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A Compositional Approach to Certifying the Almost
Global Asymptotic Stability of Cascade Systems

Jake Welde, Matthew D. Kvalheim, and Vijay Kumar

Abstract— In this work, we give sufficient conditions for the
almost global asymptotic stability of a cascade in which the
subsystems are only almost globally asymptotically stable. The
result is extended to upper triangular systems of arbitrary size.
In particular, if the unforced subsystems are almost globally
asymptotically stable and their only chain recurrent points are
hyperbolic equilibria, then the boundedness of forward trajec-
tories is sufficient for the almost global asymptotic stability of
the full upper triangular system. We show that unboundedness
of such cascades is prohibited by growth rate conditions on
the interconnection term and a Lyapunov function for the
unforced outer subsystem, and the required structure for the
chain recurrent set is enjoyed by classes of systems common
in geometric control e.g. dissipative mechanical systems. Our
results stand in contrast to prior works that require either time
scale separation, prohibitively strong disturbance robustness
properties, or global asymptotic stability in the subsystems.

I. INTRODUCTION

In this work, we are interested in cascades of the form

ẋ = f(x, y), (1a)
ẏ = g(y), (1b)

depicted graphically in in Fig. 1 as system Σ. We assume
that x and y evolve on X and Y , which are smooth, con-
nected, complete Riemannian manifolds without boundary
(see Remark 1 for an explanation of the choice of setting).

Cascades appear in many interesting and important phys-
ical systems. Many underactuated mechanical systems can
be rendered as a cascade after a feedback transformation
[1], and cascades arise often in robotic systems, either
intrinsically or after control design [2]. A long research
tradition has studied the implications of cascade structure
to simplify analysis and aid design [3]. This compositional
approach is motivated by the observation that control design
for a subsystem is typically easier, due to e.g. lower dimen-
sionality, lower relative degree, or full actuation. However,
one must ensure that the recombined system achieves the
desired behavior, since only local asymptotic stability is
preserved under cascades for general nonlinear systems [4].

A. Prior Work on Cascade Stability

Approaches to stability certification for nonlinear cascades
have exploited a range of structural features. Singular pertur-
bation techniques [5] assume a time scale separation between
the “fast” inner subsystem and the “slow” outer subsystem,
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Fig. 1. We give sufficient conditions for the almost global asymptotic
stability of a cascade system Σ in terms of qualitative properties of the
“inner subsystem” Σy and the “unforced outer subsystem” Σx, as well
as growth rate criteria on the “interconnection term” Σh and a Lyapunov
function for Σx. In the diagram above, 0Y is the stable equilibrium of Σy .

and show that a system’s behavior tends toward that of a
“reduced” system as the ratio between convergence rates
tends to zero. However, this approach necessitates rapid inner
subsystem convergence, which can be challenging to achieve
for a control system with realistic input limitations. Another
popular approach relies on the robustness of the outer subsys-
tem to disturbances, leveraging the property of input to state
stability, which roughly requires the asymptotic response of
the system under a disturbance input to be bounded by the
size of the input (and therefore also implies global asymptotic
stability of the system in the absence of disturbances). A clas-
sic result then establishes the global asymptotic stability of a
cascade for which the outer subsystem is input to state stable
and the inner subsystem is globally asymptotically stable [6].
Methods avoiding robustness or time scale assumptions have
relied on local exponential stability of the inner subsystem
as well as growth restrictions on the “interconnection term”
and a suitable Lyapunov function for the unforced outer
subsystem to certify asymptotic stability of cascades with
globally asymptotically stable subsystems [4].

These global results have important applications, but their
utility in geometric control is rather limited. This is because
any manifold admitting a smooth globally asymptotically
stable vector field is diffeomorphic to Rn [7], while the
state space of many physical systems (e.g. free-flying robots)
is not [8]. The most one can achieve in the smooth non-
Euclidean setting, for either the subsystems or the cascade,
is almost global asymptotic stability. This has motivated an
almost global notion of input to state stability [9], in which an
asymptotic gain holds for all but a measure zero set of initial
conditions; a cascade is then guaranteed to be almost globally
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Fig. 2. A sampling of initial conditions and resulting trajectories of
the motivating example system (2a)-(2b), projected down to T2 from the
full state space TT2 = TS1 × TS1, where the “small” axis of the torus
corresponds to θ and the “large” axis corresponds to φ. All sampled
trajectories converge to (0, 0, 0, 0) ∈ TT2, marked in red. Despite the
highly non-local and topologically complex behavior of the trajectories, our
results certify the almost global asymptotic stability of the system, without
the need to guess an explicit Lyapunov function for the full cascade.

asymptotically stable if its outer subsystem is almost globally
input to state stable and its inner subsystem is almost globally
asymptotically stable. While verifying almost global input
to state stability can be challenging, this can be done under
conditions on the exponential instability of other equilibria
as well as the “ultimate boundedness” of trajectories of the
system even when subjected to arbitrary disturbances [10].

