
Revisiting LQR Control from the Perspective of
Receding-Horizon Policy Gradient

Xiangyuan Zhang Tamer Başar

Abstract— We revisit in this paper the discrete-time linear
quadratic regulator (LQR) problem from the perspective of
receding-horizon policy gradient (RHPG), a newly developed
model-free learning framework for control applications. We
provide a fine-grained sample complexity analysis for RHPG
to learn a control policy that is both stabilizing and ϵ-close to
the optimal LQR solution, and our algorithm does not require
knowing a stabilizing control policy for initialization. Combined
with the recent application of RHPG in learning the Kalman
filter, we demonstrate the general applicability of RHPG in
linear control and estimation with streamlined analyses.

1. INTRODUCTION

Model-free policy gradient (PG) methods promise a uni-
versal end-to-end framework for controller designs. By utiliz-
ing input-output data of a black-box simulator, PG methods
directly search the prescribed policy space until convergence,
agnostic to system models, objective function, and design
criteria/constraints. The general applicability of PG methods
leads to countless empirical successes in continuous control,
but the theoretical understanding of these PG methods is still
in its early stage. Stemmed from the convergence theory of
PG methods for general reinforcement learning tasks [1],
[2], a recent thrust of research has specialized the analysis
for the convergence and sample complexity of PG methods
into several linear state-feedback control benchmarks [3]–[9].
However, incorporating imperfect-state measurements leads
to a deficit of most, if not all, favorable landscape properties
crucial for PG methods to converge (globally) in the state-
feedback settings [9], [10]. Even worse, the control designer
now faces several challenges unique to control applications:
a) convergence might be toward a suboptimal stationary point
without system-theoretic interpretations; b) provable stability
and robustness guarantee could be lacking; c) convergence
depends heavily on the initialization (e.g., the initial policy
should be stabilizing), which would be challenging to hand-
craft; and d) algorithm could be computationally inefficient.
These bottlenecks blur the applicability of model-free PG
methods in real-world control scenarios since the price for
each of the above disadvantages could be unaffordable.

On the other hand, classic theories provide both elegant
analytic solutions and efficient computational means (e.g.,
Riccati recursions) to a wide range of control problems [11]–
[13]. They further reveal the intricate structure in various

The authors are with the Department of ECE and CSL, Univer-
sity of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. {xz7,
basar1}@illinois.edu. Research of the authors was supported in
part by the Air Force Office of Scientific Research (AFOSR) through Grant
FA9550-19-1-0353. The latest version is updated on Jan. 2024, where we
have removed a required condition on QN and improved the presentation.

control settings and offer system-theoretical interpretations
and guarantees to their characterized solutions. They sug-
gest that, compared to viewing the dynamical system as
a black box and studying the properties of PG methods
from a (nonconvex) optimization perspective, it is better to
incorporate those properties unique to decision and control
into the design of learning algorithms.

In this work, we revisit the classical linear quadratic
regulator (LQR) problem from the perspective of the newly-
developed receding-horizon PG (RHPG) framework [14],
which integrates Bellman’s principle of optimality into the
development of a model-free PG framework. First, RHPG
approximates infinite-horizon LQR using a finite-horizon
problem formulation and further decomposes the finite-
horizon problem into a sequence of one-step sub-problems.
Second, RHPG solves each sub-problem recursively using
model-free PG methods. To accommodate the inevitable
computational errors in solving these sub-problems, we es-
tablish the generalized principle of optimality that bounds the
accumulated bias by controlling the inaccuracies in solving
each sub-problem. We characterize the convergence and
sample complexity of RHPG in §3-D and emphasize that
the RHPG algorithm does not require knowing a stabilizing
initial control policy a priori.

A. Literature Review

We mainly compare with [3], [4] and [8], [15], [16], where
[3], [4] are the foundational work in applying policy opti-
mization to LQR and [8], [15], [16] remove the assumption
on an initial stabilizing point in LQR by adding a discount
factor to the objective function as an extra parameter.

In contrast to [3], [4] that parametrizes LQR as a sin-
gle nonconvex (constrained) optimization problem over the
policy space, we provide a new parametrization and per-
spective to learning LQR control. The critical difference
between the RHPG algorithm and [3], [4] is that RHPG
incorporates existing theories into the design of model-free
learning algorithms, which is more than just exploiting them
for the convergence analysis. We view this work as an
initial step toward the goal of “designing control-specific
learning algorithms with performance guarantees” rather
than “analyzing existing learning algorithms for control”.
This line of research is motivated by the observation that
viewing the dynamical system as a black box and directly
searching in the policy space leads to a deficit of most,
if not all, favorable landscape properties beyond LQR [9],
[10]. This implies that the excellent properties in LQR
following the parametrization in [3], [4], such as coercivity

ar
X

iv
:2

30
2.

13
14

4v
3

 [
m

at
h.

O
C

]
 3

1
Ja

n
20

24

and gradient domination, are rare, problem-dependent, and
hard to generalize. However, when the model information is
known, existing theories have provided extremely efficient
solutions (e.g., Riccati recursions) to these problems that
seemed unsolvable in the PO paradigm. Hence, our rationale
is that control settings inherently have more structures (that
are problem-agnostic) than a black-box system. One should
always exploit these structures in developing learning-based
algorithms with performance guarantees. In our work and
[14], [17], we have identified causality and the dynamic
programming principle as the fundamental properties in all
control settings and exploited them in the model-free learning
paradigm. As demonstrated in our work and [14], [17], the
RHPG framework efficiently solves LQR and the seemed-to-
be-unsolvable Kalman filtering problem in the PO fashion,
which serves as a fundamental benchmark in output feedback
control. As a by-product, the RHPG framework also removes
all assumptions inappropriate in model-free learning settings
and is more consistent with existing theories in control
and estimation. Our work and [14], [17] together lead to a
promising path toward the theoretical foundation of model-
free learning in partially observable settings and nonlinear
control through the lens of RHPG.

In comparison with [8], [15], [16], we note that the
γ-discounted LQR problems therein are equivalent to the
standard non-discounted LQR with system matrices being√
γA and

√
γB. Then, for any γ ∈ (0, 1), the set of

stabilizing policies with system matrices being
√
γA and√

γB is strictly larger than that of the un-discounted case.
Hence, when γ is sufficiently small, one can initialize the
PG algorithm with an arbitrary control policy. This removes
the requirement of knowing a stabilizing policy in advance,
but it comes with the price of solving multiple LQRs instead
of only one. Moreover, the criterion for increasing γ is more
complex than our selection rule for N in RHPG. Besides
removing the assumption on the initial stabilizing point, it
is more important to determine if the results/insights can
be further generalized/extended to more complicated control
problems, where the critical difference between our work
and [8], [15], [16] appears. In [8], [15], [16], the landscape
of discounted LQR is identical to those in [3], [4] for un-
discounted LQR, with essentially scaled versions of system
parameters. Thus, the same difficulties reported in [9], [10]
will appear when considering the output-feedback setting
with an additional discount factor. In contrast, RHPG can be
directly extended to solve output-feedback problems [17].

