
ACCEPTED TO IEEE CONTROL SYSTEMS LETTERS 1

DRIP: Domain Refinement Iteration with
Polytopes for Backward Reachability Analysis of

Neural Feedback Loops
Michael Everett, Member, IEEE , Rudy Bunel, Shayegan Omidshafiei

Abstract— Safety certification of data-driven control
techniques remains a major open problem. This work inves-
tigates backward reachability as a framework for providing
collision avoidance guarantees for systems controlled by
neural network (NN) policies. Because NNs are typically
not invertible, existing methods conservatively assume a
domain over which to relax the NN, which causes loose
over-approximations of the set of states that could lead the
system into the obstacle (i.e., backprojection (BP) sets).
To address this issue, we introduce DRIP, an algorithm
with a refinement loop on the relaxation domain, which
substantially tightens the BP set bounds. Furthermore,
we introduce a formulation that enables directly obtaining
closed-form representations of polytopes to bound the BP
sets tighter than prior work, which required solving linear
programs and using hyper-rectangles. Furthermore, this
work extends the NN relaxation algorithm to handle poly-
tope domains, which further tightens the bounds on BP
sets. DRIP is demonstrated in numerical experiments on
control systems, including a ground robot controlled by a
learned NN obstacle avoidance policy.

Index Terms— Neural Networks, Data-Driven Control,
Safety Verification, Reachability Analysis

I. INTRODUCTION

NEURAL networks (NNs) offer promising capabilities
for data-driven control of complex systems (e.g., self-

driving cars). However, formally certifying safety properties of
systems that are controlled by NNs remains an open challenge.

To this end, recent work developed reachability analysis
techniques for Neural Feedback Loops (NFLs), i.e., dynam-
ical systems with NN control policies [1]–[4]. For forward
reachability analysis, these techniques compute the set of
states the system could reach in the future, given an initial
state set, trained NN, and dynamics model. Due to the NNs’
high dimensionality and nonlinearities, exact analysis is often
intractable. Thus, current methods instead compute guaranteed
over-approximations of the reachable sets, based on relaxations
of the nonlinearities in the NN [1]–[3] or dynamics [1], [4].
While forward reachable sets can then be used to check

This manuscript was first submitted for review on 12/8/2022.
M. Everett conducted this research while at Google Research and

is now with Northeastern University, Boston, MA 02118 USA (e-mail:
m.everett@northeastern.edu).

R. Bunel is with DeepMind, London, EC4A 3TW UK (e-mail:
rbunel@google.com).

S. Omidshafiei is with Google Research, Cambridge, MA 02139 USA
(e-mail: somidshafiei@google.com).

whether the closed-loop system satisfies desired properties
(e.g., reaching the goal), forward methods can be overly
conservative for obstacle avoidance [5].

Thus, this work focuses on backward reachability analy-
sis [1], [5]–[9]. The goal of backward reachability analysis
is to compute backprojection (BP) sets, i.e., the set of states
the will lead to a given target/obstacle set under the given
NN control policy and system dynamics. The system can be
certified as safe if it starts outside the BP sets, but the non-
invertibility of NNs presents a major challenge in calculating
these sets. Recent work [1], [5]–[7] proposes to first compute
a backreachable (BR) set, i.e., the set of states that lead to the
target set for some control input within known control limits.
These methods then relax the NN controller over the BR set,
which is a superset of the BP set, and calculate bounds on the
BP set via linear programs.

However, a key challenge with that formulation is the BP set
over-approximations can remain loose. A major cause of this
conservativeness is that the BR set is often large, leading to
loose NN relaxations, and thus loose BP set approximations.
Moreover, conservativeness compounds when calculated over
multiple timesteps due to the wrapping effect [10]. Prior work
introduced strategies based on set partitioning [5]–[7] and
mixed integer linear programming (MILP) [7] to improve
tightness, but these methods are fundamentally hindered by
initializing with the BR set. This paper instead proposes a
refinement loop, which, for a particular timestep, iteratively
uses the previous BP set estimate to relax the NFL and
compute a new BP set, which can lead to much tighter BP
set estimates. At each iteration, this new strategy shrinks the
domain over which the NFL is relaxed, which leads to a less
conservative relaxation and ultimately tighter bounds on the
BP sets. If desired, this idea could be used in conjunction
with set partitioning [5]–[7].

