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Deep Learning for Scalable Optimal Design
of Incremental Volt/VAR Control Rules

Sarthak Gupta, Graduate Student Member, IEEE, Ali Mehrizi-Sani, Senior Member, IEEE,
Spyros Chatzivasileiadis, Senior Member, IEEE, and Vassilis Kekatos, Senior Member, IEEE

Abstract—Volt/VAR control rules enable distributed energy
resources (DER) to autonomously regulate voltage in distribution
grids. The Volt/VAR rules provisioned by the IEEE Standard
1547 take on a piecewise-linear shape. However, its maximum
slope is upper bounded to ensure stability, and that may hamper
its voltage regulation performance. This limitation can be sur-
passed by adding a memory term to the control rule, and thus,
obtaining a so-termed incremental control rule. This letter aims
to optimally customize the shape of incremental rules across buses
to attain desirable voltage profiles. Albeit this task can be posed
as a bilevel program, we pursue a more scalable approach by
reformulating it as a deep learning task. The idea is that Volt/VAR
dynamics can be captured by a recursive neural network (RNN).
Interestingly, the RNN weights correspond to the parameters of
the control rule; the RNN input to the grid loading conditions;
and the RNN output to the equilibrium voltages. Therefore, the
optimal rule parameters can be found upon training the RNN
so its output (equilibrium voltages) approach unity. Training is
performed by feeding the RNN with representative scenarios of
the anticipated grid loading conditions. The RNN depth depends
on the settling time of Volt/VAR dynamics. Because the discrete-
time Volt/VAR dynamics can be viewed as iterations of a proximal
gradient descent (PGD) algorithm, we also leverage Nesterov’s
accelerated PGD iterations to reduce the RNN depth. The RNN is
never implemented in the field. Training this RNN is equivalent to
solving the optimal rule design in a more computationally efficient
manner. Analytical findings and numerical tests corroborate that
the proposed solution can be neatly adapted to single- and multi-
phase feeders. The proposed approach could be of general interest
in designing piecewise-linear controllers acting on linear plants.

Index Terms—Multiphase feeders, gradient backpropagation,
proximal gradient descent.

I. INTRODUCTION

LOCAL Volt/VAR control facilitates voltage regulation on
distribution grids by providing reactive power compen-

sation from DERs equipped with smart inverters. Different
from centralized control schemes that entail high communica-
tion/computational burden, local rules decide DER setpoints
based on local measurements. Although the general shape of
such rules is prespecified, it is not clear how a utility can
fine-tune these rules on a per-bus basis and depending on grid
loading conditions to achieve better voltage profiles. This letter
deals with this exact problem of optimal rule design (ORD).

Volt/VAR control rules can be categorized into non-
incremental and incremental ones. The former compute DER
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reactive power setpoints based on local voltage readings. The
IEEE Standard 1547.8 prescribes such non-incremental rules
as piecewise-linear functions of voltage [1]. On the other
hand, incremental Volt/VAR rules compute the change in VAR
setpoints as a function of voltage [2]–[5].

The existing literature on ORD can be classified into sta-
bility- and optimality-centric approaches. Stability-centric ones
study the effect of Volt/VAR rules as a closed-loop dynamical
system, which may be rendered unstable under steep slopes of
non-incremental rules [6], [7]. In fact, to ensure stability, non-
incremental rules may have to compromise on the quality of
their steady-state voltage profile [4], [7]. Incremental rules do
not experience stability limitations [8], and can thus, achieve
improved voltage profiles. Nonetheless, such improvements
may come at the expense of longer settling times of the
associated Volt/VAR dynamics [7].

Optimality-centric works focus on designing stable control
rules to minimize a voltage regulation objective. To this end,
optimization-based strategies have been employed to design
affine non-incremental rules using heuristics [9]–[11]. Two of
our recent works in [12] and [13] have addressed the problem
of optimally designing the slope, deadband, saturation, and
reference voltage. ORD in single-phase feeders is tackled as a
bilevel optimization in [12]. Reference [13] proposes RNN-
based digital twins that emulate non-incremental Volt/VAR
dynamics, and reformulates ORD as an RNN training task
for single-/multi-phase feeders.