B. Notations

We use ∥X∥, κX , and ρ(X) to denote, respectively, the
spectral norm, condition number, and the spectral radius of a
square matrix X . If X is symmetric, we use X > 0 and X ≥
0 to denote that X is positive definite (pd) and positive semi-
definite (psd), respectively. For a pd matrix W of appropriate
dimensions, we define the W -induced norm of X as

∥X∥2W := sup
z ̸=0

z⊤X⊤WXz

z⊤Wz
.

2. PRELIMINARIES

A. Infinite-Horizon LQR

Consider the discrete-time linear dynamical system1

xt+1 = Axt +But, (2.1)

where xt ∈ Rn is the state; ut ∈ Rm is the control input;
A ∈ Rn×n and B ∈ Rn×m are system matrices unknown to
the control designer; and the initial state x0 ∈ Rn is sampled
from a zero-mean distribution D that satisfies Cov(x0) =
Σ0 > 0. The goal in the LQR problem is to obtain the
optimal controller ut = ϕt(xt) that minimizes the cost

J∞ := Ex0∼D

[∞∑
t=0

(
x⊤
t Qxt + u⊤

t Rut

)]
, (2.2)

where Q > 0 and R > 0 are symmetric pd weightings chosen
by the control designer. For the LQR problem as posed to
admit a solution, we require (A,B) to be stabilizable. Note
that here Q > 0 implies the observability of (A,Q1/2). Then,
the unique optimal LQR controller is linear state-feedback,
i.e., u∗

t = −K∗xt, and K∗ ∈ Rm×n, which with a slight
abuse of terminology we will call optimal control policy,
can be computed by

K∗ = (R+B⊤P ∗B)−1B⊤P ∗A, (2.3)

where P ∗ is the unique positive definite (pd) solution to the
algebraic Riccati equation (ARE)

P = Q+A⊤PA−A⊤PB(R+B⊤PB)−1B⊤PA. (2.4)

Moreover, the optimal control policy K∗ is guaranteed to
be stabilizing, i.e., ρ(A − BK∗) < 1. Therefore, we can
parametrize LQR as an optimization problem over the policy
space Rm×n, subject to the stability condition [3]:

min
K

J∞(K) = Ex0∼D

[∞∑
t=0

(
x⊤
t (Q+K⊤RK)xt

)]
(2.5)

s.t. K ∈ K := {K | ρ(A−BK) < 1}. (2.6)

Theoretical properties of model-free (zeroth-order) PG meth-
ods in solving (2.5) have been well understood [3], [4],
[18]. In particular, the objective function (2.5), even though
nonconvex, is coercive and (globally) gradient dominated
[18]. Hence, if an initial control policy K0 ∈ K is known
a priori, then any descent direction of the objective value
(e.g., vanilla PG) suffices to ensure that all the iterates will
remain in the interior of K while quickly converging toward
the unique stationary point. Removing the assumption on K0

(that an initial stabilizing policy can readily be found) has
remained an active research topic [8], [15], [16].

1For extensions to stochastic LQR with i.i.d. additive noises, as well as
the setting with an arbitrary (deterministic) initial state, see §5.

B. Finite-Horizon LQR

The finite-N -horizon version of the LQR problem is
also described by the system dynamics (2.1), but with the
objective function summing up only up to time t = N .
Similar to (2.5), we can parametrize the finite-horizon LQR
problem as min{Kt} J

(
{Kt}

)
, where

J
(
{Kt}

)
:=Ex0∼D

[
N−1∑
t=0

x⊤
t (Q+K⊤

t RKt)xt+x⊤
NQNxN

]
, (2.7)

and QN is a symmetric psd terminal-state weighting to be
chosen. The unique optimal control policy in the finite-
horizon LQR is time-varying and can be computed by

K∗
t = (R+B⊤P ∗

t+1B)−1B⊤P ∗
t+1A, (2.8)

where P ∗
t , for all t ∈ {0, · · · , N − 1}, are generated by the

Riccati difference equation (RDE) starting with P ∗
N = QN :

P ∗
t = Q+A⊤P ∗

t+1A

−A⊤P ∗
t+1B(R+B⊤P ∗

t+1B)−1B⊤P ∗
t+1A. (2.9)

Theoretical properties of zeroth-order PG methods in ad-
dressing (2.7) have been studied in [6], [7]. Compared to the
infinite-horizon setting (2.5), the finite-horizon LQR problem
(2.7) is also a nonconvex and gradient-dominated problem,
but it does not naturally require the stability condition (2.6).

3. RECEDING-HORIZON POLICY GRADIENT

A. LQR with Dynamic Programming

It is well known that the solution of the RDE (2.9)
converges monotonically to the stabilizing solution of the
ARE (2.4) exponentially [19]. It then readily follows that
the sequence of time-varying LQR policies (2.8), denoted
as {Kt}t∈{N−1,··· ,0}, converges monotonically to the time-
invariant LQR policy K∗ as N → ∞. Now, we formally
present this non-asymptotic convergence result.

Theorem 3.1: Let A∗
K := A−BK∗, use ∥ · ∥∗ to denote

the P ∗-induced norm, and define

N0 =
1

2
·
log

(∥QN−P∗∥∗·κP∗ ·∥A∗
K∥·∥B∥

ϵ·λmin(R)

)
log

(
1

∥A∗
K∥∗

) + 1. (3.1)

where it holds that ∥A∗
K∥∗ < 1. Then, for all N ≥ N0, the

control policy K∗
0 computed by (2.8) satisfies ∥K∗

0 −K∗∥ ≤
ϵ for any ϵ > 0.

We provide the proof of Theorem 3.1 in §A. Theorem
3.1 demonstrates that if selecting N ∼ O(log(ϵ−1)), then
solving the finite-horizon LQR will result in a policy K∗

0

that is ϵ-close to K∗, for any ϵ > 0. Furthermore, if one
chooses a small enough ϵ such that an ϵ-ball centered at
K∗ lies entirely in K, then this condition on ϵ constitutes a
sufficient condition for K∗

0 to be stabilizing, i.e., K∗
0 ∈ K.

Algorithm 1: Receding-Horizon Policy Gradient
Input: horizon N , max iterations {Th}, smoothing

radius {rh}, stepsizes {ηh}
1 for h = N − 1, · · · , 0 do
2 Initialize Kh,0 arbitrarily (e.g., the convergent

policy from the prev. iter. Kh+1,Th+1
or 0);

3 for i = 0, · · · , Th − 1 do
4 // sample PG update via a zeroth-order oracle
5 Sample K+

h,i = Kh,i + rhU and
K−

h,i = Kh,i − rhU , where U is uniformly
drawn from the surface of a unit sphere, i.e.,
∥U∥F = 1;

6 Sample xh ∼ D and simulate two trajectories
with policies K+

h,i and K−
h,i, respectively.

