper presents a novel Adaptive-frequency
MPC framework for bipedal locomotion over terrain with
uneven stepping stones. In detail, we intend to achieve adaptive
foot placement and gait period for bipedal periodic walk-
ing gait with this MPC,in order to traverse terrain with
discontinuities without slowing down. We pair this adaptive-
frequency MPC with a kino-dynamics trajectory optimization
for optimal gait periods, center of mass (CoM) trajectory,
and foot placements. We use whole-body control (WBC) along
with adaptive-frequency MPC to track the optimal trajectories
from the offline optimization. In numerical validations, our
adaptive-frequency MPC framework with optimization has
shown advantages over fixed-frequency MPC. The proposed
framework can control the bipedal robot to traverse through
uneven stepping stone terrains with perturbed stone heights,
widths, and surface shapes while maintaining an average speed
of 1.5 m/s.

I. INTRODUCTION

Uneven terrain locomotion has always been one of the
most important problems that researchers aim to solve on
bipedal robots via motion planning and control. The value
of such capability will allow bipedal robots to perform
robust locomotion in many real-world tasks such as rescue
and exploration missions with unknown terrains. Recent ad-
vancement in control strategies has allowed many successful
integrations of control frameworks with bipedal robots.

For instance, on one hand, Hybrid Zero Dynamics (HZD)
model [1] is an effective control scheme employed on bipedal
robots such as MABEL [2]. HZD on ATRIAS robot [3]
has allowed more intricate motion planning strategies to be
integrated, such as gait libraries for stepping stones [4]. The
gait library collected from offline optimization has allowed
ATRIAS (2-D) to precisely place its foot on the stepping
stones by online motion planning and position control. This
position-control-based approach requires accurate terrain in-
formation, including next stone distance and height, and is
not robust to uneven terrain perturbations.

On the other hand, force-based control schemes on
quadruped robots became more popular. Such control frame-
works can be used with linearized dynamics models and
constraints. The Quadratic Programming (QP)-based force
control and Model Predictive Control (MPC) on quadruped
robots ([5], [6]) both employ simplified rigid-body dynamics
and have demonstrated effectiveness in stable locomotion
over uneven terrain. We believe bipedal robots can also
benefit from the robustness on uneven terrain with force-
based locomotion control.
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Fig. 1: Bipedal Robot Traversing Terrain with Uneven Stepping Stones
Simulation video: https://youtu.be/8hLihy96lCg.

Our recent work on force-and-moment-based MPC
schemes on a 16-Degree-of-Freedom (DOF) bipedal robot
[7] has allowed stable 3-D locomotion with fixed gait periods
(i.e. fixed-frequency MPC). However, due to the unawareness
of the terrain, the robot cannot adapt its footsteps based
on the terrain. The next-step foot placement [8] of bipedal
locomotion is dependent on both linear velocity and gait
period. Hence, when maintaining a constant velocity during
walking while aiming to vary step length, it can be achieved
by adjusting the gait period of each step. We introduce
adaptive frequency to the MPC to allow the robot to walk
with varied gait periods for each step and achieve varied step
lengths with a constant walking speed.

Kino-dynamics-based trajectory optimization has been in-
troduced and used in many works on mobile-legged robots
(e.g. [9], [10]). The framework has the advantage of sim-
plified system dynamics while being able to apply robot
joint constraints. To synchronize the motion control and
optimization, we use the same simplified dynamics model in
both MPC and optimization, the same foot placement policy
in swing foot control and optimization foot placement, and
the same discrete time steps in MPC and optimization.

Many related works (e.g.,[11], [12], [13], [14]) that use
trajectory optimization/planning for bipedal gait and trajec-
tory generation share a similarity in that the foot placement
adaptation is included in the frameworks to optimize best
capture point locations. In our work, to allow bipedal robots
to overcome very narrow stepping stones, exact foot place-
ment on the stone is required. We pre-define the desired step
locations in optimization to optimize the gait periods and
CoM trajectory based on each stride length.