This letter considers optimally designing incremental
Volt/VAR control rules. Although the general shape of the
rules is prespecified, fine-tuning the precise location of break-
points and customizing them per bus seem to have an im-
portant effect on the steady-state equilibrium voltage profiles.
Technical contributions are on three fronts: c1) Although the
ORD task can be posed as a mixed-integer nonlinear program,
it does not scale well with the numbers of DERs, nodes,
and grid loading scenarios. To address this challenge, the
genuine idea here is to reformulate ORD as a deep-learning
task and leverage the fast software modules for training RNNs.
We have put forth a similar approach for designing non-
incremental control rules in [13]. However, migrating from
non-incremental to incremental rules is non-trivial due to
the different curve shapes, stability, and convergence rate
properties. The convergence rate is directly tied to the depth
of the RNN modeling the Volt/VAR dynamics. c2) Using the
properties of the proximal operator, we simplify the conver-
gence analysis and derive the convergence rate for multiphase
feeders. c3) To further expedite ORD for incremental rules,
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we suggest implementing accelerated Nesterov-type variants
of the rules to yield a shallower RNN emulator.

Recent works [14], [15] also design incremental Volt/VAR
rules using NNs. Different from our approach where a RNN
is used only to speed up ORD, [14], [15] train single-layer
NNs to be used on the field. The NN of [14] is trained
on a per-bus basis using reinforcement learning to handle
transient voltage dynamics, whereas our RNN is trained prior
to deployment over different scenarios to drive steady-state
voltages to unity over the next couple of hours. Similar to our
approach, reference [15] trains NNs beforehand in a supervised
fashion: It first creates a labeled dataset upon solving a number
of optimal power flow (OPF) problems. It subsequently trains
the NN for each bus independently based on optimal voltage-
injection pairs locally for this bus at equilibrium. However,
this local mapping may not be a bijection because the same
value of optimal voltage at a specific bus may correspond to
different values of optimal injection at that bus. Reference [16]
also pursues an OPF-then-learn approach to fit OPF solutions
to piecewise-linear rules using a sum-of-squares approach.
Outside the domain of Volt/VAR control, [17] employs an
RNN to capture frequency control dynamics. Focusing again
on transient behavior, the depth of this RNN [17] is controlled
by the length of the considered transient period. In contrast,
we analytically relate the RNN depth to the convergence rate
of Volt/VAR dynamics. Distinctly from [14], [15], [17], our
RNN is never implemented by DERs. Training this RNN is
equivalent to solving the ORD, yet more efficiently.

II. VOLT/VAR CONTROL RULES

Consider a radial feeder serving N buses indexed by n =
1, . . . , N . Let (qℓ,q) collect reactive loads and generations at
all nodes. Vectors (p,v) collect the net active power injections
and voltage magnitudes at all nodes. The impact of q on v
can be approximately captured using the next linearized grid
model widely adopted in the literature [6], [7]

v ≃ Rp+X(q− qℓ) + v01 = Xq+ ṽ (1)

where ṽ := Rp − Xqℓ + v01 models the underlying grid
conditions, and v0 is the substation voltage. Vector ṽ rep-
resents the impact of non-controlled quantities (p,qℓ) on
voltages. Matrices (R,X) depend on the feeder topology. For
single-phase feeders, they are symmetric positive definite with
positive entries [18]. For multiphase feeders, they are non-
symmetric and have positive and negative entries [4], [13].

Vector q in (1) carries the reactive injections by DERs
we would like to control. Per the non-incremental rules of
the IEEE Std. 1547 [1], DER setpoints are decided based
on the Volt/VAR curve of Fig. 1, which is parameterized by
(v̄, δ, σ, q̄). The standard further constrains these parameters
within a polytopic feasible set [1], [12]. The negative slope of
the linear segment of the curve in Fig. 1 can be expressed as
α := q̄

σ−δ . The interaction of Volt/VAR rules with the feeder
gives rise to the piecewise-linear discrete-time dynamics:

vt = Xqt + ṽ (feeder) (2a)

qt+1 = f(vt) (2b)

Fig. 1. Non-incremental Volt/VAR control rule provisioned by the IEEE Std.
1547 for the interconnection of DERs [1].

where f abstracts the control rule of Fig. 1 across inverters. If
∥dg(α)X∥2 < 1, where dg(α) is a diagonal matrix carrying
the rule slopes over all buses on its diagonal, then the aforesaid
dynamics are globally exponentially stable [7].