Compute values Jh(K
+
h,i) and Jh(K

−
h,i);

7 Compute the estimated PG
∇̃Jh(Kh,i)=

mn
2rh

[
Jh(K

+
h,i)−Jh(K

−
h,i)

]
U

8 and update Kh,i+1 = Kh,i − ηh · ∇̃Jh(Kh,i);
9 end

10 end
11 Return K0,T0 ;

B. Algorithm Design

We propose the RHPG algorithm (cf., Algorithm 1),
which first selects N by Theorem 3.1, and then sequentially
decomposes the finite-N -horizon LQR problem backward
in time. In particular, for every iteration indexed by h ∈
{N−1, · · · , 0}, the RHPG algorithm solves an LQR problem
from t = h to t = N , where we only optimize for the
current policy Kh and fix all the policies {Kt} for t ∈
{h+1, · · · , N −1} to be the convergent solutions generated
from earlier iterations. Concretely, for every h, the RHPG
algorithm solves the following quadratic program in Kh:

min
Kh

Jh(Kh) := Exh∼D

[N−1∑
t=h+1

x⊤
t

(
Q+ (K∗

t)
⊤RK∗

t

)
xt

+ x⊤
h

(
Q+K⊤

h RKh

)
xh + x⊤

NQNxN

]
. (3.2)

Due to the quadratic optimization landscape of (3.2) in Kh

for every h, applying any PG method with an arbitrary finite
initial point (e.g., zero) would lead to convergence to the
globally optimal solution of (3.2).

C. Bias of Model-Free Receding-Horizon Control

The RHPG algorithm builds on Bellman’s principle of
optimality, which requires solving each iteration to the exact
optimal solution. However, PG methods can only return
an ϵ-accurate solution after a finite number of steps. To
generalize Bellman’s principle of optimality, we analyze
how computational errors accumulate and propagate in the
(backward) dynamic programming process. In the theorem
below, we show that if one solves every iteration of the
RHPG algorithm to the O(ϵ)-neighborhood of the unique

Fig. 1. We first show that the output policy K̃0 can be made ϵ-close to K∗ in two steps. First, Theorem 3.1 proves that K∗
0 is ϵ-close to K∗ by

selecting N accordingly. Then, Theorem 3.2 analyzes the backward propagation of the computational errors from solving each subproblem, denoted as
δt := K̃t − K̃∗

t for all t, where K̃∗
t represents the current optimal LQR policy after absorbing errors from all previous iterations. Then, we show that if

one requires a small enough optimality gap ϵ between K̃0 and K∗, then the RHPG output K̃0 can automatically acquire a closed-loop stability certificate.

optimum, then the RHPG algorithm will output a policy that
is ϵ-close to the infinite-horizon LQR policy K∗.

Theorem 3.2: Choose N according to Theorem 3.1 and
assume that one can compute, for all h ∈ {N − 1, · · · , 0}
and some ϵ > 0, a policy K̃h that satisfies∥∥K̃h − K̃∗

h

∥∥ ∼ O(ϵ)O(poly(system parameters)),

where K̃∗
h is the optimum of the LQR from h to N , after

absorbing errors in all previous iterations of Algorithm 1.
Then, the RHPG algorithm outputs a control policy K̃0 that
satisfies

∥∥K̃0 − K∗
∥∥ ≤ ϵ. Furthermore, if ϵ is sufficiently

small such that ϵ < 1−∥A−BK∗∥∗
∥B∥ , then K̃0 is stabilizing.

We illustrate Theorem 3.2 in Figure 1 and defer its proof
to §B. Additionally, we discuss the implications of Theorem
3.2 in the following remark.

Remark 3.3: Theorem 3.2 ensures that if each RHPG iter-
ation satisfies a certain error tolerance level, then the RHPG
output K̃0 will reach an ϵ-neighborhood of K∗. Notably,
upon selecting a sufficiently small ϵ, such that the ϵ-ball
around K∗ lies entirely within K, we can guarantee closed-
loop stability of K̃0 solely based on its near-optimality. This
approach differs significantly from existing PG for LQR
literature (e.g., [3], [4]), which requires a stabilizing initial
policy and focus on preserving the closed-loop stability
during learning. Conversely, RHPG starts with an arbitrary
initial point, potentially very far from the stabilizing region
(see our numerical experiments in §4), yet still converges
globally to K∗. The closed-loop stability certificate then
comes for free, given near-optimality.

Now, it remains to establish the sample complexity for the
convergence of (zeroth-order) PG methods in every iteration
of the algorithm, which is done next.

D. PG Update and Sample Complexity

We analyze here the sample complexity of the zeroth-order
PG update in solving each iteration of the RHPG algorithm.
Specifically, the zeroth-order PG update is defined as

Kh,i+1 = Kh,i − ηh · ∇̃Jh(Kh,i) (3.3)

where ηh > 0 is the stepsize to be determined and
∇̃Jh(Kh,i) is the estimated PG sampled from a (two-
point) zeroth-order oracle. We formally present the sample
complexity result in the following proposition.

Proposition 3.4: For all h ∈ {0, · · · , N − 1}, choose
a constant smoothing radius rh ∼ O(ϵ) and a constant
stepsize ηh ∼ O(ϵ2). Then, the zeroth-order PG update (3.3)
converges after Th ∼ O(1

ϵ2 log(
1

δϵ2)) iterations in the sense
that

∥∥Kh,Th
− K̃∗

h

∥∥ ≤ ϵ with a probability of at least 1− δ.
For completeness, we provide a supplementary proof of

Proposition 3.4 in §C, which mostly follows existing results
in the literature [4]. Combining Theorem 3.2 with Propo-
sition 3.4, we conclude that if we spend Õ(ϵ−2 log(δ−1))
iterations in solving every subproblem to O(ϵ)-accuracy
with a probability of 1 − δ, for all h ∈ {0, · · · , N − 1},
then the RHPG algorithm will output a K̃0 that satisfies
∥K̃0−K∗∥ ≤ ϵ with a probability of at least 1−Nδ. By (3.1),
this implies that the total iteration complexity of RHPG is
also Õ(ϵ−2 log(δ−1)) with the dependence on various system
parameters being polynomial.

We discuss the tradeoffs in selecting N to balance mini-
mizing finite-to-infinite error and minimizing errors through
the backward propagation in §5-A. To compare our sample
complexity bound with the sharpest result in the literature
[4], our dependence on ϵ matches that of [4]2. Our sample
complexity and that of [4] have polynomial dependence
on system parameters. However, it is not clear how to
compare the polynomial dependencies between our bounds
and those of [4], and these polynomial factors might affect
the overall computational efficiency of both algorithms in a
substantial way. We leave this comparison as an important
future research topic.

4. NUMERICAL EXPERIMENTS

We verify our theories on a scalar linear system studied
in [4], where A = 5, B = 0.33, Q = R = 1, and the

2Note that the Õ(ϵ−1) sample complexity presented in [4] is for the
convergence in objective value (e.g., f(K)−f(K∗) ≤ ϵ), and is equivalent
to an Õ(ϵ−2) · O(poly(system parameters)) sample complexity for the
convergence in policy (i.e., ∥K −K∗∥ ≤ ϵ).