However, not all almost globally asymptotically stable
cascades have an outer subsystem enjoying this property;
indeed, almost global input to state stability seems to be an
inherently stricter property than necessary, since it charac-
terizes the response of the system to arbitrary disturbances,
while for our purposes, the outer subsystem is almost always
subjected to a converging disturbance. Yet, the lack of a
comprehensive understanding of such systems has required
bespoke stability certificates for almost globally asymptoti-
cally stable cascaded controllers in practice, inhibiting gener-
alization; for example, a Lyapunov function for the combined
system may be handcrafted via human intuition, even though
the cascaded structure inspired the control design [2].

B. Motivating Example

To motivate our investigation, we present a simple repre-
sentative example. Consider a cascade of the form (1a)-(1b)
evolving on the tangent bundle of T2, given by

θ̈ = −(sin θ + θ̇) cos 2φ, (2a)

φ̈ = −(sinφ+ φ̇), (2b)

where x = (θ, θ̇) ∈ TS1, y = (φ, φ̇) ∈ TS1, and we make
the identification TS1 ∼= S1 × R for notational convenience.
A sampling of system trajectories is shown in Fig. 2. In fact,
(2b) describes a damped pendulum with total energy given
by W : (φ, φ̇) 7→ 1− cosφ+ 1

2 φ̇
2, and using W as a LaSalle

function it can be shown that that (φ, φ̇) = (0, 0) is almost
globally asymptotically stable for the inner subsystem (2b).
By the same reasoning, (θ, θ̇) = (0, 0) is also almost globally
asymptotically stable for the restriction of the outer subsys-
tem (2a) to the stable equilibrium of the inner subsystem.

It turns out that the entire cascade (2a)-(2b) is almost
globally asymptotically stable, but the system does not satisfy
the hypotheses of any of the previously discussed results.
In particular, the subsystems are not globally asymptotically
stable, nor is there a time scale separation between the loops.
Furthermore, viewing (φ, φ̇) as a disturbance to (2a), it can
be seen that the outer subsystem is not almost globally input

to state stable [9, Def. 2.1], since the response to the bounded
disturbance (φ, φ̇) = (π/2, 0) grows unbounded from almost
all initial conditions. Nonetheless, the results of this paper
will guarantee the almost global asymptotic stability of a
class of systems that includes (2a)-(2b).

In what follows, we consider cascade systems of the form
Σ in Fig. 1, and we use properties of the decomposed
subsystems shown to certify its almost global asymptotic
stability. In Sec. II, we present the main results, which show
that when Σx and Σy are almost globally asymptotically
stable and locally exponentially stable and all chain recurrent
points of Σx are hyperbolic equilibria, then the cascade is
almost globally asymptotically stable and locally exponen-
tially stable if trajectories are bounded in forward time. We
extend this result inductively to upper triangular systems with
arbitrarily many subsystems. In Sec. III, we examine the
hypotheses of the main results in greater detail, discussing
some important classes of systems enjoying the stated chain
recurrence property and also showing that forward bound-
edness can be verified via growth rate criteria on Σh and a
Lyapunov function for Σx. In Sec. IV, we apply our results
to the motivating example, before discussing the results and
concluding the paper in Secs. V and VI.

II. ALMOST GLOBAL ASYMPTOTIC STABILITY

We begin with a brief review of relevant concepts from
dynamical systems theory, adopting the definitions of [11],
whose perspective on the behavior of asymptotically au-
tonomous semiflows is a central ingredient of our approach.
Definition 1. A nonautonomous semiflow on a smooth Rie-
mannian manifold (M,µ) is a continuous map

Φ : {(t, s) : 0 ≤ s ≤ t <∞}×M →M (3)

such that Φ(s, s, x) = x and Φ
(
t, s,Φ(s, r, x)

)
= Φ(t, r, x)

for all t ≥ s ≥ r > 0. A semiflow is called autonomous when
additionally, Φ(t+ r, s+ r, x) = Φ(t, s, x) for all r > 0.