DER equilibrium setpoints cannot be expressed in closed
form, but coincide with the minimizer of [6]

min
−q̄≤q≤q̄

1

2
q⊤Xq+q⊤(ṽ− v̄)+

1

2
q⊤ dg−1(α)q+δ⊤|q| (3)

where |q| applies the absolute value on q entrywise. Prob-
lem (3) depends on rule parameters (v̄, δ, α, q̄) across all buses.
We stack all rule parameters into the 4N -long column vector
z := [v̄; δ;α; q̄] borrowing MATLAB’s shorthand notation.
We denote by qz(ṽ) the equilibrium setpoints, and by

vz(ṽ) = Xqz(ṽ) + ṽ (4)

the related equilibrium voltages reached by Volt/VAR rules
parameterized by z under grid conditions ṽ. Since (3) has a
strictly convex objective, the equilibrium qz(ṽ) is unique [6].

Optimal rule design (ORD) can be stated as the task of
selecting z to bring equilibrium voltages vz(ṽ) close to unity.
To cater to diverse conditions, the utility may sample S loading
scenarios {ṽs}Ss=1 for the next hour, and find z as

z∗ ∈ argmin
z

F (z) :=
1

S

S∑
s=1

∥vz(ṽs)− 1∥22 (ORD)

subject to (4) and z ∈ Z.

The focus is on equilibrium voltages as utilities and reliability
standards focus primarily on time-averaged voltages and ig-
nore transient effects. Once found, the customized rules z∗ are
sent to DERs to operate autonomously over the next hour. Note
that vz(ṽs) depends on z because the equilibrium setpoints
qz(vs) in (4) are the minimizers of problem (3), which is
parameterized by z. When solving (ORD) for non-incremental
rules, the feasible set Z consists of the polytopic constraints
imposed on z by the IEEE Std. 1547 as well as additional
constraints on α to ensure ∥ dg(α)X∥2 < 1; see [19]. Hence,
the feasible set Z can be quite confined. This can lead to less
desirable voltage profiles, i.e., higher objective values F (z∗).

The aforesaid issue can be addressed by replacing the non-
incremental Volt/VAR rules of IEEE Std. 1547 by incremental
ones as suggested in [2]–[4], [8], [20]. Incremental rules
express the change rather than the actual value in reactive
setpoints as a function of voltage. One option for incremental
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rules is to implement a proximal gradient descent (PGD)
algorithm solving (3) as proposed in [4]. In this case, the
control rule updates coincide with the iterations of PGD. Using
incremental rules, there are no major stability limitations.
Thus, feasible set Z is enlarged as we only need to ensure

z ≥ 0 and 0.95 · 1 ≤ v̄ ≤ 1.05 · 1 and q̄ ≤ q̂ (5)

where q̂ is the vector of reactive power ratings across DERs.
The PGD algorithm is an extension of gradient descent to

handle constraints and non-differentiable costs [4]. At iteration
t, PGD proceeds in two steps: s1) It first computes the gradient
of the first two terms of the cost in (3), which is Xqt+ṽ−v̄ =
vt − v̄. Here qt is the latest estimate of the minimizer of (3);
s2) PGD then updates qt+1 as the minimizer of

min
−q̄≤q≤q̄

1

2
q⊤ dg−1(α)q+ δ⊤|q|+ 1

2µ
∥q− (vt − v̄)∥22 (6)

for a step size µ > 0. The last problem involves the last two
terms in the cost of (3) regularized by the Euclidean distance
of q to the gradient (vt − v̄) computed in step s1).

Converting PGD to control rules, step s1) is run by the
feeder when injecting qt and measuring local voltage de-
viations vt − v̄; see (7a). Step s2) is run by each DER
independently as (6) is separable across buses; see (7b)–(7c).
Solving (6) yields the next update as derived before in [4]:

vt = Xqt + ṽ (feeder) (7a)

ytn = α̃n ·
(
qtn − µ(vtn − v̄n)

)
(7b)

qt+1
n = gn

(
ytn
)

(7c)

where gn(yn) is the proximal operator shown in Figure 2. The
operator depends on the transformed parameters

α̃n :=
1

1 + µ/αn
and δ̃n :=

δn
1 + µ/αn

. (8)

We henceforth switch the representation of rule parameters
from z = [v̄; δ;α; q̄] to z̃ := [v̄; δ̃; α̃; q̄]. This is without loss
of generality as the transformation in (8) is a bijection, and so
one can work exclusively with z̃. The feasible set Z̃ is defined
by (5) along with the additional constraint α̃ ≤ 1.

