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Abstract— A lane-change maneuver on a congested highway
could be severely disruptive or even infeasible without the
cooperation of neighboring cars. However, cooperation with
other vehicles does not guarantee that the performed maneuver
will not have a negative impact on traffic flow unless it is
explicitly considered in the cooperative controller design. In
this letter, we present a socially compliant framework for
cooperative lane-change maneuvers for an arbitrary number
of CAVs on highways that aims to interrupt traffic flow as
minimally as possible. Moreover, we explicitly impose feasibility
constraints in the optimization formulation by using reachabil-
ity set theory, leading to a unified design that removes the need
for an iterative procedure used in prior work. We quantitatively
evaluate the effectiveness of our framework and compare it
against previously offered approaches in terms of maneuver
time and incurred throughput disruption.

I. INTRODUCTION

DESPITE great advances in the field of autonomous
driving over the last two decades, strict safety require-

ments have prevented it to be realized on a large-scale [1].
Guaranteeing safety could be very difficult, especially in
high-speed scenarios, or if there are multiple interacting
agents in the scene. Introducing the concept of connectivity
is a potential strong remedy here, due to its capability for
enhancing the situational awareness of autonomous vehicles
(AVs) by providing them with external streams of informa-
tion [2], [3]. In addition, this technology makes AVs capable
of being cooperative with each other by sharing their real-
time state information. Therefore, Connected AVs (CAVs)
have a notably higher capability, compared to AVs, to handle
safety-critical scenarios. In addition to safety, this capability
helps to improve driving efficiency and comfort as well [4].

Among different scenarios, highway driving, due to its
relatively high speed, is one of the most attractive yet
challenging ones in which CAVs have a great potential to
help in increasing safety and efficiency. Different studies
exist in the literature that try to tackle a highway autonomous
driving problem, such as an autonomous car following design
[5], [6]. Automating a lane change maneuver, which is an
intuitively more challenging task due to its higher dimen-
sionality compared to a longitudinal maneuver design, has
also gained attention from the research community. Many
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research attempts on autonomous lane change have been
published in the literature, either as an advisory system
[7], [8] to check the feasibility of a lane change, or as a
motion planner [9]–[11]. Although the autonomous lane-
change maneuver exhibits promising results, without the
cooperation of other vehicles the maneuver may become
infeasible. To address the infeasibility issue, various research
investigated cooperation among several CAVs to perform a
lane change maneuver [12]–[14]. Yet, most studies ignored
the negative effects of the lane-change maneuver on the
surrounding vehicles. Specifically, Wang et al. [15] showed
that restricting an AV’s negative impacts on neighboring
vehicles, can results in improved traffic performance.

In a series of our previous studies, we have focused on
designing a cooperative framework for a group of CAVs
to perform a lane-change maneuver in a highway scenario
by considering and reducing the negative effects of this
maneuver on the cooperative agents [16]–[18]. We address
the scenario depicted in Fig. 1, in which a CAV must pass a
slow uncontrolled vehicle and make a lane change to the fast
lane by cooperating with a pair of CAVs on the fast lane. This
task was divided into two phases: positioning the cooperating
vehicles in an appropriate and safe formation only by altering
their longitudinal locations, and then performing a lane-
change maneuver to change the ego vehicle’s lateral position.

In this letter, we extend our previous research in multiple
directions. First, our framework leverages cooperating with
an arbitrary number of CAVs on the fast lane by considering
the global impact of the maneuver. Secondly, we utilize the
developments in reachability set theory to explicitly impose
feasibility constraints in the optimization problem itself.
This leads to our unified formulation for coordination which
removes the need for an iterative procedure used in [17] and
thus improves upon our previous methods. To the best of
our knowledge, our design advances the state of the art by
allowing the ego vehicle to cooperate with more than one
pair of vehicles to further reduce highway traffic disruption.

The remaining sections of this letter are structured as
follows. In Section II, we briefly discuss the modeling
framework’s prerequisites. In Section III, we present a sum-
mary of earlier work, followed by an elaborate description
of our proposed formulations. In Section IV, we conduct
simulations to empirically demonstrate the efficacy of our
approach. The final section V contains concluding remarks.