In the previous, the parameters s and t can be thought of as
respective “start” and “end” times. Hereafter, we will use the
shorthands Φ(t,s) : x 7→ Φ(t, s, x) for nonautonomous semi-
flows and Φt : x 7→ Φ(t, 0, x) for autonomous semiflows.
Note that nonautonomous semiflows can be generated by
“time-varying” vector fields, while autonomous semiflows
can be generated by “time-invariant” vector fields.
Definition 2. A nonautonomous semiflow Φ is asymptoti-
cally autonomous with limit semiflow Θ if, for any sequences
tj → t, sj →∞, and xj → x, it holds that

Φ(tj+sj ,sj)(xj)→ Θt(x) as j →∞. (4)

Definition 3. The equilibrium set of an autonomous semi-
flow Φ is given by E(Φ) = {x ∈M : Φt(x) = x ∀ t ≥ 0}.
An equilibrium 0M ∈ E(Φ) is hyperbolic if its linearization
has no purely imaginary eigenvalues [12, p. 149], and it
is almost globally asymptotically stable if it is (locally)
asymptotically stable and its basin of attraction, denoted
B(0M ) ⊆M , is full measure and residual, i.e. the comple-
ment of B(0M ) is measure zero [13, p.128] and meager (a
countable union of nowhere dense sets) in M .



Definition 4. For an autonomous semiflow Φ on (M,µ)
and constants ε, T > 0, an (ε, T )-chain is a pair of finite
sequences (x0, x1, . . . , xn) and (t1, t2, . . . , tn) satisfying

dist
(
Φti(xi−1), xi

)
< ε and ti > T, i = 1, 2, . . . , n, (5)

where dist : M ×M → R is the distance induced by µ. The
chain recurrent set R(Φ) comprises all points x for which
an (ε, T )-chain with x = x0 = xn exists for every ε, T > 0.

The chain recurrent set plays a central role in the topologi-
cal structure of a dynamical system [12]. Our present interest
in chain recurrence will revolve around the following fact.

Fact 1 (Mischaikow, Smith, and Thieme [11]). Precompact
forward trajectories of an asymptotically autonomous semi-
flow converge to the chain recurrent set of the limit semiflow.

Remark 1. We define chain recurrence using (ε, T )-chains
with respect to a distance function and some ε > 0 because
we rely on the results of [11], in which the same choice
is made. A Riemannian distance function is appropriate,
since then an asymptotically stable equilibrium is locally
exponentially stable if and only if it is hyperbolic. In a
complete Riemannian manifold (our chosen setting), a set
is precompact (i.e. has compact closure) if and only if it is
bounded, a more familiar notion in the control community,
which will also play a convenient role in our second theorem.

A. Main Results

Theorem 1 (Almost Global Asymptotic Stability of a
Cascade). Consider a cascade on X × Y given by

ẋ = f(x, y), (6a)
ẏ = g(y), (6b)

where (6b) and the unforced outer subsystem

ẋ = f(x, 0Y ) (7)

are almost globally asymptotically stable with respect to
0Y ∈ Y and 0X ∈ X respectively, and moreover 0Y and all
chain recurrent points of (7) are hyperbolic equilibria. Then,
(6a)-(6b) is almost globally asymptotically stable and locally
exponentially stable with respect to (0X , 0Y ) as long as any
forward trajectory starting in X × B(0Y ) is bounded.

Proof. Since X × B(0Y ) is invariant for (6a)-(6b) and all
forward trajectories beginning in X × B(0Y ) are bounded,
the cascade induces an autonomous semiflow

Ψt : X × B(0Y )→ X × B(0Y ). (8)

Similarly, (7) and (6b) induce the autonomous semiflows

Θt : X → X, x0 7→ pr1 ◦Ψt(x0, 0Y ), (9a)
Υt : B(0Y )→ B(0Y ), y0 7→ pr2 ◦Ψt(0X , y0), (9b)

where pr1 and pr2 are the natural projections onto X and Y ,
and we have carefully chosen the domains of the semiflows.
We observe that for each initial condition y0 ∈ B(0Y ), (6a)
may be interpreted as time-varying dynamics on X given by

ẋ = f
(
x,Υt(y0)

)
. (10)

In this manner, each initial condition y0 ∈ B(0Y ) induces a
corresponding nonautonomous semiflow on X given by

Φ(t,s)
y0 : X → X, x0 7→ pr1 ◦Ψt−s(x0,Υs(y0)

)
, (11)

such that we may also conclude

Ψt(x0, y0) =
(
Φ(t,0)
y0 (x0),Υt(y0)

)
. (12)

With these constructions, we prove the claim in five steps.
STEP 1. E(Ψ) = R(Θ)× {0Y }, and all points in this set are
hyperbolic equilibria, of which only (0X , 0Y ) is stable.