Albeit the problem physics predetermine the shape of the
rule (7b)–(7c), its breakpoints in Figure 2 can be fine-tuned
on a per-bus basis to improve voltage profiles. As with
non-incremental rules, the rules in (7b)–(7c) are driven by
local data, but now qt+1

n depends on (vtn, q
t
n), and not vtn

alone. Non-incremental and incremental rules alike solve (3).
Hence, they both converge to the same unique equilibrium.
The advantage of incremental rules is that they are globally
exponentially stable for all α as long as µ < 2/λmax(X); see
[4] and Proposition 1 here. It is worth stressing that z here does
not have the same physical interpretation as in non-incremental
rules (slopes, deadband, or saturation), though z parameterizes
(3) in the same way for both rules. Our ORD does not optimize
over µ, which is assumed fixed. As evident from (3), µ does
not affect steady-state profiles, but only transient behavior.
One could augment z with step sizes customized per bus and
pursue ORD formulations to minimize settling times subject to
voltage constraints. This goes beyond the scope of this letter.

Fig. 2. Proximal operator g(y) expressed as a sum of four shifted ReLUs.

Accelerated incremental rules. Although PGD rules en-
large Z , their settling times can be long. They reach an
ε-optimal cost of (3) exponentially fast; particularly within
− 2 log ε

log 2 κ (X) iterations, where κ(X) is the condition number
of X. Works [4], [21] put forth accelerated incremental rules
based on accelerated PGD (APGD), shown to be globally ex-
ponentially stable. These rules need − 2 log ε

log 2

√
κ (X) iterations

to attain an ε-optimal cost, and take the form

vt = Xqt + ṽ (feeder) (9a)

ỹtn := (1 + βt) y
t
n − βty

t−1
n (9b)

qt+1
n := gn

(
ỹtn
)

(9c)

where βt := t−1
t+2 , while ytn and gn(yn) are as defined

in (7b)–(7c). Updates (9) remain local, but introduce additional
memory as qt+1

n depends on (vtn, q
t
n) and (vt−1

n , qt−1
n ).

Remark 1. For a given stable z, dynamics under (non)-
incremental rules converge to the same equilibrium qz(ṽ).
However, the feasible set for ORD with non-incremental rules
includes additional polytopic constraints [13] and the stability
constraint ∥ dg(α)X∥2 < 1, whereas set Z̃ for ORD with
incremental rules does not. Because Z ⊆ Z̃ , incremental rules
can attain lower F (z∗), and thus, improved voltage profiles.

III. DEEP LEARNING FOR ORD IN 1ϕ FEEDERS

Solving (ORD) is challenging as it is a nonconvex bilevel
program. Although it can be modeled as a mixed-integer
nonlinear program, such an approach does not scale well
with the number of DERs or scenarios for non-incremental
rules [13]. Seeking a more scalable solution, we reformulate
(ORD) as a deep learning task. The key idea is to design
an RNN that emulates Volt/VAR dynamics under the rule
of (7). To this end, note that gn(yn) is a piecewise-linear
function with four breakpoints. Interestingly, this operator can
be expressed as the superposition of four rectified linear units
(ReLUs) as illustrated in Fig. 2, where ReLUs are denoted by
ρ(·). The intercepts of the ReLUs depend linearly on (δ̃n, q̄n).

Building on this, one APGD iteration for DER n can be
implemented by the 4-layer Deep Neural Network (DNN) in
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Fig. 3. A NN emulating the accelerated rules of (9). Plain rules can be
modeled by dropping the second layer (setting βt = 0) and output ytn.

Fig. 4. RNN implementation for accelerated incremental Volt/VAR rules.

Fig. 3, whose weights depend affinely on (v̄n, δ̃n, α̃n, q̄n). This
DNN takes (qtn, v

t
n) as its input, and computes (qt+1

n , ytn) at its
output. It is termed ICn and will be used as a building block
to emulate Volt/VAR dynamics. This is achieved by the RNN
of Fig. 4. Here blocks ICn are arranged vertically to model the
parallel operation of DERs. Their outputs qt+1 are multiplied
by X, and the new voltage is computed as vt+1 = Xqt+1+ṽ.
This is repeated T times, with each repetition being referred
to as layer. In other words, the RNN of Figure 4 is T layers
deep. Thanks to the RNN structure, there is weight sharing,
so the number of RNN weights is 4N rather than 4NT .