Tracking optimal trajectory with only MPC is not op-
timal due to its inherent low sampling frequency, which
is even lower with a long gait period. We pair the MPC
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with a higher-frequency Whole-body Control (WBC) for
more accurate trajectory tracking. MIT Mini Cheetah [15],
[16] quadruped robot and MIT Humanoid robot [17] both
have demonstrated outstanding balancing performance dur-
ing dynamical motion with the force-based MPC and WBC
combination. We develop the WBC strategy to work with
our bipedal force-and-moment-based MPC. WBC in [18]
employed on bipedal robots [19], [20] validated the feasibil-
ity of a WBC-type control strategy in dynamic locomotion
with periodic gaits. In our approach, We combine Kino-
dynamics trajectory optimization with adaptive-frequency
MPC framework for bipedal robot traversing stepping stones
and use WBC as low-level force-to-torque mapping and
trajectory tracking control.

The main contributions of the paper are as follows:
• We allow the bipedal to have adaptive foot placement

and gait periods for each step, and realize it in control
with adaptive-frequency MPC as our main locomotion
controller.

• We enhance the adaptive-frequency MPC by kino-
dynamics trajectory optimization for optimal trajectory
generation and WBC as tracking control.

• We use the proposed framework in bipedal locomotion
over uneven stepping stones. The proposed method al-
lows the bipedal robot to maintain high speed at around
1.5 m/s when traversing uneven stepping stone terrains
with height, width, and stone surface shape perturba-
tions while only requiring minimal terrain knowledge.

The rest of the paper is organized as follows. Section.
II introduces the physical design parameters of the bipedal
robotand the overview of the system architecture including
optimization and control. Section.IV presents the adaptive-
frequency trajectory optimization framework with the bipedal
kino-dynamics model. Section. IV presents the adaptive-
frequency MPC framework. Some simulation result high-
lights and comparisons are presented in Section. V.

II. BIPEDAL ROBOT MODEL AND SYSTEM OVERVIEW

A. Bipedal Robot Model
In this section, we present the bipedal robot model that

is used for this work. Our bipedal robot model is enhanced
from our previous design in [7], a small-scale bipedal robot
with 5-DoF legs. Presented in Figure. 2, each of the robot
legs consists of ab/ad, hip, thigh, calf, and ankle joints which
are all actuated by Unitree A1 torque-controlled motor. A1
motor is a powerful joint motor with a 33.5 Nm maximum
torque output and 21.0 rad/s maximum joint speed output
while weighing only 0.6 kg.

In this bipedal leg design, we strategically placed all
joint actuators on the upper of the thigh links, close to
the hips, for mass concentration, in order to minimize the
leg dynamics during locomotion. Negligible leg mass is
an important assumption in our force-and-moment-based
simplified dynamics model in MPC [7]. The trunk mass of
the bipedal robot is 5.8 kg and the overall mass is around 11
kg. More details about the physical design parameters can
also be found in [7].

Fig. 2: Bipedal Robot Configuration and Simplified Dynamics Model

B. System Overview

The optimization and control system block diagram is
shown in Figure. 3. We aim to achieve varied step lengths for
each step in bipedal locomotion by varying gait frequencies
in adaptive-frequency MPC. The proposed framework is built
around this controller. In order to allow more stable and
efficient locomotion, we pair the MPC control framework
with offline trajectory optimization to generate desired tra-
jectories.

Swing Leg 

PD Cartesian Control

Adaptive-frequency 

MPC

Linear 

Interpolation
𝐹𝑠𝑤𝑖𝑛𝑔

𝐹𝑆𝑡𝑎𝑛𝑐𝑒

Whole-body 

Control

Motion Control

Robot Simulation

𝜏

𝑀𝑆𝑡𝑎𝑛𝑐𝑒

𝑥𝑑𝑒𝑠, 𝑝𝑛,𝑑𝑒𝑠Offline 

Optimization

1 kHz

Optimization

Terrain map

𝑥, q

𝑥𝑑𝑒𝑠, 𝑑𝑡𝑖

Varied, 
1

𝑑𝑡𝑖
Hz

Continuous-time

Fig. 3: System Block Diagram Optimization and control architecture.