Proof. All equilibria (x, y) ∈ X × B(0Y ) must have y = 0Y
by the definition of B(0Y ) as a basin of attraction, and there-
fore f(x, 0Y ) = 0 i.e. x is an equilibrium of (7). The equality
then follows from the assumption that R(Θ) ⊆ E(Θ), since
equilibria are always chain recurrent i.e. E(Θ) ⊆ R(Θ). De-
noting the vector field on X × Y describing the full cascade
(6a)-(6b) by F : (x, y) 7→

(
f(x, y), g(y)

)
, we may express

its linearization at any equilibrium (x, 0Y ) ∈ X × B(0Y ) as

dF |(x,0Y ) =

[
∂xf |(x,0Y ) ∂yf |(x,0Y )

0 ∂yg | 0Y

]
. (13)

Since the eigenvalues of a triangular block matrix are simply
the eigenvalues of the blocks on the diagonal, the hyperbol-
icity claim follows directly from the hyperbolicity of 0Y for
(6b) and the hyperbolicity of all equilibria of (7).

An almost globally asymptotically stable system has only
one stable equilibrium (since all other equilibria lie on the
boundary of its basin of attraction). Therefore, at x = 0X all
eigenvalues of the top left block have negative real part, but
one or more eigenvalues at all other equilibria of (7) have
positive real part. Hence (0X , 0Y ) is locally exponentially
stable and all other equilibria in X×B(0Y ) are unstable. H
To complete the proof, it will therefore suffice to show that
the stable equilibrium (0X , 0Y ) is almost globally attractive.
STEP 2. For any y0 ∈ B(0Y ), the nonautonomous semiflow
Φy0 is asymptotically autonomous with limit semiflow Θ.

Proof. For any sequences tj → t, sj →∞, and xj → x,

lim
j→∞

Φ(tj+sj ,sj)
y0 (xj)

= lim
j→∞

pr1 ◦Ψtj
(
xj ,Υ

sj (y0)
) (14)

= pr1 ◦Ψ
lim
j→∞

tj
(

lim
j→∞

xj , lim
j→∞

Υsj (y0)

)
(15)

= pr1 ◦Ψt(x, 0Y ) = Θt(x), (16)

where (14) follows immediately from (11), (15) is obtained
by the continuity of pr1 and Ψ, and (16) relies on the attrac-
tivity of 0Y . Thus for any y0 ∈ B(0Y ), by definition Φy0 is
asymptotically autonomous with limit semiflow Θ. H

STEP 3. Every trajectory of Ψ converges to a hyperbolic
equilibrium.

Proof. Together, Step 2, Fact 1, and the boundedness (hence,
precompactness) of forward trajectories of Ψ imply that for
each y0 ∈ B(0Y ), every trajectory of Φy0 converges toR(Θ),



and asymptotic stability of (6b) ensures that every trajectory
of Υ converges to 0Y . Thus, in view of (12) it is clear that
every trajectory of Ψ converges to R(Θ)× {0Y }, and all
points in this set are hyperbolic equilibria by Step 1. Since
hyperbolic equilibria are isolated, by continuity every trajec-
tory converges to a particular hyperbolic equilibrium. H

STEP 4. Almost no trajectories of (6a)-(6b) converge to an
unstable equilibrium.

Proof. All points converging to a hyperbolic equilibrium
lie on its global stable manifold, which (for an unstable
equilibrium) is the union of countably many embedded
submanifolds of positive codimension (see [14, p. 73] or
[15, Sec. 2.1]). Hence, this is a meager set of measure zero.
Also, all unstable equilibria in X × B(0Y ) are hyperbolic
by Step 1, and there are countably many of these equilibria
due to the isolation of hyperbolic equilibria and the second
countability of X × B(0Y ) [16, Thm 2.50 and Prop. 3.11].
Thus, the set of points in X × B(0Y ) converging to an
unstable equilibrium is a countable union of meager sets of
measure zero and is thus meager (essentially by definition)
and measure zero [13, p. 128] in X × Y . H

STEP 5. Almost every trajectory of (6a)-(6b) converges to
the stable equilibrium (0X , 0Y ).