The RNN takes a grid loading vector ṽs as its input, and
the rule parameters z̃ as weights. At its output, it computes
Φ (ṽs; z̃) = vT

z̃ (ṽs), that is the voltage induced by the control
rules (7a) or (9a) at time t = T under conditions ṽs and rule
parameters z̃. The voltage vT

z̃ (ṽs) approaches the equilibrium
voltage vz̃(ṽs) as T approaches infinity. How can one select
the RNN depth T so that the RNN output approximates
well equilibrium voltages? This is determined by the rate at
which Volt/VAR dymamics converge to their equilibrium. As
Volt/VAR dynamics coincide with the PGD iterations, we next
determine T leveraging the convergence rate of PGD.

Proposition 1. For the RNN of Fig. 4 to ensure ∥Φ (ṽ; z̃) −
vz̃(z̃)∥2 ≤ ϵ1 for all ṽ, while emulating the control
rules of (7) with µ = 2/ (λmin(X) + λmax(X)) and κ =
λmax(X)/λmin(X), its depth T should be

T ≥
(
κ− 1

2

)
log

(
2∥X∥2∥q̂∥2

ϵ1

)
. (10)

Proof: If qz(ṽ) = gz̃(ỹ) at equilibrium, rule (7c) yields:

∥qt − qz(ṽ)∥2 = ∥g
(
yt
)
− gz̃ (ỹ) ∥2 ≤ ∥yt − ỹ|2

= ∥dg(α̃)(I− µX)
(
qt−1 − qz(ṽ)

)
∥2

≤ ∥dg(α̃)∥2 · ∥I− µX∥2 · ∥qt−1 − qz(ṽ)∥2
≤ ∥I− µX∥2 · ∥qt−1 − qz(ṽ)∥2. (11)

The first inequality stems from the non-expansive property of
the proximal operator g. The next equality follows from (7b).
The second inequality from the sub-multiplicative property of
the spectral norm. The last inequality follows by the definition
of spectral norm and because α̃n ≤ 1 for all n.

If ∥I−µX∥2 < 1, inequality (11) implies that the dynamics
in (7) are a non-expansive mapping, and thus, they converge
exponentially fast to q∗. Condition ∥I−µX∥2 < 1 holds when
µ < 2/λmax(X). The norm ∥I−µX∥2 achieves its minimum
of κ−1

κ+1 when µ0 := 2/ (λmin(X) + λmax(X)). Plugging µ0

in (11) and unfolding dynamics over t yields

∥qt−qz(ṽ)∥ ≤
(
κ− 1

κ+ 1

)t

∥q0−qz(ṽ)∥ ≤ 2

(
κ− 1

κ+ 1

)t

∥q̂∥.

For the voltage approximation error ∥vT − vz̃(ṽ)∥2 =
∥X
(
qT − qz̃(ṽ)

)
∥2 at time T to be smaller than ϵ1, we need

∥vT − vz̃(ṽ)∥2 ≤ 2

(
κ− 1

κ+ 1

)T

∥X∥2∥q̂∥2 ≤ ϵ1.

This can be achieved by selecting T such that

T ≥
log
(

2∥X∥2∥q̂∥2

ϵ1

)
log
(
1 + 2

κ−1

) ≥
(
κ− 1

2

)
log

2∥X∥2∥q̂∥2
ϵ1

.

where the last inequality follows from log(1 + x) ≤ x.
Plugging the values ∥X∥2 = 0.463 and κ = 848 for

the IEEE 37-bus feeder, ∥q̂∥2 = 0.1, and ϵ1 = 10−5 in
(10), yields T ≥ 2, 892 layers, which is relatively large. A
key contributor to this large T is the κ term in (10). This
promulgates the adoption of accelerated rules (9), which are
known to also converge exponentially fast, but with a O(

√
κ)

dependence. Interestingly, during implementation, one does
not need to fix T to the above worst-case bounds. Leveraging
dynamic computation graphs offered by Python libraries such
as Pytorch, one may determine T ‘on the fly’ depending on
the convergence of vt between pairs of successive layers.