Another key limitation of prior work is the use of axis-
aligned bounding boxes to represent BP set estimates [5]–[7].
These hyperrectangles are computed by solving several linear
programs (LPs) over states and controls, but hyperrectangles
are often a poor approximation of the true BP sets. Instead,
this paper introduces a new approach that enables directly
obtaining a closed-form polytope representation for the BP set
estimate. A key reason why this enables tighter BP set bounds
is that the facets of the target set (or future BP sets in the
multi-timestep algorithm) can be directly used as the objective
matrix for the relaxation algorithm, which also automatically

ar
X

iv
:2

21
2.

04
64

6v
2

 [
ee

ss
.S

Y
]

 1
7

M
ar

 2
02

3

2 ACCEPTED TO IEEE CONTROL SYSTEMS LETTERS

addresses the common issue of choosing facet directions in
polytope design. Furthermore, we show that the NN can be
relaxed over these polytope BP sets, which leads to much
tighter relaxations and BP set estimates compared to prior
work, which inflated polytopes to hyperrectangles.

To summarize, the main contribution of this work is DRIP,
an algorithm that provides safety guarantees for NFLs, which
includes domain refinement and a polytope formulation to give
tighter certificates than state-of-the-art methods. Numerical
experiments on the same data-driven control systems as in
prior state-of-the-art works [5]–[7] demonstrate that DRIP can
provide 371× tighter bounds while remaining computationally
efficient (∼ 0.3s) and can certify obstacle avoidance for a robot
with a learned NN policy.

II. BACKGROUND

This section defines the dynamics, relaxations, and sets used
for backward reachability analysis.

A. NFL Dynamics
As in [7], we assume linear time-invariant (LTI) dynamics,

xt+1 = Axt + But + c , f(xt,ut) , (1)

where xt ∈ Rnx is the state at discrete timestep t, ut ∈
Rnu is the input, A ∈ Rnx×nx and B ∈ Rnx×nu are known
system matrices, and c ∈ Rnx is a known exogenous input.
We assume xt ∈ X ⊆ Rnx and ut ∈ U ⊆ Rnu , where X
and U are convex sets defining the operating region of the
state space and control limits, respectively. The closed-loop
dynamics are

xt+1 = Axt + Bπ(xt) + c , p(xt;π) , (2)

where π(·) is a state-feedback control policy, discussed next.

B. NN Control Policy & Relaxation
The control policy, π : X → U , can be an arbitrary

computation graph, composed of primitives that can be linearly
relaxed [11]–[13]. For example, given an m-layer NN with ni
neurons in layer i and nonlinear activation σi : Rn → Rn such
that post-activation zi = σi(zi−1) (e.g., ReLU, sigmoid), we
need to be able to define αl,i,βl,i,αu,i,βu,i such that

αl,izi−1 + βl,i ≤ zi ≤ αu,izi−1 + βu,i . (3)

For each primitive, values of αl,i,βl,i,αu,i,βu,i depend on
the algorithm employed and are derived from intermediate
bounds over the activation of the network, which can be
obtained by applying the bound computation procedure (de-
scribed next) to subsets of the network.

CROWN [14] and LIRPA algorithms in general [11] enable
backward propagation of bounds (from function output to
input, not to be confused with backward in time). For example,
consider evaluating a lower bound on c · zi + b, using the
relaxations defined in (3) to replace zi:

min c · zi + b (4)

≥min [c]+ (αl,izi−1 + βl,i) + [c]− (αu,izi−1 + βu,i) + b

= min
(
[c]+αl,i + [c]−αu,i

)
zi−1 + [c]+βl,i + [c]−βu,i + b,

where [c]+ = max(c, 0) and [c]− = min(c, 0). Through back-
substitution, we transformed a lower bound defined as a linear
function over zi into a lower bound defined as a linear function
over zi−1. By repeated application of this procedure to all
operations in the network, we can obtain bounds that are affine
in the input. That is, for a computation graph p from (2),
with input xt and output xt+1, given an objective matrix
C ∈ Rnfacets×nx , we compute M ∈ Rnfacets×nx and n ∈ Rnfacets

such that
Mxt + n ≤ Cxt+1. (5)

If xt is within some known set Xt, these bounds can be
concretized by solving minxt∈Xt Mxt + n. Closed-form so-
lutions exist for some forms of Xt.