II. PRELIMINARIES

We consider motion planning of CAVs on a highway to
cooperatively enable an ego CAV to pass a slow uncontrolled
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Fig. 1: A scenario of three potential CAVs on the fast lane,
and a CAV C which is behind a slow uncontrolled vehicle
U and aims at performing a lane change.

vehicle (see Fig. 1 for a CAV group of size four). This lane
change maneuver can be decomposed into longitudinal and
lateral phases. First, cooperating CAVs and the ego CAV
adjust their longitudinal position such that there is a safe and
feasible gap for the ego CAV to perform a lane change. Then,
the ego CAV performs an optimal lane-change maneuver. In
this letter, we focus solely on the first component, i.e., the
longitudinal motion planning of CAVs.

Let C be the ego CAV which aims at performing a lane
change to the fast lane, and passes a slow uncontrolled
vehicle denoted by U . The set of all cooperative CAVs on the
fast lane at time t ∈ R, which are in the communication range
of CAV C, is given by S(t). The set of cooperative CAVs
on the fast lane can be located between potential human-
driven vehicles F and B from front and back, respectively.
For simplicity in notation, let S(t) = {1, . . . ,m}, where 1
is the CAV farthest ahead and m is the last.

We model the longitudinal dynamics of CAV i ∈ S(t) as
a double integrator, i.e.,

ẋi(t) = vi(t),

v̇i(t) = ui(t),
(1)

where xi(t), vi(t), and ui(t) denote position, speed, and ac-
celeration at t ∈ R, respectively, and xi(t) = [pi(t), vi(t)]

>

be the state of the CAV i at time t. Let t0 denote the
time at which the longitudinal component of the maneuver
is triggered, while tf is the time when this component is
completed. Without loss of generality thereafter we consider
t0 = 0 to simplify the notation.

For each CAV i ∈ S(t) the control input and speed are
bounded by

umin ≤ ui(t) ≤ umax, (2)

0 ≤ vmin ≤ vi(t) ≤ vmax, (3)

where umin, umax are the minimum and maximum control
inputs and vmin, vmax are the minimum and maximum speed
limit, respectively.

To guarantee rear-end safety between CAV i ∈ S(t) and
a preceding CAV k ∈ S(t), we impose the following speed-
dependent constraint,

pk(t)− pi(t) ≥ ε+ ϕ vi(t), (4)

where ε and ϕ ∈ R>0 are the standstill distance and reaction
time respectively.

In contrast to approaches that neglect the negative effects
of a lane change on the surrounding traffic [9]–[14], we
borrow a metric called disruption from [18] to explicitly

consider the adverse impact that the maneuver might have
on the fast-lane traffic. For any vehicle i ∈ S(t), the total
disruption at time t > 0 is denoted by Di(t), and given by

Di(t) = γx∆x
i (t) + γv∆v

i (t), (5a)

∆x
i (t) = (xi(t)− (xi(0) + vi(0) · t))2, (5b)

∆v
i (t) = (vi(t)− vd)2, (5c)

where ∆x
i (t) and ∆v

i (t) are the position and flow disruptions.
We define the disruption metric using not only the expected
change in the final positions of the CAVs in the fast lane but
also the change in their final speed. The position disruption
metric ∆x

i (t) is a measure of the discrepancy in the terminal
positions of the cooperating vehicle in the fast lane when
compared to its position had it not cooperated at all and
cruised with its initial speed over [0, t]. The flow disruption
∆v

i (t) is defined as the speed deviation of the vehicle at time
t from a desired flow speed, vd.

To make the dimensions consistent in (5a), the weight
factors γx and γv are defined as follows

γx =
γ

(max(vmax − v0, vmin − v0) · tavg)2
, (6a)

γv = (1− γ) ·max(vmax − vd, vmin − vd)2, (6b)

where γ ∈ [0, 1] is a tuning parameter to place more
emphasis on position or flow disruption, while tavg is the
desired average time to complete the longitudinal component
of the maneuver. In the next section, we briefly describe
the general approaches in the previous work [17], [18] and
elaborate on the proposed formulations.