Fig. 2. For six different values of ϵ: Left: policy error between the output
and K∗. Right: the total number of calls to the (two-point) zeroth-order
oracle.

unique optimal LQR policy is K∗ = 14.5482. For the PG
method in [3], [4] to converge in this simple setting, one
has to initialize with a policy K0 that satisfies K0 ∈ K :=
{K | 12.12 < K ± r < 18.18}, which is necessary to
prevent the zeroth-order oracle with a smoothing radius of
r from perturbing K0 outside of the stabilizing region K
during the first iteration of the PG update. In contrast, we
initialize the PG updates in Algorithm 1 with a zero policy
Kh = 0, set QN = 3, and choose N = ceil(log(ϵ−1))
according to (3.1). Furthermore, we choose rh =

√
ϵ, select

a constant stepsize in each iteration of the RHPG algorithm,
and run the algorithm to solve the LQR problem under six
different ϵ, namely ϵ ∈ {10−3, 3.16 × 10−3, 10−2, 3.16 ×
10−2, 10−1, 3.16 × 10−1}. We apply the zeroth-order PG
update in solving every subproblem to

∥∥K̃h − K̃∗
h

∥∥ ≤ ϵ. As
shown in Figure 2, the empirical observation of the iteration
complexity of RHPG (right) for the convergence in policy
(left) is around O(ϵ−2) under varying ϵ, which corroborates
our theoretical findings.

5. DISCUSSIONS

In this section, we provide two discussion paragraphs.
The first paragraph discusses the tradeoffs in selecting the
problem horizon N . The second paragraph covers extensions
of our results to the stochastic LQR setting that incorporates
a zero-mean, independent stochastic disturbance in the dy-
namics and, additionally, another setting where the initial
state x0 could be arbitrary.

A. Tradeoffs in Selecting the Problem Horizon N

There exist two potential usages of the RHPG algorithm
in practice. In most real-world scenarios, the user wants to
address the finite-horizon LQR problem with time-varying
system parameters and does not necessarily care whether
the resulting control policy is close to the infinite-horizon
solution or not. Model-predictive or receding-horizon control
is the most prevalent choice when detailed model information
is available. The RHPG solution, on the other hand, extends
receding-horizon control to the setting with an unknown
model, and the user could specify a desired horizon N .

In more theory-oriented cases, the user wants to address
the infinite-horizon LQR problem with time-invariant system
parameters. Then the user should choose the problem horizon
N carefully, balancing between i) reducing the finite-to-
infinite horizon error by increasing N , and ii) potentially
creating more computational error in the approximate dy-
namic programming when N is large. The RHPG framework
performs these two tasks sequentially: first dealing with
the finite-to-infinite horizon error and fixing an N , and
then addressing the finite-N -horizon problem step-by-step in
time. The main rationale comes from the different rates of N
contributing to the two errors. In the first step (cf., Theorem
3.1), the convergence of the finite-horizon solution toward
the infinite-horizon solution is exponential, meaning that it
suffices to choose a problem horizon N = O(log(ϵ−1)) for
an accurate approximation (the dependence to other system
parameters are also logarithmic). After deciding on an N
based on the desired ϵ, the user solves the finite-N -horizon
problem iteratively, where the subproblem in each iteration is
strongly convex and smooth. In the sample complexity anal-
ysis, we have considered the choice of N since one would
require a higher solution accuracy in each iteration if N is
large (cf., §B). Moreover, N also appears in the probability
term of 1−Nδ due to the utilization of Boole’s inequality.
In solving each sub-problem, the complexity in the failure
probability δ is O(log(δ−1)). Replacing δ with δ/N yields
the rate of O(log(N/δ)) = O(log(δ−1)) +O(log log(ϵ−1)).
Hence, with a fixed N chosen according to Theorem 3.1,
the impact of N on the total complexity is an additional
O(log log(ϵ−1)) factor and is therefore minor. In summary,
the user in the infinite-horizon setting should prioritize the
choice of N toward reducing the finite-to-infinite horizon
error according to Theorem 3.1 and then solve the finite-N -
horizon problem.

B. Extensions to Arbitrary x0 and Stochastic LQR

We discuss here extensions of the RHPG framework to
i) the setting where x0 ∈ Rn is an arbitrary (deterministic)
vector that is unknown to the designer, and ii) stochastic
LQR with x0 ∼ D and the system dynamics being

xt+1 = Axt +But + wt, wt ∼ N (0,W), W > 0.

Note that in the stochastic LQR setting, the objective function
(2.2) should be replaced with the time-average cost

J∞ := lim sup
N→∞

1

N
Ex0,wt

[
N−1∑
t=0

(
x⊤
t Qxt + u⊤

t Rut

)]
.

In both settings and under the stabilizability and detectability
assumptions, a unique stationary state-feedback control pol-
icy exists and is identical to (2.3), which also stabilizes the
closed-loop system. The difference is that in setting i), the
LQR problem is deterministic, which allows implementing
RHPG with a two-point zeroth-order oracle (cf., Algorithm
1). In contrast, setting ii) involves additive noises in the sys-
tem dynamics, which necessitates using a one-point zeroth-
order oracle, and thus, the gradient sampling will be noisier.

We note that the procedure of RHPG is identical whether
solving deterministic or stochastic problems and with either
finite or infinite problem horizons. The only difference is
in the choice of the inner-loop oracles (two-point v.s. one-
point). In both settings, the receding-horizon parametrization,
the convergence of the Riccati equations in Theorem 3.1, the
analysis of dynamic programming in Theorem 3.2, and the
quadratic optimization landscape in each subproblem are the
same as in the presentation in the main body of this paper.
Simply combining Theorems 3.1-3.2 with the corresponding
inner-loop convergence result (for quadratic minimization
and as a replacement of Proposition 3.3) yields the overall
complexity in these two extended settings.

6. CONCLUSION

We have revisited discrete-time LQR from the perspective
of RHPG and provided a fine-grained sample complexity
analysis for RHPG to learn a control policy that is stabilizing
and ϵ-close to the optimal LQR policy. Our result demon-
strates the potential of RHPG in addressing various tasks in
linear control and estimation with streamlined analyses.

REFERENCES

[1] Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan.
Optimality and approximation with policy gradient methods in Markov
decision processes. In Conference on Learning Theory, pages 64–66,
2020.

[2] Kaiqing Zhang, Alec Koppel, Hao Zhu, and Tamer Başar. Global
convergence of policy gradient methods to (almost) locally optimal
policies. SIAM Journal on Control and Optimization, 58(6):3586–
3612, 2020.

[3] Maryam Fazel, Rong Ge, Sham M Kakade, and Mehran Mesbahi.
Global convergence of policy gradient methods for the linear quadratic
regulator. In International Conference on Machine Learning, pages
1467–1476, 2018.