Prior CROWN-based backward reachability works [5]–[7]
relaxed the control policy π, whereas this work directly relaxes
the closed-loop dynamics, p, drawing inspiration from [3],
which focused on forward reachability.

C. Backreachable Sets & Backprojection Sets

For target set XT ⊆ X , define t-step BP and BR sets as

P−t(XT ;π) , {x| pt(x;π) ∈ XT } (6)

Rt(XT) , {x | ∃π′ : X → U s.t. pt(x;π′) ∈ XT }.

where t > 0 and pt+1 , p ◦ pt. We will typically drop
the arguments and simply write Rt,Pt. Clearly, Pt ⊆ Rt.
Since exactly computing BP sets is computationally difficult,
this work aims to compute BP over-approximations (BPOAs),
which provide a (guaranteed) conservative description of all
states that will lead to the target set. For sets, upper bar
notation conveys an outer bound, e.g., Ā ⊇ A; for vectors,
bar notation conveys upper/lower bounds, e.g.,

¯
a ≤ a ≤ ā.

Definition II.1. For some t < 0, P̄t is a BPOA if P̄t ⊇ Pt.

One efficient way to outer bound R−1 with hyper-rectangle
[
¯
x−1, x̄−1] is to solve the following optimization problems for

each state k ∈ [nx], with the i-th standard basis vector, ei [1]:

x̄−1;k = max
x∈X ,u∈U s.t. f(x,u)∈XT

e>k x

¯
x−1;k = min

x∈X ,u∈U s.t. f(x,u)∈XT

e>k x.
(7)

III. APPROACH

This section introduces our proposed approach, Domain
Refinement Iteration with Polytopes (DRIP), with descriptions
of the 3 technical contributions in Sections III-A to III-C and
a summary of the algorithm in Section III-D.

A. Improved BP Set Representation: Polytope
Formulation

Whereas prior work (e.g., [7]) represents BPOAs as hyper-
rectangles, this work introduces a formulation based on
halfspace-representation (H-Rep) polytopes.

Lemma III.1. Given closed-loop dynamics p (2), AT ,bT
parameterizing target set XT = {x |ATx ≤ bT }, and

EVERETT et al.: DRIP: DOMAIN REFINEMENT ITERATION WITH POLYTOPES FOR BACKWARD REACHABILITY ANALYSIS OF NEURAL FEEDBACK LOOPS 3

Vertex projection

NN
Controller Dynamics

Simplex Space State Space

Define Relaxation Parameters

Backward Mode Bound Propagation

Fig. 1: Architecture to enable relaxation of closed-loop dynamics over a polytope description of the current state set. A
linear transformation, V (stacked polytope vertices, nv = 3 here), is added to the front of the closed-loop dynamics. This
transformation projects the standard nv-simplex onto the state space, leading to a polytope of states over which the closed-loop
dynamics is relaxed. During the relaxation, the function including the vertex projection is used to define relaxation parameters,
but the backward mode bound propagation stops before the vertex projection to compute Mxt + n ≤ Cxt+1.

Arelax,brelax parameterizing a BPOA, P̄ ′−1 = {x |Arelaxx ≤
brelax} ⊇ P−1, the following set is also a BPOA,

P̄−1 =

{
x |
[

M
Arelax

]
x ≤

[
bT − n
brelax

]}
, (8)

with P̄ ′−1 ⊇ P̄−1 ⊇ P−1, and with M,n defined below.

Proof. Run CROWN (5) on p over the domain P̄ ′−1 with
objective C = AT to obtain M,n such that

Mxt−1 + n ≤ ATxt ≤ bT ∀xt−1 ∈ P̄ ′−1. (9)

Thus, the set of xt−1 that lead to XT in one timestep is
bounded by the constraints (9) and xt−1 ∈ P̄ ′−1. P̄ ′−1 ⊇ P̄−1

by construction, and P̄−1 ⊇ P−1 since P−1 could contain
xt−1 that do not satisfy (9) due to the relaxation gap.

Corollary III.2. To find a BPOA without being provided
Arelax,brelax, solve (7) to get hyper-rectangular bounds,
R̄−1 ⊇ R−1. R̄−1 is also a BPOA and can be used
for Lemma III.1.

B. Improved Relaxation Domain: Refinement Loop

While R̄−1 provides a domain for relaxing the NN, this
domain is often excessively conservative and leads to large
BPOAs. To address this issue, this work leverages the follow-
ing to tighten the domain used for relaxation.