Since the RNN emulates Volt/VAR dynamics, it can surro-
gate vz(ṽs) in (ORD). Then (ORD) can be posed as training
a RNN over its weights z̃ ∈ Z̃ or z ∈ Z . Grid loading
scenarios {ṽs}Ss=1 are treated as features and equilibrium
voltages vz(ṽs) as predictions that should be brought close to
the target value of 1 for scenarios s. The RNN can be trained
using stochastic projected gradient descent (SPGD) as [13]

z̃i+1 =

[
z̃i − λ

2B
∇z̃i

(∑
s∈Bi

∥Φ(ṽs; z̃)− 1∥22

)]
Z̃

(12)

where λ > 0 is the learning rate; set Bi is a batch of
B scenarios; and [·]Z̃ is the projection onto Z̃ . Since Z̃
consists of simple box constraints, projection essentially means
clipping the values to the box. Lastly ∇z̃i(·) represents the
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gradient with respect to z̃ evaluated at z̃ = z̃i, and is calculated
efficiently thanks to gradient back-propagation.

Extensions: Model (1) can be replaced by more accurate
ones upon linearization at a nominal loading scenario. Alter-
natively, the grid model can be substituted by a DNN already
trained to solve the power flow task. Our design approach
could also be used to design other (non)-incremental Volt/VAR
rules. To move beyond piecewise-affine shapes, ReLUs could
be replaced by other activation functions. As asserted by the
universal approximation theorem, a DNN could in theory
approximate any smooth nonlinear mapping. In general, the
proposed approach could be of relevance to design nonlinear
controllers beyond voltage regulation or electric grids.

IV. DEEP LEARNING FOR ORD IN MULTIPHASE FEEDERS

In multiphase feeders, X is non-symmetric and has positive
and negative entries. Hence, the rule analysis and design of
Section III has to be revisited. For example, equilibrium set-
points cannot be found as the minimizers of an optimization as
with (3). Moreover, increasing q does not necessarily mean all
voltages increase. In multiphase feeders, the non-incremental
rules of IEEE Std. 1547 remain globally exponentially stable
as long as ∥ dg(α)X∥2 < 1 [13]. This is the same condition
as in the single-phase setup. How about the stability and
equilibrium of incremental rules in multiphase feeders? Recall
that for single-phase rules, incremental rules were obtained
as the PGD iterations solving (3). Lacking an equivalent
inner optimization for multiphase feeders precludes a similar
approach. Despite the rules of (7) not corresponding to PGD
iterates anymore, they can still be shown to be stable for
multiphase feeders.

Proposition 2. Let UΛU⊤ be the eigen-decomposition of
matrix XX⊤. The incremental rules of (7) are globally
exponentially stable for multiphase feeders if their step size
is selected as µ < λmin

(
Λ−1/2U⊤ (X+X⊤)UΛ−1/2

)
.

The claim follows readily by adopting the proof of Proposi-
tion 1: If µ is selected as above, then ∥I−µX∥2 < 1 follows
from [4, Prop. 6]. Invoking a contraction argument, [4] also
establishes the uniqueness of the equilibrium. As in single-
phase, incremental rules in multiphase feeders allow us to
enlarge feasible set Z . Heed that different from the single-
phase setting, incremental and non-incremental rules do not
converge to the same equilibrium on multiphase feeders.

ORD for multiphase feeders can be posed as a deep learning
task too, with some modifications. Firstly, R and X need to be
altered. Secondly, the RNNs for multiphase feeders have 12N
parameters, since each layer consists of 3N building modules
corresponding to bus/phase pairs. Lastly, the step size has to
be selected per Prop. 2. Adopting the proof of Prop. 1, we
next find the minimum RNN depth in multiphase feeders.

Proposition 3. Let the RNN of Fig. 4 implement the incre-
mental rules of (7) on multiphase feeders with µ selected per
Proposition 2. The RNN depth T ensuring voltage approxima-
tion error ∥Φ (ṽ; z)− vz̃(ṽ)∥2 ≤ ϵ1 for all ṽ is

T ≥
log ϵ1

2∥X∥2∥q̂∥2

log ∥I− µX∥2
.

Fig. 5. The IEEE 37-bus feeder converted to single-phase. Node numbering
follows the format node number {panel ID}. DERs marked green
provide Volt/VAR control; the rest operate at unit power factor.

TABLE I
INCREMENTAL VS. NON-INCREMENTAL VOLT/VAR CONTROL RULES ON

THE SINGLE-PHASE IEEE 37-BUS FEEDER

Time q = 0 Non-incremental Incremental
Obj. (p.u.) Time (s) Obj. (p.u.) Time (s) Obj. (p.u.)