[4] Dhruv Malik, Ashwin Pananjady, Kush Bhatia, Koulik Khamaru,
Peter L Bartlett, and Martin J Wainwright. Derivative-free methods for
policy optimization: Guarantees for linear quadratic systems. Journal
of Machine Learning Research, 21(21):1–51, 2020.

[5] Yingying Li, Yujie Tang, Runyu Zhang, and Na Li. Distributed
reinforcement learning for decentralized linear quadratic control:
A derivative-free policy optimization approach. arXiv preprint
arXiv:1912.09135, 2019.

[6] Ben M Hambly, Renyuan Xu, and Huining Yang. Policy gradient
methods for the noisy linear quadratic regulator over a finite horizon.
arXiv preprint arXiv:2011.10300, 2020.

[7] Kaiqing Zhang, Xiangyuan Zhang, Bin Hu, and Tamer Başar.
Derivative-free policy optimization for linear risk-sensitive and robust
control design: Implicit regularization and sample complexity. Ad-
vances in Neural Information Processing Systems, pages 2949–2964,
2021.

[8] Juan C Perdomo, Jack Umenberger, and Max Simchowitz. Stabilizing
dynamical systems via policy gradient methods. Advances in Neural
Information Processing Systems, 34, 2021.

[9] Bin Hu, Kaiqing Zhang, Na Li, Mehran Mesbahi, Maryam Fazel, and
Tamer Başar. Toward a theoretical foundation of policy optimization
for learning control policies. Annual Review of Control, Robotics, and
Autonomous Systems, 6:123–158, 2023.

[10] Yang Zheng, Yujie Tang, and Na Li. Analysis of the optimization
landscape of linear quadratic Gaussian (LQG) control. arXiv preprint
arXiv:2102.04393, 2021.

[11] Brian DO Anderson and John B Moore. Optimal Filtering. Prentice-
Hall, 1979.

[12] Brian DO Anderson and John B Moore. Optimal Control: Linear
Quadratic Methods. Prentice-Hall, Inc., 1990.

[13] Tamer Başar and Pierre Bernhard. H-infinity Optimal Control and
Related Minimax Design Problems: A Dynamic Game Approach.
Birkhäuser, Boston, 1995.

[14] Xiangyuan Zhang, Bin Hu, and Tamer Başar. Learning the Kalman
filter with fine-grained sample complexity. In American Control
Conference, pages 4549–4554, 2023.

[15] Andrew Lamperski. Computing stabilizing linear controllers via policy
iteration. In 2020 59th IEEE Conference on Decision and Control
(CDC), pages 1902–1907. IEEE, 2020.

[16] Feiran Zhao, Xingyun Fu, and Keyou You. Learning stabilizing
controllers of linear systems via discount policy gradient. arXiv
preprint arXiv:2112.09294, 2021.

[17] Xiangyuan Zhang, Saviz Mowlavi, Mouhacine Benosman, and Tamer
Başar. Global convergence of receding-horizon policy search in
learning estimator designs. arXiv preprint arXiv:2309.04831, 2023.

[18] Jingjing Bu, Afshin Mesbahi, Maryam Fazel, and Mehran Mesbahi.
LQR through the lens of first order methods: Discrete-time case. arXiv
preprint arXiv:1907.08921, 2019.

[19] Babak Hassibi, Ali H Sayed, and Thomas Kailath. Indefinite-
Quadratic Estimation and Control: A Unified Approach to H2 and
H∞ Theories. SIAM, 1999.

[20] Luca Furieri, Yang Zheng, and Maryam Kamgarpour. Learning the
globally optimal distributed LQ regulator. In Learning for Dynamics
and Control, pages 287–297, 2020.

[21] Ohad Shamir. An optimal algorithm for bandit and zero-order convex
optimization with two-point feedback. The Journal of Machine
Learning Research, 18(1):1703–1713, 2017.

APPENDIX

A. Proof of Theorem 3.1

This proof is dual to the proof of Theorem 3.1 in [14].
We first identify one-to-one correspondences between system
parameters in LQR and those in Kalman filtering [14]:

LQR: A B Q R QN

↕ ↕ ↕ ↕ ↕
KF [14]: A⊤ C⊤ W V X0

We also identify direct correspondences between our Pt,
P ∗, Kt, and K∗ and [14]’s ΣN−t, Σ∗, LN−1−t, and L∗,
respectively. Then, letting

P̃t := P ∗
t − P ∗, R̃ := R+B⊤P ∗B,

A := A−BR̃−1B⊤P ∗A,

and following equations (A.2)-(A.3) of [14], we have

P̃t = A
⊤
P̃t+1A−A

⊤
P̃t+1B(R̃+B⊤P̃t+1B)−1B⊤P̃t+1A

= A
⊤
P̃

1/2
t+1

[
I + P̃

1/2
t+1BR̃−1B⊤P̃

1/2
t+1

]−1
P̃

1/2
t+1A

≤
[
1+λmin(P̃

1/2
t+1BR̃−1B⊤P̃

1/2
t+1)

]−1
A

⊤
P̃t+1A

=:µtA
⊤
P̃t+1A, (A.1)

where P̃
1/2
t+1 denotes the unique positive semi-definite (psd)

square root of the psd matrix P̃t+1, 0 < µt ≤ 1 for all t,
and A satisfies ρ(A) < 1. We now use ∥ · ∥∗ to represent
the P ∗-induced matrix norm and invoke Theorem 14.4.1 of
[19], where our P̃t, A

⊤
and P ∗ correspond to Pi − P ∗, Fp

and W in [19], respectively. By Theorem 14.4.1 of [19] and
(A.1), we obtain ∥A∥∗ < 1 and given that µt ≤ 1,

∥P̃t∥∗ ≤ ∥A∥2∗ · ∥P̃t+1∥∗.

Therefore, the convergence is exponential such that ∥P̃t∥∗ ≤
∥A∥2(N−t)

∗ · ∥P̃N∥∗. As a result, the convergence of P̃t to 0
in spectral norm can be characterized as

∥P̃t∥ ≤ κP∗ · ∥P̃t∥∗ ≤ κP∗ · ∥A∥2(N−t)
∗ · ∥P̃N∥∗,

where we have used κX to denote the condition number of
X . That is, to ensure ∥P̃1∥ ≤ ϵ, it suffices to require

N ≥ 1

2
·
log

(∥P̃N∥∗·κP∗
ϵ

)
log

(
1

∥A∥∗

) + 1. (A.2)

Lastly, we show that the (monotonic) convergence of K∗
t to

K∗ follows from the convergence of P ∗
t to P ∗. Similar to

(A.5) of [14], this can be verified through:

K∗
t −K∗ = (R+B⊤P ∗

t+1B)−1B⊤P ∗
t+1A

− (R+B⊤P ∗B)−1B⊤P ∗A

=
[
(R+B⊤P ∗

t+1B)−1 − (R+B⊤P ∗B)−1
]
B⊤P ∗A

+ (R+B⊤P ∗
t+1B)−1B⊤(P ∗

t+1 − P ∗)A

= (R+B⊤P ∗
t+1B)−1B⊤(P ∗ − P ∗

t+1)BK∗

− (R+B⊤P ∗
t+1B)−1B⊤(P ∗ − P ∗

t+1)A

= (R+B⊤P ∗
t+1B)−1B⊤(P ∗ − P ∗

t+1)(BK∗ −A) (A.3)

Hence, we have ∥K∗
t −K∗∥ ≤ ∥A∥·∥B∥

λmin(R) · ∥P ∗
t+1 − P ∗∥ and

∥K∗
0 −K∗∥ ≤ ∥A∥ · ∥B∥

λmin(R)
· ∥P̃1∥.