Corollary III.3. Given closed-loop dynamics p from (2),
AT ,bT that parameterize XT = {x |ATx ≤ bT }, and initial
BPOA P̄0

−1 (e.g., using Corollary III.2), applying Lemma III.1
iteratively for niters results in the sequence of BPOAs, P̄0

−1 ⊇
P̄1
−1 ⊇ · · · ⊇ P̄

niters
−1 ⊇ P−1.

This iterative refinement can be performed, for example, for
a specified number of steps or until the reduction in BPOA
volume between refinement steps reaches some threshold.

Algorithm 1 CROWNSimplex

Input: closed-loop dynamics f , polytope vertices V, objec-
tive matrix C

Output: M, n, describing affine bounds from xt to xt+1

1: s ∈ ∆nv
input to computation graph

2: xt = V · s
3: xt+1 = fsimplex(s) = f(V · s)
4: α,β ← defineRelaxationParams(fsimplex, [0nv ,1nv], 1)
5: M,n← bwdModeProp(fsimplex,xt+1 → xt,α,β,C)
6: return M,n

C. Improved Relaxation over BP Set: Polytope Input
Bounds

Existing algorithms [1], [5]–[7] simplified the bound com-
putation by assuming the domain over which to relax the
network was a hyper-rectangle X = [l,u]d, which enables

min
x∈X

Mx + n = [M]+l + [M]−u + n . (10)

Assuming that the input domain is a convex polytope C, the
strategy consists in first solving 2d LPs, li = minx∈C xi and
ui = maxx∈C xi, to obtain the hyperrectangular bounds on C,
which may introduce conservativeness.

Instead, the simplex is another domain that enables effi-
cient concretization of linear bounds, but also enables nat-
ural representation of a convex polytope. For X = ∆d ={
x ∈ Rd| x ≥ 0,

∑d
i xi = 1

}
,

min
x∈X

Mx + n = Margmin[M] + n , (11)

where Margmin[M] is a vector of the minimum of each row of
M. We can represent a convex polytope C, with a simplex and
a transformation based on its vertices {v0,v1, . . . ,vn}:

x ∈ C ⇐⇒ ∃s ∈ ∆d such that x = V · s , (12)

where V = [vT0 ;vT1 ; . . . ;vTn−1] ∈ Rnv×nx . Fig. 1 shows how
this is integrated in the bound propagation: the multiplication
by the matrix of vertices is simply prepended to the NN
controller as an initial linear layer (an exact representation
of polytope C).

4 ACCEPTED TO IEEE CONTROL SYSTEMS LETTERS

Algorithm 2 Domain Refinement with Polytopes (DRIP)

Input: target set XT , policy π, dynamics p, iterations niters,
algorithm variant alg ∈ {DRIP, DRIP-HPoly}

Output: BP set approximation P̄−1(XT)
1: AXT

,bXT
← XT = {x | AXT

x ≤ bXT
}

2: P̄−1 ←R̄−1 = backreach(XT ,U , f)
3: for i in {1, 2, . . . , niters} do
4: if alg == DRIP then
5: V← findVertices(P̄−1)
6: M,n← CROWNSimplex(p(·;π),V,AXT

)
7: else if alg == DRIP-HPoly then
8: P̄ rect

−1 ← findRectangleBounds(P̄−1)
9: M,n← CROWN(p(·;π), P̄ rect

−1 ,AXT
)

10: end if
11: P̄−1 ←

{
x |

[
M

AP̄−1

]
x ≤

[
bT − n
bP̄−1

]}
12: end for
13: return P̄−1

Algorithm 3 Multi-Step DRIP

Input: target set XT , policy π, dynamics p, iterations niters,
time horizon τ

Output: BP set approximations P̄−τ :0(XT)
1: P̄0(XT)← XT
2: for t in {−1,−2, . . . ,−τ} do
3: P̄t(XT)← DRIP(P̄t+1(XT), π, p, niters)
4: end for
5: return P̄−τ :0(XT)

D. Algorithm Overview

To summarize an implementation of the proposed approach,
we first describe the method for relaxing p (Algorithm 1) over
a simplex domain, then show how to calculate the BPOA for a
single timestep (Algorithm 2), then describe how to compute
BPOAs over multiple timesteps (Algorithm 3).