III. MODELING FRAMEWORK

A. Previous Formulations

We will compare the performance of our proposed ap-
proaches primarily against two formulations developed in the
recent past ( [17], [18]) to tackle the problem of a cooperative
lane-change maneuver on a highway.

In both [17] and [18], a multi-step iterative approach is
presented:
Step 1 CAV C determines an optimal terminal maneuver

time t∗f and control input (acceleration/deceleration)
u∗C(t), t ∈ [0, tf ] that minimizes a given objec-
tive function, while satisfying vehicle dynamics and
safety constraints with the slow vehicle in front of it
(i.e., vehicle U in Fig. 1).

Step 2 An optimal pair of CAVs (i∗, i∗ + 1) is identified
from S(t∗f ) in the fast lane.

Step 3 In case no feasible pair is identified, the terminal time
t∗f is relaxed and the series of optimization problems
is re-solved from Step 1.

Step 4 A planning algorithm may be executed to determine
the optimal trajectory that minimizes an energy cost
subject to dynamics and terminal state constraints.

The major differences between the two approaches in [18]
and [17] are listed below.

In Step 1 (purple block in Fig. 2), for both approaches,
the objective function consists of a weighted sum of the time



required for the maneuver and the energy cost for CAV C
over the same time. In [17], the terminal speed vC(t∗f ) is
constrained to be close to some given vd (i.e., desired speed
of fast lane) while in [18], this is as a terminal cost rather
than a hard constraint as in [17].

In Step 2 (yellow blocks in Fig.2), the optimal pair
is chosen such that it minimizes a measure of disruption
incurred by the cooperating vehicles. In [17], the disruption
metric is limited to position (i.e., ∆x

i (t∗f ) + ∆x
i+1(t∗f ) from

(5b)) and the decision variables also include the terminal
positions of the cooperative pair. However, in [18], the
disruption metric additionally accounts for deviation in speed
(i.e., Di(t

∗
f ) +Di+1(t∗f ) from (5a)).

In Step 3 (red dotted line in Fig. 2), the minimum
disruption found has to be below a specified threshold Dth;
otherwise, the terminal time is relaxed as t′f = λt∗f (where
λ > 1) and another iteration takes place from Step 1.

Step 4 (blue block in Fig. 2) is not required for approach
[18] as it is combined with Step 2, in which the planned
trajectory is found in conjunction with the optimal pair of
CAVs that minimizes the combined disruption. However, it
is a necessary component for the approach in [17].

The key observations to note from these two methods are:

1) The first optimization problem solved to find the terminal
time t∗f in Step 1 does not account for any CAVs in S(.).

2) An iterative process is followed to determine the feasibil-
ity of the obtained terminal time. Depending on the initial
conditions of the traffic scenario and the desired speeds,
this approach may be severely time-consuming due to the
need for multiple iterations.

3) The disruption measured only accounts for the pair of
cooperating vehicles in the fast lane (i, i+ 1), but not the
vehicles behind the selected pair, i.e., CAVs j > i + 1,
j ∈ S(·).

In the next sections, we introduce our framework to address
the aforementioned limitations. Fig. 2 summarizes all these
different approaches.

B. Cooperating with more CAVs on the fast lane

The first change that we desire to introduce is the principle
of collaboration with all CAVs in the cooperative set of CAV
C. We shall illustrate this approach with the formulation
developed for an arbitrary set of cooperating CAVs denoted
by S(t∗f ) = {1, . . . ,m}, and CAV C aims at performing a
lane change given a final time t∗f and its final states (see
Fig.1). Considering Step 1 is intact, the solution of this
section determines the terminal states of the cooperative
CAVs on the fast lane and a location into which CAV C
merges (top green block shown in Fig. 2). We define global
disruption as the cost incurred by all the cooperating CAVs
in the swarm block due to the lane-change maneuver initiated
by CAV C. Note that, the optimal pair of CAVs which CAV
C merges between is a decision variable that needs to be
computed along with other decision variables such that they
minimize the global disruption of CAVs in the fast lane.