The optimization framework uses terrain map to generate
discrete optimization data including desired body CoM tra-
jectory xdes ∈ R3, desired foot position pn,des ∈ R3 for
nth foot, and discrete sampling time dti at time step i for
MPC. The CoM trajectory and foot positions are linearly-
interpolated to have a sampling frequency at 1 kHz to match
the frequency of swing leg control and WBC. The MPC
accepts the optimization data at its native frequency due
to the synchronization of sampling time. Reaction forces
from MPC and swing leg control are input into WBC to be
mapped to joint torques τ ∈ R10. The robot state feedback
x ∈ R12 include body Euler angles (roll, pitch, and yaw)
Θ = [φ, θ, ψ]

ᵀ, position pc, velocity of body CoM ṗc, and
angular velocity ω. Joint feedback q ∈ R10 includes the joint
positions of the bipedal robot.

III. KINO-DYNAMICS-BASED ADAPTIVE-FREQUENCY
TRAJECTORY OPTIMIZATION

Humans can walk with different step lengths every step
to adapt to the terrain and can allow swing foot to remain



in the air for different periods of time. We intend to use
this adaptive-frequency trajectory optimization framework to
allow bipedal robots to walk with such characteristics.

We choose the kino-dynamics model in our optimization
framework in order to reduce the computation cost compared
to using a full-dynamics model. The average solving time of
offline trajectory optimization in our approach is shown in
Table. I.

A. Simplified Dynamics Model

We first present the force-and-moment-based simplified
dynamics model we use in both the kino-dynamics trajec-
tory optimization and adaptive-frequency MPC framework,
introduced in the author’s previous work [7]. The simplified
force-based dynamics model with ground reaction force and
moment control inputs is shown in Figure. 2. The control
input consists of u = [F1; F2; M1; M2]ᵀ ∈ R10, where
Fn = [Fnx, Fny, Fnz]

ᵀ,Mn = [Mny, Mnz]
ᵀ, leg n = 1, 2.

We choose the state variables as [Θ;pc;ω; ṗc] and control
inputs as u, then the simplified dynamics equation can be
represented as

d

dt


Θ
pc
ω
ṗc

 = A


Θ
pc
ω
ṗc

+Bu+


03×1

03×1

03×1

g

 (1)

A =


03 03 Rz 03

03 03 03 I3

03 03 03 03

03 03 03 03

 ,Rz =

 cψ −sψ 0
sψ cψ 0
0 0 1


(2)

B =


03 03 03×2 03×2

03 03 03×2 03×2
(p1−pc)×

IG

(p2−pc)×
IG

L
IG

L
IG

I3
mtrunk

I3
mtrunk

03×2 03×2

 (3)

where s denotes sine operator, and c denotes cosine operator.
Note that Rz is simplified by the assumption of small roll
and pitch angles φ ≈ 0, θ ≈ 0. [7]

In equation (3), IG ∈ R3×3 represent the rotation inertia of
the rigid body in the world frame. pn represents the Cartesian
coordinate of the contact point on nth foot. L is the selection
matrix to enforce the 5-D control input, L = [0, 0; 1, 0; 0, 1].

B. Optimization Problem Formulation

The adaptive-frequency trajectory optimization is an of-
fline multiple-shooting discretization method [21] to opti-
mize the robot’s CoM trajectory, foot placements, and gait
period of each step based on the terrain map. It also maintains
the linear velocity close to reference input to generate a
smoother walking trajectory.

The optimization variable X ∈ R39(N+1) includes

X = [xN ; pN,1; pN,2; qN ; uN ; dt0 . . . dtN ] (4)

where dt1 . . . dtN are discrete sampling times between each
two time steps with N total time steps. Subscript N indicates
the variable is a column vector of length of N+1. For bipedal

walking gait, we define the total number of time steps the
stance leg spends on the ground and the total number of time
steps the swing leg spends in the air to be both 5; hence the
one complete two-step gait period consists of 10 time steps.
The MPC prediction horizon is also 10 time steps, which
means it predicts a full cycle of periodic gait. It is important
to ensure every 5 dtis has the same length, and thereby the
gait period of each step l is the summation of 5 time steps.