Given an objective matrix C ∈ Rh×nx , Algorithm 1
aims to compute M,n such that Cxt ≤ Mxt−1 + n
∀xt−1 ∈ conv hull(V). Add a linear transformation to the
front of the closed-loop dynamics to obtain a new function,
fsimplex : ∆nv

→ X (Line 3). Then, define the parameters of
each relaxation αl,i,βl,i,αu,i,βu,i, from (3), specifying the
standard nv-simplex as the bounds on the function’s input
(Line 4). Finally, compute backward bounds from the objec-
tive, C, to the current state, xt, stopping before reaching the
added linear transformation (Line 5).

Algorithm 2 describes the proposed method for computing
a BPOA, P̄−1. First, extract AT ,bT as the H-rep of the
target set polytope. Then, hyper-rectangle R̄−1 is computed by
solving 2nx LPs (Line 2), and the BPOA, P̄−1, is initialized as
R̄−1. To refine that estimate, loop for niters (Line 3). If using
DRIP, at each iteration, compute the vertex representation
(V-rep) of the current BPOA (Line 5, we used [15]) and
run Algorithm 1 with C = AT on this simplex domain
(Line 6). If using DRIP-HPoly, find hyperrectangle bounds
on P̄−1 and run CROWN [14] with C = AT on this
hyperrectangular domain. Note that DRIP-HPoly completely
avoids the conversion between H-Rep and V-Rep, which may

be desirable for higher dimensional systems. Either way, then
set the parameters of the H-rep of the refined BPOA using
the CROWN relaxation and target set along with the prior
iteration’s BPOA. Update P̄−1 and the loop continues. After
niters, P̄−1 is returned. To calculate BPOAs for a time horizon
τ , Algorithm 3 calls Algorithm 2 τ times, using the next step’s
BPOA as the target set.

E. Time Complexity Analysis

First, we analyze the growth of nfacets from domain refine-
ment iteration. At t=− 1, the BPOA starts with nfacets = 2nx
(hyperrectangle, R̄−1). At each iteration, the BPOA gains
at most 2nx facets, meaning nfacets=2nx + 2nitersnx at the
end of the first timestep’s domain iteration. At t= − 2, the
BPOA again starts with nfacets=2nx, but at each iteration we
add 2nx + 2nitersnx facets, as the target set is the BPOA at
t=−1. After T steps of niters iterations, the BPOA has at most
O(nTitersnx) facets.

DRIP-HPoly: Assume solving 1 LP has complexity O((n+
d)1.5nL) [16], with n variables, d constraints, and L encoding
bits. BR bounds require 2nx LPs, where each has nfacets +
2nu constraints and nx + nu decision variables. Assuming
nfacets>2nu and nx>nu, this gives O((nx+nTitersnx)1.5nxL) =
O(n1.5T

iters n
2.5
x L) runtime across all T timesteps. At each refine-

ment iteration, we find rectangular bounds and run CROWN.
Finding rectangular bounds is similar to getting BR bounds ex-
cept it is done niters times, giving O(n1.5T+1

iters n2.5
x L). CROWN

time complexity is O(m2n3) for an m-layer network with
n neurons per layer and n outputs [14]; since we have
O(nT−1

iters nx) rows in the objective, we get O(m2n3nTitersnx)
(assuming n>nx and n>nu). Relaxing the closed-loop dy-
namics would be the same (p contains the control NN
with a constant number of additional layers). Thus, to com-
pute BPOAs for T timesteps, DRIP-HPoly’s complexity is
O(n1.5T+1

iters n2.5
x L+m2n3nTitersnx).

DRIP: Polytope domain relaxation affects the analysis in
3 places: vertex enumeration (converting from H-rep to V-
rep), CROWN relaxation (network width), and LP (number
of constraints). Since each BPOA starts as a hyperrectangle,
the polytopes are always bounded. Assume that vertex enu-
meration time complexity for a bounded polytope is O(n2dv)
with v vertices from n hyperplanes in d dimensions [17]. Here,
d = nx and we assume Θ(n

bnx
2 c

facets) (worst-case caused by cyclic
polytopes [18]) vertices, which corresponds to O(n

2+bnx
2 c

facets nx).
Recall that after T timesteps of niters iterations, the
BPOA would have O(nTitersnx) facets; it could thus have
O(n