Fig. 2: Block diagrams of different approaches for longitu-
dinal positioning of CAVs in a cooperative lane change.

1) Safety constraints among CAVs on the fast lane: Since
we aim to find terminal states of CAVs on the fast lane, we
impose rear-end safety constraints for CAVs in the fast lane
only at time t∗f , and let a trajectory planner (III-D) ensure
safety during t ∈ [0, t∗f ). Thus, we have the following rear-
end safety constraints.

xF (t∗f )− x1(t∗f ) ≥ ϕv1(t∗f ) + ε, (7a)

∀j ∈ S(t) \ {m} :

xj(t
∗
f )− xj+1(t∗f ) ≥ ϕvj+1(t∗f ) + ε, (7b)

xm(t∗f )− xB(t∗f ) ≥ ϕvB(t∗f ) + ε. (7c)

Note that the rationale for considering (7c) is that CAV m
should not take an action that disturbs vehicle B (potentially
a HDV), so it considers the safety constraint with the vehicle
behind it as well.

2) Feasible set of final states: As our optimization formu-
lations seek to derive the terminal states for all the vehicles
in the set of cooperative vehicles, it is crucial to determine
their feasible set. Given the double integrator dynamics in
(1) for all CAVs i ∈ S(t∗f ), we apply the geometry analysis
tools presented in [19], [20] to determine a parametric
representation for this convex set, also called the reachable
set. In the presence of control input constraints (1), define
the following two parameters:

µ =
umax − umin

2
, ν =

umax + umin

2
. (8a)

The implicit form of the bounding curves of the reachable
set at time t for a double integrator are parabolic in state and
given by:

pupper(xi, vi, t) =− t2

2
+

1

4

(
vi − vi(0)− νt

µ
+ t

)2



−
xi − xi(0)− tvi(0)− ν t2

2

µ
, (9a)

plower(xi, vi, t) =
t2

2
− 1

4

(
−vi + vi(0) + νt

µ
+ t

)2

−
xi − xi(0)− tvi(0)− ν t2

2

µ
. (9b)

The reachable set can now be established as

pupper(xi, vi, t) ≤ 0 ∪ plower(xi, vi, t) ≥ 0. (10)

This constraint can be expressed in the decision variables
as required and added to the list of constraints in the final
optimization problem for terminal states of CAV i.

3) Safety constraint of CAV C with corresponding vehicles
on the fast lane: Focusing on cases that CAV C does not
merge in front of vehicle F or behind vehicle B, which are
uncontrolled vehicles, we need to consider safety constraints
based on the target location of CAV C and cooperative CAVs
on the fast lane. In what follows, we first provide the safety
constraints for a sample case shown in Fig. 1. Starting with
listing safety constraints based on the location of CAV C in
(11)-(14), in (15) we show that several of these constraints
are disjunctive meaning they cannot be satisfied at the same
time. Next, we formalize these constraints by incorporating
binary variables in (16), and extend it to the arbitrary set of
cooperating CAVs in (17).

Case 1: CAV C merges between CAV 1 and vehicle F ,

xF (t∗f )− xC(t∗f ) ≥ ϕvC(t∗f ) + ε, (11a)

xC(t∗f )− x1(t∗f ) ≥ ϕv1(t∗f ) + ε. (11b)

Case 2: CAV C merges between CAV 2 and CAV 1,

x1(t∗f )− xC(t∗f ) ≥ ϕvC(t∗f ) + ε, (12a)

xC(t∗f )− x2(t∗f ) ≥ ϕv2(t∗f ) + ε. (12b)

Case 3: CAV C merges between CAV 3 and CAV 2,

x2(t∗f )− xC(t∗f ) ≥ ϕvC(t∗f ) + ε, (13a)

xC(t∗f )− x3(t∗f ) ≥ ϕv3(t∗f ) + ε. (13b)