The formulation of the nonlinear programming (NLP)
problem is as follows. The optimization objective is to drive
the linear velocity close to the command and minimize the
ground reaction force to maximize efficiency.

minimize
x, dt1...dtN

N∑
i=0

αi(ṗc,x[i]− ṗrefc,x )2 + u[i]ᵀβiu[i] (5)

s. t. Initial Condition : x0 = x[0] (6a)
End Condition : xN = x[N ] (6b)

Simplified Dynamics: equation (1) (6c)
Periodic Gait Constraint (6d)

qmin ≤ qn[i] = IK(x[i], pn[i]) ≤ qmax (6e)
τmin ≤ Jᵀ

n(qn[i])un[i] ≤ τmax (6f)

pl(terrain) = pn,l = phip,l +
tstance

2
ṗc,l (6g)

0.02 ≤ dti ≤ 0.05 (6h)

Equation (6d) enforces the periodic walking gait of the
bipedal robot with 5 time steps stance phase and 5 times
steps swing phase. Equation (6e) enforces joint angle limits.
Equation (6f) constrains joint torques by contact Jacobians.
Lastly, the swing foot placement is enforced by the inverted-
pendulum-based foot placement policy. ([8], [5], [7]). With
this foot placement policy, the optimization framework can
adapt to the most optimal gait period based on how far one
step needs to place to overcome the terrain while keeping
the robot’s linear velocity constant. tstance represents the
total time the stance foot spends on the ground, which is
the summation of 5 time steps at step l. The placement at
touch-down for each step l is acclimated to the terrain (i.e.
each step is on a stepping stone).

IV. ADAPTIVE-FREQUENCY CONTROL WITH VARIED
GAIT PERIODS

In this section, we present a force-and-moment-based
MPC with adaptive frequency in bipedal walking gait with
varied step lengths to overcome discontinued terrains without
slowing down or coming to a complete stop. The optimiza-
tion introduced in Section.III outputs optimized sampling
times for MPC, which can also be interpreted as the gait
period for each step. Hence it is important to modify these
controllers to accept walking gait with different gait periods.

A. Adaptive-frequency MPC for Bipedal Locomotion

First, we present the adaptive-frequency MPC. The MPC
framework works with varied gait periods from the opti-



(a) Snapshot of Optimization Results

(b) Snapshot of Controller Tracking Results in Simulation with Terrain Perturbations (all using results from (a))

Fig. 4: Motion Snapshots of Uneven Stepping Stone Locomotion a). Optimization results. b). Simulation results of various cases with terrain perturbations.

mization results. Both MPC and optimization use the same
simplified dynamics model shown in Figure. 2.

To form a linear state-space dynamics equation for MPC,
we choose to include gravity g as a dummy state variable
x = [Θ;pc;ω; ṗc; g] ∈ R15 in equation (1) to form,

ẋ(t) = Âcx+ B̂cu. (7)

where continuous-time matrices Âc ∈ R15×15 and
B̂c ∈ R15×10 are modified from A and B.

A formulation of the MPC problem with finite horizon k
can be written in the following form,

min
x,u

k−1∑
i=0

(xi+1 − xrefi+1)TQi(xi+1 − xrefi+1) +Ri‖ui‖ (8)

s. t. x[i+ 1] = Â[i]x[i] + B̂[i]u[i], (9a)
−µFiz ≤ Fix ≤ µFiz
−µFiz ≤ Fiy ≤ µFiz (9b)

0 < Fmin ≤ Fiz ≤ Fmax (9c)
Diui = 0 (9d)

The objective of the problem is to drive state x close to
command and minimize u. These objectives are weighted by
diagonal matrices Qi ∈ R15×15 and Ri ∈ R10×10.

Equation (9a) to (9c) are constraints of the MPC problem.
Equation (9a) is an equality constraint of the linearized
dynamics equation in discrete-time at ith time-step derived
from equation (7). Equation (9b) describes inequality con-
straints on contact friction pyramid. Equation (9c) describes
the bounds of reaction forces. Equation (9d) enforces gait
constraint to ensure the swing leg exerts zero control input.