Tbnx
2 c

iters n
bnx

2 c
x) vertices. Therefore, the time complexity of

vertex enumeration is O(n
T (2+bnx

2 c)
iters n

3+bnx
2 c

x). Analagously,
the CROWN runtime is O(nitersm

2(n
bnx

2 c
iters n

bnx
2 c

x)3nTitersnx) =

O(m2n
1+T+3Tbnx

2 c
iters n

3bnx
2 c+1

x), since we add a single layer
to the NN with one neuron per polytope vertex. For
the LP runtime, there are O(nT−1

iters nx) constraints, leading
to O(n

1.5(T−1)
iters n3.5

x L) time complexity. The full DRIP al-
gorithm has time complexity of O(n

T (2+bnx
2 c)

iters n
3+bnx

2 c
x +

m2n
1+T+3Tbnx

2 c
iters n

3bnx
2 c+1

x + n
1.5(T−1)
iters n3.5

x L).

EVERETT et al.: DRIP: DOMAIN REFINEMENT ITERATION WITH POLYTOPES FOR BACKWARD REACHABILITY ANALYSIS OF NEURAL FEEDBACK LOOPS 5

Fig. 2: Comparison of BP set bounds. Given a target set (red), proposed methods lead to much tighter bounds (dashed lines)
on true BP sets (solid lines), by combining multiple iterations (bottom row), polytope target sets (middle column), and simplex
bounds during relaxation (right column).

LP solver Polytope target sets (Proposed) Polytope target sets + simplex bounds (Proposed)

1
It

er
at

io
n

(a) Prior Work: BReachLP [5] (b) Proposed: DRIP-HPoly (c) Proposed: DRIP

5
It

er
at

io
ns

(P
ro

po
se

d)

(d) Proposed: BReachLP-Iterate (e) Proposed: DRIP-HPoly

Timestep

(f) Proposed: DRIP

HPoly

Fig. 3: Runtime vs. Error. Compared to prior work
(BReachLP), the refinement loop lowers the approximation
error with more computation time (BReachLP-Iterate). Incor-
porating target set facets reduces the error and runtime (DRIP-
HPoly), and incorporating simplex bounds further improves
the error with similar runtime (DRIP). Overall, there is a 371×
improvement in error for similar runtime (0.3s).

In practice, the runtime may be much better. For example,
T = 1 for Fig. 4, which eliminates a source of exponential
growth. Alternatively, rather than allowing the number of
facets to grow exponentially, one could simply solve an LP
at each iteration/timestep to obtain an constant-size outer
bound on the latest BPOA. While this would certainly reduce
the exponential growth in nfacets, our numerical experiments
suggest that such a step is not necessary in practice for the
systems considered.

IV. RESULTS

This section demonstrates DRIP on two simulated control
systems (double integrator and mobile robot), implemented
with the Jax framework [19] and jax verify [13] library.

A. Ablation Study
Using the double integrator system and learned policy

from [1] (2 hidden layers each with 5 neurons), Fig. 2
demonstrates the substantial improvement in reachable set

tightness enabled by our proposed method. For a target set
(red) XT = [4.5, 5.0] × [−0.25, 0.25], the true BP sets are
shown in solid colors for each timestep, and the BPOAs are
shown in the same colors with dashed lines. For example,
Fig. 2a implements the prior work [5], in which BPOAs
become very conservative after a few timesteps. By adding
the refinement loop (Section III-B), Fig. 2d shows substantial
improvement with niters = 5.

However, increasing niters > 5 does not improve the results
with the prior LP and hyper-rectangular BPOA formulation.
Instead, the middle column shows the impact of the proposed
formulation from Section III-A, in which the closed-loop
dynamics are relaxed to directly provide BPOAs as polytopes.
A key reason behind this improvement is the use of the target
set’s facets as the objective matrix during the backward pass
of the CROWN algorithm. When increasing niters to 5, we see
nearly perfect bounds on the first three BP sets, with tighter
yet still somewhat loose bounds on the final two timesteps.

The impact of the polytope domain used in the relaxation
(Section III-C) is shown in the rightmost column. Because
the first iteration always uses the hyper-rectangular R−t, we
expect to see no difference between Fig. 2b and Fig. 2c.
However, Fig. 2f shows much tighter BPOAs in the last two
timesteps when compared to Fig. 2e.