Case 4: CAV C merges between vehicle B and CAV 3,

x3(t∗f )− xC(t∗f ) ≥ ϕvC(t∗f ) + ε, (14a)

xc(t
∗
f )− xB(t∗f ) ≥ ϕvB(t∗f ) + ε. (14b)

We need to always satisfy (11a) and (14b); however, only
one of the constraints in each of the pairs (11b) and (12a),
pair (12b) and (13a), and pair (13b) and (14a) needs to be
satisfied, which can be written as

(11b) OR (12a), (15a)
(12b) OR (13a), (15b)
(13b) OR (14a). (15c)

Constraints (15a), (15b), and (15c) are disjunctive constraints
due to the OR statement. Moreover, they determine if CAV
C merges in front or behind a cooperative CAV in the fast
lane. We convert each disjunctive constraint into two separate

constraints by introducing a binary variable Bi ∈ {0, 1} for
all i ∈ S(t∗f ) and a sufficiently large number M ∈ R≥0 [21].
Disjunctive constraint (15a) becomes

xc(t
∗
f )− x1(t∗f ) + (1−B1)M ≥ ϕv1(t∗f ) + ε, (16a)

x1(t∗f )− xc(t∗f ) +B1M ≥ ϕvc(t∗f ) + ε. (16b)

Similarly, the other disjunctive constraints (15b) and (15c)
can be converted. The extension to the arbitrary set of
cooperating CAVs is as follows:

∀j ∈ S(t) :

xC(t∗f )− xi(t∗f ) + (1−Bi)M ≥ ϕvi(t∗f ) + ε, (17a)

xi(t
∗
f )− xC(t∗f ) +BiM ≥ ϕvc(t∗f ) + ε, (17b)

To further clarify the notation, Bi = 1 implies that CAV
C is in front of CAV i ∈ S(t∗f ). If Bi = 1, we need to have
Bj = 1 for j ∈ {i + 1, . . . ,m}, conveying that if CAV C
is in front of CAV i, it must be also in front of other CAVs
located behind CAV i.

4) Optimization problem: Next, we formally define the
optimization problem for an arbitrary set of cooperating
CAVs denoted by S(t∗f ) = {1, . . . ,m} aimed at minimizing
the global disruption of the maneuver on the fast lane.

Problem 1. The following optimization problem is aimed at
deriving the final states of cooperative CAVs on the fast lane,
given the final time, t∗f and final states of CAV C

min
xi(t∗f ), Bi ∀i∈S(t∗f )

∑
i∈S(t∗f )

Di(t
∗
f )

xF (t∗f )− x1(t∗f ) ≥ ϕv1(t∗f ) + ε, (18a)

xm(t∗f )− xB(t∗f ) ≥ ϕvB(t∗f ) + ε, (18b)

xF (t∗f )− xC(t∗f ) ≥ ϕvc(t∗f ) + ε, (18c)

xC(t∗f )− xB(t∗f ) ≥ ϕvB(t∗f ) + ε, (18d)

∀j ∈ S(t) \ {m} : (18e)
xj(t

∗
f )− xj+1(t∗f ) ≥ ϕvj+1(t∗f ) + ε, (18f)

∀i ∈ S(t) :

xC(t∗f )− xi(t∗f ) + (1−Bi)M ≥ ϕvi(t∗f ) + ε, (18g)

xi(t
∗
f )− xC(t∗f ) +BiM ≥ ϕvc(t∗f ) + ε, (18h)

pupper(xi, vi, t
∗
f ) ≤ 0 ∪ plower(xi, vi, t

∗
f ) ≥ 0, (18i)

0 ≤ vmin ≤ vi(t∗f ) ≤ vmax. (18j)

C. Unified Coordination Framework

In this section, we seek to eliminate the decoupling of
time and space in the optimization setup. Instead of deriving
t∗f first and then solving for the final states of CAVs in the
fast lane, this method seeks to solve for both simultaneously
and to combine Step 1 and Step 2 (bottom green block in
Fig. 2).