Substituting ϵ in (A.2) with ϵ·λmin(R)

∥A∥·∥B∥ completes the proof.

B. Proof of Theorem 3.2

This proof is dual to the proof of Theorem 3.3 in [14].
First, according to Theorem 3.1, we select

N =
1

2
·
log

(2∥QN−P∗∥∗·κP∗ ·∥A∗
K∥·∥B∥

ϵ·λmin(R)

)
log

(
1

∥A∗
K∥∗

) + 1, (B.4)

where A∗
K := A−BK∗. This ensures that K∗

0 is stabilizing
and ∥K∗

0 − K∗∥ ≤ ϵ/2. Then, it remains to show that the
output K̃0 satisfies ∥K̃0 −K∗

0∥ ≤ ϵ/2.
Recall that the RDE (2.9) is a backward iteration starting

with P ∗
N = QN ≥ 0, and can also be represented as:

P ∗
t = A⊤P ∗

t+1

(
A−BK∗

t

)
+Q (B.5)

= (A−BK∗
t)

⊤P ∗
t+1(A−BK∗

t)+(K∗
t)

⊤RK∗
t +Q. (B.6)

Moreover, for any Kt, we introduce the Lyapunov equation:

Pt = (A−BKt)
⊤Pt+1(A−BKt) +K⊤

t RKt +Q. (B.7)

Furthermore, for clarity of the proof, we define/recall:

K∗
t : Exact LQR policy at time t defined in (2.8)

K̃∗
t : Optimal policy of the current cost-to-go function,

absorbing errors in all prior steps

K̃t: An approximation of K̃∗
t obtained by the PG update (3.3)

δt := K̃t − K̃∗
t : Policy optimization error at time t

P̃ ∗
t : Generated by (B.6) with K∗

t = K̃∗
t and P ∗

t+1 = P̃t+1.

We argue that ∥K̃0 − K∗
0∥ ≤ ϵ/2 can be achieved by

carefully controlling δt for all t. At t = 0, it holds that

∥K̃0 −K∗
0∥ ≤ ∥K̃∗

0 −K∗
0∥+ ∥δ0∥,

where substituting K∗
t and K∗ in (A.3), respectively, with

K̃∗
0 and K∗

0 leads to

K̃∗
0 −K∗

0 = (R+B⊤P̃1B)−1B⊤(P ∗
1 − P̃1)(BK∗

0 −A).

Hence, the error size ∥K̃∗
0 −K∗

0∥ could be bounded by

∥K̃∗
0 −K∗

0∥ ≤ ∥A−BK∗
0∥ · ∥B∥

λmin(R)
· ∥P ∗

1 − P̃1∥. (B.8)

Define the helper constants

C1 :=
φ · ∥B∥
λmin(R)

> 0, φ := max
t∈{0,··· ,N−1}

∥A−BK∗
t ∥.

Next, we require ∥δ0∥ ≤ ϵ/4 and ∥K̃∗
0 − K∗

0∥ ≤ ϵ/4 to
fulfill ∥K̃0−K∗

0∥ ≤ ϵ/2. We select a fixed scalar a > 0 that
is independent of system parameters and ϵ, and additionally
require ∥P ∗

1 − P̃1∥ ≤ a to upper-bound the pd solutions of
(B.7). Then, by (B.8), in order to fulfill ∥K̃∗

0 −K∗
0∥ ≤ ϵ/4,

it suffices to require

∥P ∗
1 − P̃1∥ ≤ min

{
a,

ϵ

4C1

}
. (B.9)

Subsequently, by (B.7), we have

P ∗
1 − P̃1 = (P ∗

1 − P̃ ∗
1) + (P̃ ∗

1 − P̃1). (B.10)

The first difference term on the RHS of (B.10) is

P ∗
1 − P̃ ∗

1 = A⊤P ∗
2

(
A−BK∗

1

)
−A⊤P̃2

(
A−BK̃∗

1

)
= A⊤(P ∗

2 − P̃2)(A−BK∗
1) +A⊤P̃2B(K̃∗

1 −K∗
1). (B.11)

= A⊤(P ∗
2 − P̃2)(A−BK∗

1)

−A⊤P̃2B(R+B⊤P̃2B)−1B⊤(P ∗
2 − P̃2)(A−BK∗

1)
(B.12)

= A⊤[I − P̃2B(R+B⊤P̃2B)−1B⊤](P ∗
2 − P̃2)(A−BK∗

1)

= A⊤(I + P̃2BR−1B⊤)−1(P ∗
2 − P̃2)(A−BK∗

1), (B.13)

where applying (B.8) in deriving (B.12) and (B.13) is due to
the matrix inversion lemma. Moreover, the second term on
the RHS of (B.10) is

P̃ ∗
1 − P̃1 = (A−BK̃∗

1)
⊤P̃2(A−BK̃∗

1) + (K̃∗
1)

⊤RK̃∗
1

− (A−BK̃1)
⊤P̃2(A−BK̃1)− (K̃1)

⊤RK̃1

= −(K̃∗
1)

⊤B⊤P̃2A−A⊤P̃2BK̃∗
1 +(K̃∗

1)
⊤(R+B⊤P̃2B)K̃∗

1

+ K̃⊤
1 B⊤P̃2A+A⊤P̃2BK̃1 − K̃⊤

1 (R+B⊤P̃2B)K̃1

=
[
(R+B⊤P̃2B)−1B⊤P̃2A− K̃∗

1

]⊤
(R+B⊤P̃2B)·[

(R+B⊤P̃2B)−1B⊤P̃2A− K̃∗
1

]
−
[
(R+B⊤P̃2B)−1B⊤P̃2A− K̃1

]⊤
(R+B⊤P̃2B)·[

(R+B⊤P̃2B)−1B⊤P̃2A− K̃1

]
(B.14)

= −δ⊤1 (R+B⊤P̃2B)δ1, (B.15)

where (B.14) follows from completion of squares. Thus,
combining (B.10), (B.11), and (B.15) yields

∥P ∗
1 − P̃1∥

≤ ∥P ∗
2 − P̃2∥ · φ∥A∥∥(I + P̃2BR−1B⊤)−1∥

+ ∥δ1∥2∥R+B⊤P̃2B∥
≤ φ∥A∥ · ∥P ∗

2 − P̃2∥+ ∥δ1∥2∥R+B⊤P̃2B∥, (B.16)

where (B.16) is due to that P̃2BR−1B⊤ ≥ 0 and thus ∥(I+
P̃2BR−1B⊤)−1∥ ≤ 1. Now, we require

∥P ∗
2 − P̃2∥ ≤ min

{
a,

a

C2
,

ϵ

4C1C2
·
}

(B.17)

∥δ1∥ ≤ min

{√
a

C3
,
1

2

√
ϵ

C1C3

}
, (B.18)

where C2 and C3 are positive constants defined as3

C2 := 2φ∥A∥ > 0, C3 := 2∥R+B⊤(Pmax + aI)B∥ > 0

Pmax := max
t∈{0,··· ,N−1}

{P ∗
t }.