Overall, the massive improvement in BPOA tightness be-
tween the prior work [5] (Fig. 2a) and the proposed approach
(Fig. 2f) would enable a practitioner to certify safety when
starting from a larger portion of the state space.

B. Runtime vs. Error Tradeoff

Fig. 3 provides quantitative analysis of the tradeoff between
tightness and computational runtime for the various methods.
Final step error is the ratio ABPOA−ABP

ABP
, where AA denotes

the area of set A. Runtime is plotted as the mean and
shaded standard deviation over 20 trials (with the worst one

6 ACCEPTED TO IEEE CONTROL SYSTEMS LETTERS

(a) 1-step BPOAs (blue) for 15
iterations with obstacle (red)

(b) 400 rollouts with target set
(red) and BPOAs (blue)

Fig. 4: Ground robot policy certification. With niters = 15,
P̄−1 ⊆ XT , which certifies that the system will never collide
with the obstacle (starting anywhere outside the obstacle).

discarded). For the 3 variants of the proposed algorithms, by
increasing niters, we observe an improvement in error at the
cost of additional runtime.

The red triangle corresponds to Fig. 2a [5]. The pink curve
corresponds the leftmost column of Fig. 2, which adds a
refinement loop on the relaxation domain (Section III-B).
The blue curve corresponds to the middle column of Fig. 2,
which uses polytope BPOAs (Section III-A). The green curve
corresponds to the rightmost column of Fig. 2, which uses
polytope relaxation domains (Section III-C).

A key cause of the computation time reduction between
red/pink and green/blue is that the new formulation replaces
many of the LPs with closed-form polytope descriptions. Over-
all, we observe a 371× improvement in the error. Moreover,
this experiment did not require any set partitioning and was
still able to provide very tight BPOAs.

C. Ground Robot Policy Certification
Next, we use DRIP to certify that a robot will not collide

with an obstacle for any initial condition in the state space
(outside of the obstacle itself). We use the 2D ground robot
dynamics, policy, and obstacle from [5], [7] (2 hidden layers
each with 10 neurons). The target set is partitioned into 4 cells
(2 per dimension), which we note is 4× fewer cells than in [5],
[7]. For each cell, the 1-step BPOA is calculated for niters, and
the returned BPOA is the convex hull of the union of vertices
for each cell’s BPOA.

Fig. 4a shows the target set (red) and BPOAs for niters =
{0, 1, . . . , 15} (blue, darker corresponds to larger niters). When
niters = 15, P̄−1 ⊆ XT . By Corollary A.2 of [7], this certifies
that the system can only reach the obstacle if it starts from
within the obstacle; there is no need to compute BPOAs for
further timesteps. Fig. 4b shows BPOAs with rollouts of the
closed-loop dynamics from 400 random initial states, although
sampling trajectories is not necessary given the certificate.

V. CONCLUSION

This paper proposed a new backward reachability algorithm,
DRIP, for formal safety analysis of data-driven control sys-
tems. DRIP advances the state-of-the-art by introducing ideas
to shrink the domain over which the closed-loop dynamics are
relaxed and leverage polytope representations of sets at both
the input and output of the relaxation. These innovations are
shown to provide 2 orders of magnitude improvement in bound
tightness over the prior state-of-the-art with similar runtime.

Future work will investigate tighter simplex bounds [20] and
convergence properties.

REFERENCES

[1] M. Everett, G. Habibi, C. Sun, and J. P. How, “Reachability analysis
of neural feedback loops,” IEEE Access, vol. 9, pp. 163 938–163 953,
2021.

[2] H. Hu, M. Fazlyab, M. Morari, and G. J. Pappas, “Reach-SDP: Reach-
ability analysis of closed-loop systems with neural network controllers
via semidefinite programming,” in IEEE Conference on Decision and
Control (CDC), 2020, pp. 5929–5934.

[3] S. Chen, V. M. Preciado, and M. Fazlyab, “One-shot reachabil-
ity analysis of neural network dynamical systems,” arXiv preprint
arXiv:2209.11827, 2022.

[4] C. Sidrane, A. Maleki, A. Irfan, and M. J. Kochenderfer, “OVERT: An
algorithm for safety verification of neural network control policies for
nonlinear systems,” Journal of Machine Learning Research, vol. 23, no.
117, pp. 1–45, 2022.

[5] N. Rober, M. Everett, and J. P. How, “Backward reachability analysis of
neural feedback loops,” in IEEE Conference on Decision and Control
(CDC), 2022.