Problem 2. The following optimization problem derives the
final states of an arbitrary set of cooperative CAVs on the
fast lane, final states of the ego CAV, and the final time, t∗f .

min
tf ,xc(tf ),xi(tf ),Bi ∀i∈S(tf )

γttf +Dc(tf ) +
∑

i∈S(tf )

Di(tf )



xF (tf )− x1(tf ) ≥ ϕv1(tf ) + ε, (19a)
xm(tf )− xB(tf ) ≥ ϕvB(tf ) + ε, (19b)
xF (tf )− xc(tf ) ≥ ϕvc(tf ) + ε, (19c)
xc(tf )− xB(tf ) ≥ ϕvB(tf ) + ε, (19d)
xU (tf )− xC(tf ) ≥ ϕvc(tf ) + ε, (19e)
∀j ∈ S(t) \ {m} :

xj(tf )− xj+1(tf ) ≥ ϕvj+1(tf ) + ε, (19f)
∀i ∈ S(t) :

xC(tf )− xi(tf ) + (1−Bi)M ≥ ϕvi(tf ) + ε, (19g)
xi(tf )− xc(tf ) +BiM ≥ ϕvc(tf ) + ε, (19h)
∀i ∈ S(t) ∪ {C} :

pupper(xi, vi, tf ) ≤ 0 ∪ plower(xi, vi, tf ) ≥ 0, (19i)
0 ≤ vmin ≤ vi(tf ) ≤ vmax, (19j)

where γt is a weight to non-dimensionalize the final time tf .

Note that Problems 1 and 2 are solved by CAV C. Next,
the maneuver time and terminal states are broadcast to the
CAVs on the fast lane to generate their optimal trajectories.

D. Trajectory Planner

The optimization problems detailed in equations (18) and
(19) render the terminal states of all CAVs cooperating in
the lane-change maneuver. However, to execute the maneu-
ver, we also need to determine the trajectory plan over
the specified time interval [t0, t

∗
f ), given the initial states

xi(t0) and terminal states xi(t
∗
f ) of vehicle i. For clarity of

notation in the formulation below, let the optimized terminal
position and speed of vehicle i be referred to as xfi and vfi
respectively.

min
ui(t)

∫ t∗f

t0

1

2
u2i (t)dt (20a)

s.t. (1), (2), (3),
xi−1(t)− xi(t) ≥ϕvi(t) + ε, ∀t ∈ [t0, t

∗
f ], (20b)

(xi(t
∗
f )− xfi )2 ≤ δx, (vi(t

∗
f )− vfi )2 ≤ δv, (20c)

where δx and δv are tolerances chosen for numerical feasi-
bility.

The trajectories of all the vehicles can be determined
sequentially in order in a distributed manner, i.e., i =
1, 2, . . . and so on until the last vehicle in the cooperative
set. This allows passing the information of the preceding
vehicle’s trajectory to the current vehicle so as to ensure the
satisfaction of safety constraints.

IV. SIMULATION RESULTS

This section provides a summary of the simulation setup
and the corresponding results demonstrating the various ways
in which the proposed formulations outperform the baselines.
The simulations were developed entirely in MATLAB with
the help of CasADi [22] for numerical optimization on an
Intel Core i7-1185G7 3.0 GHz.

TABLE I: Comparison of Averaged Results for Different
Methods and Different Number of Cooperative CAVs

|S| Methods t∗f (s) ∆i,i+1 DS niter tavgiter(s)