1 pm 3.01 · 10−3 37.98 3.68 · 10−4 39.39 3.66 · 10−4

2 pm 3.13 · 10−3 42.93 4.26 · 10−4 37.91 4.25 · 10−4

3 pm 4.24 · 10−3 45.02 8.59 · 10−4 34.97 8.50 · 10−4

4 pm 2.12 · 10−3 48.30 1.47 · 10−4 38.52 1.48 · 10−4

5 pm 8.53 · 10−4 47.37 9.70 · 10−5 374.01 6.90 · 10−5

V. NUMERICAL TESTS

We benchmark RNN-based incremental rules against non-
incremental rules from [13] on single- and multiphase feeders.
Real-world data were sourced from the Smart* project on
April 2, 2011 [22], as explained in [13]. The RNNs were
trained using Pytorch. We first compare (non)-incremental
rules, both designed via RNN training for the single-phase
IEEE 37-bus feeder of Figure 5. Homes with IDs 20–369 were
averaged 10 at a time and successively added as active loads
to buses 2–26 as shown in Fig. 5. Active generation from
solar panels was also added, as per the mapping in Fig. 5.
Buses {6, 9, 11, 12, 15, 16, 20, 22, 24, 25} were assumed to
host DERs with Volt/VAR control customized per bus.

Incremental rules were simulated in their accelerated ren-
dition. Both sets of rules were trained over S = 80 scenarios
and 200 epochs with a learning rate of 0.001, using the
Adam optimizer, and setting µ = 1 for incremental rules. To
ensure repeatability, the results were repeated across several
time periods between 1–6 PM, and are compiled in Table I.
Incremental rules obtained marginally lower objectives than
non-incremental rules across all periods, with a somewhat
significant difference for the 5 PM period. This behavior is
explained because incremental rules allow for a larger set Z .

RNN-based incremental control rules were also contrasted
with their non-incremental ones on the multiphase IEEE 13-
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Fig. 6. Multiphase IEEE 13-bus distribution feeder.

TABLE II
INCREMENTAL VS. NON-INCREMENTAL VOLT/VAR CONTROL RULES ON

THE MULTIPHASE IEEE 13-BUS FEEDER

Time q = 0 Non-incremental Incremental
Obj. (p.u.) Time (s) Obj. (p.u.) Time (s) Obj. (p.u.)

1 pm 2.51 · 10−3 64.65 1.15 · 10−3 199.24 4.11 · 10−4

2 pm 1.48 · 10−3 66.60 6.89 · 10−4 209.92 3.03 · 10−4

3 pm 6.89 · 10−4 74.68 4.94 · 10−4 263.37 2.16 · 10−4

4 pm 8.03 · 10−4 68.32 5.26 · 10−4 126.81 2.47 · 10−4

5 pm 5.51 · 10−4 62.58 4.11 · 10−4 129.71 1.95 · 10−4

bus feeder, using the testing setup from [13]. Active loads were
sampled 10 at a time from homes with IDs 20-379 and added
to all three phases for the buses 1-12. Figure 6 also shows the
solar panel assignments shown in Fig 6 for solar generation.
Lastly, nine DERs with inverters were added across phases
and bus indices as shown in Fig. 6. Learning rates for non-
incremental and incremental RNNs were set as 0.1 and 0.001,
respectively, with the design parameters z := [v̄; δ;σ;α]
initialized to feasible values (0.95, 0.01, 0.3, 1.5). Table II
compares the performance of the two rule types over multiple
periods for S = 80. While incremental rules took longer time
to train, they were successful in lowering cost F (z) by more
than 50%, thus yielding improved voltage profiles.

VI. CONCLUSIONS

A RNN-based ORD approach has been put forth for single-
and multi-phase feeders. The key idea is to construct a RNN
that emulates end-to-end the associated Volt/VAR dynamics.
The RNN takes grid conditions as the input, the rule pa-
rameters as weights, and outputs the associated equilibrium
voltages. Leveraging the convergence rates of the related
optimization algorithms, we have provided bounds on the
RNN depths to approximate equilibrium voltages within the
desired accuracy. We have also established the stability of
incremental control rules for multiphase feeders. Numerical
tests have demonstrated that the designed control rules attain
improved voltage profiles compared to their non-incremental
alternatives. The improvement was found to be starker for
mutiphase feeders, wherein (non)-incremental rules do not
reach the same equilibrium. Our findings motivate further

research to possibly characterize the equilibria of control rules
for multiphase feeders; the convergence of accelerated incre-
mental rules for multiphase feeders; and to deal with chance-
constrained or ORD problems targeting phase imbalances.
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