[6] N. Rober, M. Everett, S. Zhang, and J. P. How, “A hybrid partitioning
strategy for backward reachability of neural feedback loops,” in
American Control Conference (ACC), 2023, (to appear). [Online].
Available: https://arxiv.org/abs/2210.07918

[7] N. Rober, S. M. Katz, C. Sidrane, E. Yel, M. Everett, M. J.
Kochenderfer, and J. P. How, “Backward reachability analysis of neural
feedback loops: Techniques for linear and nonlinear systems,” 2022,
(in review). [Online]. Available: https://arxiv.org/abs/2209.14076

[8] J. A. Vincent and M. Schwager, “Reachable polyhedral marching
(RPM): A safety verification algorithm for robotic systems with deep
neural network components,” in IEEE International Conference on
Robotics and Automation (ICRA), 2021, pp. 9029–9035.

[9] S. Bak and H.-D. Tran, “Neural network compression of ACAS Xu
early prototype is unsafe: Closed-loop verification through quantized
state backreachability,” in NASA Formal Methods, 2022, pp. 280–298.

[10] A. Neumaier, “The wrapping effect, ellipsoid arithmetic, stability and
confidence regions,” in Validation numerics. Springer, 1993, pp. 175–
190.

[11] K. Xu, Z. Shi, H. Zhang, Y. Wang, K.-W. Chang, M. Huang,
B. Kailkhura, X. Lin, and C.-J. Hsieh, “Automatic perturbation analysis
for scalable certified robustness and beyond,” Advances in Neural
Information Processing Systems (NeurIPS), vol. 33, pp. 1129–1141,
2020.

[12] S. Dathathri, K. Dvijotham, A. Kurakin, A. Raghunathan, J. Uesato,
R. R. Bunel, S. Shankar, J. Steinhardt, I. Goodfellow, P. S. Liang et al.,
“Enabling certification of verification-agnostic networks via memory-
efficient semidefinite programming,” Advances in Neural Information
Processing Systems, vol. 33, pp. 5318–5331, 2020.

[13] DeepMind, “jax verify,” https://github.com/deepmind/jax verify, 2020.
[14] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel, “Efficient

neural network robustness certification with general activation func-
tions,” Advances in Neural Information Processing Systems (NeurIPS),
2018.

[15] S. Caron, “Python module for polyhedral manipulations–pypoman,”
version 0.5, vol. 4, 2018.

[16] P. M. Vaidya, “An algorithm for linear programming which requires o
(((m+ n) n 2+(m+ n) 1.5 n) l) arithmetic operations,” in Proceedings of
the nineteenth annual ACM symposium on Theory of computing, 1987,
pp. 29–38.

[17] D. Avis and K. Fukuda, “A pivoting algorithm for convex hulls and
vertex enumeration of arrangements and polyhedra,” in Proceedings of
the seventh annual symposium on Computational geometry, 1991, pp.
98–104.

[18] C. D. Toth, J. O’Rourke, and J. E. Goodman, Handbook of discrete and
computational geometry. CRC press, 2017.

[19] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary,
D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-
Milne, and Q. Zhang, “JAX: composable transformations
of Python+NumPy programs,” 2018. [Online]. Available: http:
//github.com/google/jax

[20] H. S. Behl, M. P. Kumar, P. Torr, and K. Dvijotham, “Overcoming
the convex barrier for simplex inputs,” Advances in Neural Information
Processing Systems, vol. 34, pp. 4871–4882, 2021.

https://arxiv.org/abs/2210.07918
https://arxiv.org/abs/2209.14076
https://github.com/deepmind/jax_verify
http://github.com/google/jax
http://github.com/google/jax

	I Introduction
	II Background
	II-A NFL Dynamics
	II-B NN Control Policy & Relaxation
	II-C Backreachable Sets & Backprojection Sets

	III Approach
	III-A Improved BP Set Representation: Polytope Formulation
	III-B Improved Relaxation Domain: Refinement Loop
	III-C Improved Relaxation over BP Set: Polytope Input Bounds
	III-D Algorithm Overview
	III-E Time Complexity Analysis

	IV Results
	IV-A Ablation Study
	IV-B Runtime vs. Error Tradeoff
	IV-C Ground Robot Policy Certification

	V Conclusion
	References