Then, conditions (B.17) and (B.18) are sufficient for (B.9)
(and thus for ∥K̃0 − K∗

0∥ ≤ ϵ/2) to hold. Subsequently,
we can propagate the required accuracies in (B.17) and
(B.18) forward in time. Specifically, we iteratively apply
the arguments in (B.16) (i.e., by plugging quantities with
subscript t into the LHS of (B.16) and plugging quantities
with subscript t + 1 into the RHS of (B.16)) to obtain the
result that if at all t ∈ {2, · · · , N − 1}, we require

∥P ∗
t − P̃t∥ ≤ min

{
a,

a

Ct−1
2

,
ϵ

4C1C
t−1
2

}
(B.19)

∥δt∥ ≤ min

{√
a

C3
,

√
a

Ct−2
2 C3

,
1

2

√
ϵ

C1C
t−2
2 C3

}
,

then (B.17) holds true and therefore (B.9) is satisfied.
We now compute the required accuracy for δN−1. Note

that P ∗
N−1 = P̃ ∗

N−1 since no prior computational errors
happened at t = N . By (B.16), the distance between P ∗

N−1

and P̃N−1 can be bounded as

∥P ∗
N−1 − P̃N−1∥ = ∥P̃ ∗

N−1 − P̃N−1∥ ≤ ∥δN−1∥2 · C3.

To fulfill the requirement (B.19) for t = N − 1, which is

∥P ∗
N−1 − P̃N−1∥ ≤ min

{
a,

a

CN−2
2

,
ϵ

4C1C
N−2
2

}
,

it suffices to let

∥δN−1∥ ≤ min

{√
a

C3
,

√
a

CN−2
2 C3

,
1

2

√
ϵ

C1C
N−2
2 C3

}
. (B.20)

Finally, we analyze the worst-case complexity of RHPG
by computing, at the most stringent case, the required size
of ∥δt∥. When C2 ≤ 1, the most stringent dependence of
∥δt∥ on ϵ happens at t = 0, which is of the order O(ϵ), and
the dependences on system parameters are O(1). We then
analyze the case where C2 > 1, where the requirement on
∥δ0∥ is still O(ϵ). Note that in this case, ∥δN−1∥ ≤ ∥δt∥ for
all t ∈ {1, · · · , N − 1} and by (B.20):

∥δN−1∥ ∼ O
(√ ϵ

C1C
N−2
2 C3

)
. (B.21)

Since we require N to satisfy (B.4), the dependence
of ∥δN−1∥ on ϵ in (B.21) becomes ∥δN−1∥ ∼ O(ϵ

3
4)

with additional polynomial dependences on system pa-
rameters, but one can observe that the dependence on

3As the scalar a > 0 increases, the constant C3 grows correspondingly.

ϵ is still milder than the requirement for ∥δ0∥. There-
fore, it suffices to require error bound for all t to be
∥δt∥ ∼ O(ϵ)O(poly(system parameters)) to reach the ϵ-
neighborhood of the infinite-horizon LQR policy. Lastly, for
K̃0 to be stabilizing, it suffices to select a sufficiently small
ϵ such that the ϵ-ball centered at the infinite-horizon LQR
policy K∗ lies entirely in the set of stabilizing policies. A
crude bound that satisfies this requirement is

ϵ <
1− ∥A−BK∗∥∗

∥B∥
=⇒ ∥A−BK̃0∥∗ < 1.

This completes the proof.

C. Proof of Proposition 3.4

Recall that for all h, the objective function Jh is Lh-
smooth and αh-strongly-convex. Define ςh := ϵ2αh

2 and
ς := minh ςh > 0. We argue that if with a probability of
at least 1− δ, it holds that

Jh(Kh,Th
)− Jh(K̃

∗
h) ≤ ς, (C.22)

then ∥Kh,Th
− K̃∗

h∥ ≤ ϵ also holds with a probability of at
least 1−δ and the proof of Proposition 3.4 is complete. This
is due to the αh-strong convexity and ∇Jh(K̃

∗
h) = 0. Thus,

Jh(Kh,Th
)− Jh(K̃

∗
h)

≥ ∇Jh(K̃
∗
h)

⊤(Kh,Th
− K̃∗

h) +
αh

2
∥Kh,Th

− K̃∗
h∥2F

=⇒ ∥Kh,Th
− K̃∗

h∥2F ≤ 2

αh

[
Jh(Kh,Th

)− Jh(K̃
∗
h)
]
≤ ϵ.

As a result, we will focus on proving (C.22) with a high
probability of at least 1− δ. First, define the cost difference
∆t := Jh(Kh,t) − Jh(K̃

∗
h) and the stopping time τ :=

min{t | ∆t > 10δ−1∆0}. Let Et[·] denote the expectation
conditioned on all the randomness up to t. Then, we state
the following helper lemma and defer its proof to §D.

Lemma 1.1: For all h, choose the parameters of Algo-
rithm 1 according to

ηh ≤ 1

2Lh
, rh ≤ min

{ αh

4Lh

√
ςδ

10
,

1

2Lh

√
αhςδ

5

}
.

Then, for all t, it holds that

Et[∆t+1] ≤
(
1− ηhαh

4

)
∆t +

Lhη
2
h

2
G2 + ηhαh

ςδ

20
,

where αh and Lh are the strong convexity and smoothness
constants of Jh, respectively, and G2 is a uniform constant
to be introduced shortly.

Following the proof of Theorem 8 in [4], [20], we first
consider the case of τ > Th. In this case, we can bound
Et[∆t+1] using Lemma 1.1 directly. When τ ≤ Th, it implies
that Et[∆t+1]1τ>t = 0. We require ηh ≤ ςδαh

40LhG2
and show

Et[∆t+1]1τ>t+1 ≤
(
1− ηhαh

4

)t+1

∆0

+
(Lhη

2
h

2
G2+ηhαh

ςδ

20

) t∑
i=0

(
1− ηhαh

4

)i
≤

(
1− ηhαh

4

)t+1

∆0 +
ςδ

4

Setting t+ 1 = Th, it suffices to let Th = 4
ηhαh

log(4∆0

δς) to
ensure that

E[∆Th
1τ>Th

] ≤
(
1− ηhαh

4

)Th

∆0 +
ςδ

4
≤ ςδ

2
.