The translation of the proposed MPC problem into
Quadratic Programming (QP) form to be efficiently solved
can be found in many related works and previous works (e.g.,

[5], [7]).

B. Whole-body Control

With adaptive-frequency MPC, in a step with a long gait
period, the sampling frequency can be as low as only 20 Hz.
The low-frequency MPC cannot guarantee optimal tracking
performance. Hence we choose to combine MPC with WBC
to ensure more accurate tracking control. The WBC is an
established level-low control method to map reaction forces
to joint torques on legged robots [16], [17].

We adapt the WBC to work with force-and-moment-based
MPC control input and allow bipedal walking gait with
varied gait periods. The WBCs used in [16] and [18] are
paired with a high-frequency joint PD controller to track
desired joint position and velocity in addition to computing
joint torques based on prioritized tasks. Both CoM and swing
foot position control are parts of the WBC tasks. Our WBC
framework only uses torque output from QP optimization
and does not require joint tracking. Instead, we chose to
continue using Cartesian space PD swing foot control [7]
to track optimal foot placement from optimization. With
this approach, the WBC tasks reduced to only driving CoM
position and rotation xc = [pc,x, pc,y, pc,z, φ, θ, ψ]ᵀ to
desired input (i.e. trajectory tracking). Hence it avoids extra
computation time at the very computation-costly derivative
of contact Jacobian J̇c for the 5-DoF bipedal robot leg.

The full joint space equation of motion for the bipedal
robot has the form,

Mq̈ + C + g =

[
0
τ

]
+ τb (10)

q̈ is a linear vector space containing both entries of body
state (i.e. CoM position vector and Euler angles) and joint
states components, q̈ = [q̈b; q̈j ], where q̈b ∈ R6, q̈j ∈ R10,



and τb = Jᵀ
c u.

The desired acceleration of the CoM tracking task uses
the optimal CoM trajectory from the trajectory optimization
as reference xdesc , and is computed based on a PD control
law,

ẍdesc = KWBC
P (xdesc − xc) +KWBC

D (ẋdesc − ẋc) (11)

And the acceleration command q̈cmd is calculated by a
similar task-space projection algorithm in [16].

Now the WBC-QP problem to compute the minimized
relaxation components of MPC ground reaction force ∆u
and joint acceleration command ∆q̈ is as follows,

min
∆q̈,∆u

∆q̈ᵀH∆q̈ + ∆uᵀK∆u (12)

s. t. Sb{M(∆q̈ + q̈cmd) + C + g

−Jᵀ
c (∆u+ u)} = 0 (13a)

umin ≤ ∆u+ u ≤ umax (13b)
τmin ≤ τ ≤ τmax (13c)

In equation (12), H ∈ R16×16 and K ∈ R10×10 are
diagonal weighting matrices for each objective. Equation
(13a) is a dynamics constraint to control the floating base
dynamics. Selection matrix Sb ∈ R6×16 consists of 1s and
0s to identify the float base joints.

The final joint torques can be calculated as[
0
τ

]
= M(∆q̈ + q̈cmd) + C + g − Jᵀ

c (∆u+ u) (14)

As for swing leg, the joint torques τswing,n ∈ R5 are
computed separately by inverse Jacobian Jᵀ

v,n of leg n,

τswing,n = Jᵀ
v,nFswing,n. (15)

Where swing foot force Fswing,n is determined by a simple
PD control law,

Fswing,n = KP (pn,des − pn) +KD(ṗn,des − ṗn) (16)

V. RESULTS

In this section, we will present highlighted results for
validation of our proposed adaptive-frequency control and
optimization framework. Associated simulation videos can
be found via the link under Figure. 1.

We validate our proposed approach in a high-fidelity
physical-realistic simulation in MATLAB Simulink with
Simscape Multibody library. We also use Spatial v2 software
package [22] to acquire coefficients of dynamics equations
in WBC and CasADi [23] for offline optimization.