6

[17] 2.81 0.1171 0.4426 4.3 0.8

[18] 1.72 0.0607 0.3298 6.5 4.49

III-B 1.69 0.0579 0.0696 6.3 0.33

III-C 2.42 0.0007 0.01 1 0.85

5

[17] 2.67 0.1219 0.3949 3 0.77

[18] 2.02 0.1015 0.3394 8.2 3.81

III-B 2.02 0.1021 0.1237 8.2 0.27

III-C 2.56 0.0004 0.01 1 0.76

4

[17] 2.55 0.0823 0.1730 3.2 1

[18] 1.91 0.0708 0.1730 7.3 3.17

III-B 1.7 0.0329 0.0389 6.3 0.24

III-C 2.25 0.0004 0.0076 1 0.61

3

[17] 2.57 0.0692 0.1145 2.5 0.94

[18] 1.92 0.0568 0.0894 7.5 2.22

III-B 1.84 0.0237 0.0283 7.2 0.18

III-C 2.31 0.0006 0.0082 1 0.5

The setting consists of a straight two-lane highway and
an allowable speed range of v = [5, 35] m/s. The headway
parameter ϕ and the safe distance parameter ε were chosen
to be 0.2 s and 10m respectively. We consider the case that
all vehicles on the fast-lane are CAVs (i.e., vehicle B and F
are not present). Congestion is generated due to the presence
of a uncontrolled slow vehicle U in the right lane traveling
at a constant speed of vU = 20 m/s. CAV C is initially
present right behind U and has a speed of 23m/s as it
seeks to change its lane. The control limits specified for
every CAV are umin = −7m/s2 and umax = 3.3m/s2. We
used IPOPT [23] for obtaining the solutions for the optimal
control problem in (20). The MINLP in (18) and (19) were
solved using BONMIN [24].

The desired flow speed was drawn from a uniform distri-
bution to allow a range vd = [25, 35]m/s. The maximum
time allowed for the maneuver was capped at Tmax = 20 s.
Position and flow disruption were weighted equally, i.e.,
γ = 0.5, and γt is chosen to be 1

Tmax
. For the trajectory

planners, the allowable terminal state discrepancies were
δx = 0.1m2 and δv = 0.1m2/s2. Once the optimal pair of
cooperative vehicles were found for methods [17] and [18],
the vehicles in front followed a constant speed trajectory and
the ones behind followed an IDM model [25].

The results of the simulations are summarized in Table I.
We compare our performance against the methods presented
in [17] and [18]. We performed 24 different simulations
with random seeds varying initial conditions and free flow
speeds to capture the impact of our proposed formulations on
the disruption metrics under different number of cooperative
CAVs varying from 3 to 6. Here, t∗f is the terminal time
found at the end of any time relaxation iterations carried out
to ensure feasibility. ∆i,i+1(t∗f ) refers to the local disruption
incurred by the optimal pair of cooperating vehicles that CAV
C merges between, and DS(t∗f ) denotes the global disruption
that the full set of cooperating CAVs S(t∗f ) faces. nIters



refers to the average number of iterations that were required
to ensure a feasible maneuver.

As can be clearly seen, the proposed approaches fare better
than methods [17], [18] in terms of both the local and global
disruptions incurred due to the lane change maneuver. The
formulation described in section III-B performs marginally
better than the baselines and demonstrates the benefit of
accounting for the entire set of cooperating vehicles in
the fast lane. Moreover, the improvement in disruption by
using the unified approach (III-C) is orders of magnitude
higher than any of the other methods. It also illustrates the
redundancy of an iterative approach, ensuring feasibility in
the very first optimization problem solved. To investigate the
computational complexity of Problem 1 and 2, we compute
the mean of computation time per iteration (yellow blocks
and green blocks in Fig. 2) for each simulation of every
approach, and averaged this means across all the seeds which
are listed in Table I as tavgiter. It shows that our approach is
computationally feasible, however, the maximum number of
CAVs to collaborate with should be upper-bounded based on
the computational capabilities.

V. CONCLUDING REMARKS AND DISCUSSION

In this letter, we presented two formulations to perform
a lane change maneuver for CAVs on a congested highway
while minimizing a measure of disruption on the cooperating
vehicles. The first approach seeks to account for the global
impact on all the CAVs in the neighborhood instead of just
the optimal pair. The second approach extends the first one
by combining the multi-step optimization formulations to
eliminate the decoupling between finding CAV C’s optimal
trajectory and checking its feasibility for the cars on the fast
lane, thereby removing the need for an iterative procedure.
Both methods perform better in terms of the disruption
incurred by the cooperating CAVs for participating in the
maneuver, and are a step towards designing more socially
compliant formulations to relieve traffic congestion. Future
studies will involve interactions with human-driven vehicles
in a mixed autonomy framework.
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