Next, we prove that the event τ ≤ Th has a probability
smaller than δ

2 . For all t, we define the stopping process as

Yt := ∆min{τ,t} + (Th − t)
(Lhη

2
h

2
G2 + ηhαh

ςδ

20

)
,

By Eq. (20)-(21) of [4], Yt is a super-martingale. Applying
Doob’s maximal inequality yields

P
(

max
t=1,··· ,Th

Yt ≥
10∆0

δ

)
≤ δE[Y0]

10∆0

=
δ

10∆0

(
∆0 + Th

(Lhη
2
h

2
G2 + ηhαh

ςδ

20

))
≤ δ

10∆0

(
∆0 + log

(4∆0

ςδ

) ςδ

20
+ log

(4δ0
ςδ

) ςδ
5

)
Imposing the condition that ς log(4∆0

ςδ) ≤ 16δ−1∆0, we can
prove that P

(
maxt=1,··· ,Th

Yt ≥ 10∆0

δ

)
≤ δE[Y0]

10∆0
≤ δ

2 . We
can now conclude that E[∆Th

1τ>Th
] ≤ δς

2 and the event τ
occurs after Th with probability at least 1− δ

2 . As a result,

P (∆Th
≥ ς) ≤ P (∆Th

1τ>Th
≥ ς) + P (1τ≤Th

)

≤ E[∆Th
1τ>Th

]

ς
+ P (1τ≤Th

) ≤ δ

2
+

δ

2
= δ,

where we have used Markov’s inequality. This verifies
(C.22), and thus ∥Kh,Th

− K̃∗
h∥ ≤ ϵ is satisfied with a

probability of at least 1− δ. Lastly, we analyze the constant
G2 following Corollary 10 of [4] and [21], where

G2 = sup
Kh∈Φh

E

[∥∥∥∥mn

2rh
[J(Kh + rhU)− J(Kh − rhU)]U

∥∥∥∥2
F

]
Φh := {Kh | J(Kh)− J(K̃∗

h) ≤ 10δ−1∆0}.

By Corollary 10 of [4], it holds almost surely that G2 ≤
(mn)λ2, where λ := maxh λh and λh is the Lipschitz
continuity constant of Jh taken over the compact domain Φh.
In summary, for ∥Kh,Th

−K̃∗
h∥ ≤ ϵ to hold with a probability

of at least 1−δ, we need to choose the (constant) algorithmic
parameters according to ηh ∼ O(ϵ2), and rh ∼ O(ϵ). Then,
the iteration complexity for the convergence of the zeroth-
order PG method is Th ∼ O(1

ϵ2 log(
1

δϵ2)).

D. Proof of Lemma 1.1

The proof of this lemma mostly follows the steps in
Section 4.1.1 of [4]. First, define the smoothed version of
Jh as Jrh

h (Kh) := E[Jh(Kh+ rhU)], where the expectation
is taken over U that is uniformly drawn from the surface
of a unit sphere. Then, we use J(Kh;x0) to denote an
instantiation of the objective value Jh(Kh) given x0, and
define the two-point zeroth-order estimate of ∇Jrh

h as

g(Kh) :=
mn

2rh

[
J(Kh + rhU ;x0)− J(Kh − rhU ;x0)

]
U,

where mn is the dimension of the policy space. Subse-
quently, we invoke the Lh-smoothness property to derive

Et[Jh(Kh,t+1)− Jh(Kh,t)]

≤Et
[〈
∇Jh(Kh,t),Kh,t+1−Kh,t

〉
+
Lh

2
∥Kh,t+1−Kh,t∥2F

]
=−

〈
ηh∇Jh(Kh,t),∇Jrh

h (Kh,t)
〉
+

Lhη
2
h

2
Et

[
∥g(Kh,t)∥2F

]
= −ηh∥∇Jh(Kh,t)∥2F + ηhLhrh∥∇Jh(Kh,t)∥F

+
Lhη

2
h

2
Et

[
∥g(Kh,t)∥2F

]
,

where the inequalities are due to Lemma 14 of [4]. Moreover,

Et
[
∥g(Kh,t)∥2F

]
= Var(g(Kh,t)) + ∥∇Jrh

h (Kh,t)∥2F
≤ Var(g(Kh,t)) + 2∥∇Jh(Kh,t)∥2F
+ 2∥∇Jrh

h (Kh,t)−∇Jh(Kh,t)∥2F
≤ G2 + 2∥∇Jh(Kh,t)∥2F + 2L2

hr
2
h.

Again by the Lh-smoothness property, we have

Jh(Kh,t − ηh∇Jh(Kh,t))

≤ Jh(Kh,t)− (ηh − η2hLh

2
)∥∇Jh(Kh,t)∥2F

=⇒ (ηh − η2hLh

2
)∥∇Jh(Kh,t)∥2F

≤ Jh(Kh,t)− Jh(Kh,t − ηh∇Jh(Kh,t))

≤ Jh(Kh,t)− Jh(K̃
∗
h) = ∆t.

Then, letting ηh ∈ (0, 1
2Lh

], we can derive

Et[∆t+1 −∆t]

≤ −ηh∥∇Jh(Kh,t)∥2F + 2ηhLhrh∆
1/2
t +

Lhη
2
h

2
G2

+ Lhη
2
h∥∇Jh(Kh,t)∥2F + η2hL

3
hr

2
h

≤−ηhαh

2
∆t+

ηhαh

4
∆t+

4ηhL
2
hr

2
h

αh
+

Lhη
2
h

2
G2 + η2hL

3
hr

2
h,

where the second inequality is due to that the αh strong-
convexity implies the αh gradient domination property, the
choice of stepsize ηh ≤ 1

2Lh
, and 2ab ≤ a2+b2 for any a, b.

Recall the choices of algorithmic parameters as follows:

ηh ≤ 1

2Lh
, rh ≤ min

{ αh

4Lh

√
ςδ

10
,

1

2Lh

√
αhςδ

5

}
.

Then, using the bounds on algorithmic parameters and rear-
ranging terms lead to

Et[∆t+1] ≤
(
1− ηhαh

4

)
∆t +

Lhη
2
h

2
G2 + ηhαh

ςδ

20
,

which completes the proof.

	Introduction
	Literature Review
	Notations

	Preliminaries
	Infinite-Horizon LQR
	Finite-Horizon LQR

	Receding-Horizon Policy Gradient
	LQR with Dynamic Programming
	Algorithm Design
	Bias of Model-Free Receding-Horizon Control
	PG Update and Sample Complexity

	Numerical Experiments
	Discussions
	Tradeoffs in Selecting the Problem Horizon N
	Extensions to Arbitrary x0 and Stochastic LQR

	Conclusion
	References
	Appendix
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Proposition 3.4
	Proof of Lemma 1.1