Firstly, we present the comparison between MPC-only
control vs. MPC+WBC in tracking sinusoidal height com-
mand with double-leg stance. Due to low sampling fre-
quency, previous works usually only use MPC as locomotion
control and use QP-based force control as balance/stance
control for its higher frequency (e.g. [6], [17], [7]). Figure.
5 shows the comparison of simulation snapshots between
the two approaches, it can be observed that the WBC+MPC
approach we proposed performed ideally in height tracking
while the MPC-only approach failed over time.

Fig. 5: Height Command Tracking Results Simulation snapshots are
several time steps

(a) Simulation results: fixed-frequency control

(b) Simulation results: adaptive-frequency control only

(c) Simulation results: adaptive-frequency control + optimization (proposed approach)

Fig. 6: Motion Snapshots of Uneven Stepping Stone Locomotion
Comparison of fixed-frequency control vs. adaptive-frequency control vs.
adaptive-frequency control + optimization

Secondly, we compare the locomotion performance over
stepping stones in simulation with the following approaches.

1) With fixed-frequency MPC + WBC, at 0.3s
2) With adaptive-frequency MPC + WBC
3) With adaptive-frequency MPC + WBC + optimization

As can be seen in Figure. 6a, the approach with fixed-
frequency control cannot adapt the foot placement based on
the stepping stone gap distance. In Figure. 6b, the adaptive-
frequency MPC+WBC framework with manually-input gait
periods based on the terrain shows improvement from the
fixed gait period case. However, it cannot achieve precise
foot placement on stepping stones nor maintain a preferable
trajectory, therefore failed after only a few stones. Our
proposed approach, shown in Figure. 6c, with both adaptive-
frequency control and optimization can allow the bipedal
robot to traverse through the stepping stone terrain. Figure. 7
shows the velocity tracking performance with our proposed
approach 3). The simulation velocity stays smoothly close to
the desired trajectory through the stepping stone terrain.

We also would like to present the solver computation
times for several tasks in CasADi with IPOPT solver in
MATLAB R2021b. As a benchmark, the PC platform we use
for offline optimization has an AMD Ryzen 5-5600X CPU
clocked at 4.65GHz. In Table.I, we measure the solving time
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Fig. 7: Velocity Tracking Results Simulation with perturbed stone shapes

TABLE I: Offline Optimization Solving Time

Cases: 4 stones 5 stones 6 stones 7 stones
Solving time: 6.72s 7.93s 10.15s 12.23s

of the proposed adaptive-frequency trajectory optimization.
The cases are categorized into the number of stepping stones
in the terrain. We run the optimization with 30 randomized
terrain setups for each case and compute the average time.

Lastly, we present the uneven stepping stone terrain lo-
comotion results with our proposed approach. In realistic
scenarios, the stepping stone surface shapes, heights, and
widths may vary, hence the errors and disturbances in a
vision-based terrain map acquisition system may hinder the
accuracy of terrain information. In our approach, we can
allow the terrain map in the optimization framework to be
simplified to uniformly sized stepping stones with varied
center-to-center distances, shown in Figure. 4a. We then
use this optimization result to control the robot to traverse
the terrains with various perturbations, shown in Figure. 4b.
These terrain perturbations including varied stepping stone
widths, heights, and surface shapes. In the above simulation
results, the linear velocity the robot maintained during the
task is 1.5 m/s. The stone center-to-center gap distance
is between 15 cm to 30 cm.The maximum stone height
perturbation is 5 cm. The stone width perturbation varied
between 4 cm to 10 cm.

VI. CONCLUSIONS

In conclusion, we introduced an effective adaptive-
frequency MPC and optimization framework for bipedal
locomotion over terrains with discontinuities such as step-
ping stones with varied gait periods and step lengths. In
addition, we also introduced the adaptive-frequency trajec-
tory optimization framework to generate optimal gait periods
for each step, CoM trajectory, and foot positions based on
the terrain. We paired MPC with WBC for more accurate
tracking control performance. Through numerical validation
in simulation, we successfully allowed the robot to walk over
a series of uneven stepping stones with perturbations while
maintaining the robot’s average linear velocity at 1.5 m/s.
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