Proof. Since B(0Y ) is full measure and residual in Y by as-
sumption, X × B(0Y ) is full measure and residual in X × Y .
By Step 3, every initial condition in this set converges to a
hyperbolic equilibrium, and by Step 4, the subset converging
to an unstable equilibrium is meager and measure zero in
X×Y . Since the difference of a residual set of full measure
by a meager set of measure zero is residual and full measure,
the remainder constitutes a residual set of full measure in
X×Y for which all initial conditions converge to the unique
stable equilibrium (0X , 0Y ), completing the proof. �

Remark 2. The main potential pitfall of the unforced outer
subsystem being only almost globally asymptotically stable
is the possibility of “funneling” a non-negligible (i.e. non-
meager or positive measure) set to a point (x, 0Y ), where x
is an unstable equilibrium of (7). However, such behavior is
precluded by the hyperbolicity of all unstable equilibria of
(7). This can be relaxed to the requirement that all unstable
equilibria of (7) are isolated and have at least one eigenvalue
with positive real part, similar to [10]. Then, the argument
proceeds similarly, but relies on the center-stable manifold
theorem instead of the stable manifold theorem. Similarly,
the hyperbolicity assumption on 0X can be relaxed at the cost
of local exponential stability. We present the more succinct
but less general result for clarity and brevity.

Corollary 1 (Upper Triangular System). Consider an upper
triangular system on X1 ×X2 × · · · ×Xn given by

ẋ1 = f1(x1, x2, . . . , xn), (17a)
ẋ2 = f2(x2, . . . , xn), (17b)

. . .
ẋn = fn(xn), (17c)

where for all i = 1, 2, . . . , n, the unforced system

ẋi = fi(xi, 0i+1, 0i+2, . . . , 0n) (18)

is almost globally asymptotically stable with respect to
0i ∈ Xi and its chain recurrent set contains only hyperbolic
equilibria. Then, the upper triangular system (17a)-(17c) is
almost globally asymptotically stable and locally exponen-
tially stable with respect to (01, 02, . . . , 0n) as long as all
forward trajectories of (17a)-(17c) are bounded.

Proof. The claim follows by induction. In particular, the
claim is trivial for n = 1, and assuming it holds for
n = k − 1, the claim for n = k follows by Theorem 1 with
(17a) as the outer subsystem (6a) and (17b)-(17c) as the inner
subsystem (6b), i.e. x = x1 and y = (x2, x3, . . . , xn). �

III. HYPOTHESES OF THE MAIN RESULTS

We now explore the hypotheses of Theorem 1 and Corol-
lary 1 in greater detail, showing how they can be verified.

A. Gradient-Like Systems

Systems with no chain recurrent points besides equilibria
are often called “gradient-like”, and the following fact shows
that such a property is often easily verified. We cannot
include the proof due to space, but very similar notions are
discussed in [10, Sec. IV], [17, Cor. 2.4], and [12, Sec. 7.12].

Fact 2. If E(Φ) consists of isolated points and there is a
proper1, continuous function V : M → R that is decreasing2

along nonequilibrium trajectories, then R(Φ) = E(Φ).

Remark 3. From Fact 2, it is clear that Theorem 1 also holds
if the assumption that (7) is almost globally asymptotically
stable and gradient-like is replaced by the existence of a Lya-
punov function for (7) around 0X which is decreasing along
all nonequilibrium trajectories. Some authors [12], [17] call
this a strict Lyapunov function, but the control community
tends to reserve this term for Lyapunov functions with strictly
negative derivative along nonequilibrium trajectories [18].

Remark 4. Two important classes of systems to which Fact 2
applies are as follows. It can be shown that for a Riemannian
manifold (Q, κ), a strict Rayleigh dissipation ν, and a proper
Morse function V : Q→ [0,∞) with a unique minimum at
0Q ∈ Q, both the gradient dynamics on Q given by

q̇ = −gradκ V (q) (19)

and Euler-Lagrange dynamics on TQ given by3

κ

∇q̇ q̇ = −gradκ V (q)− κ] ◦ ν[(q̇) (20)

are almost globally asymptotically stable and locally expo-
nentially stable around 0Q ∈ Q and 0TQ = (0Q, 0) ∈ TQ
respectively, and moreover all chain recurrent points of

1A function V : M → R is proper if it has compact sublevel sets, which
morally generalizes the notion of “radially unbounded” functions on Rn.

2A function f : R→ R is decreasing if f(t2) < f(t1) whenever
t1 < t2. Note that this does not imply ḟ(t) < 0 for all t, e.g. t 7→ −t3.

3The maps κ[, ν[ : TQ→ T ∗Q and κ], ν] : T ∗Q→ TQ are the mu-
sical isomorphisms with respect to the Riemannian metrics µ and ν [19].



both systems are hyperbolic equilibria. An early, influential
analysis of the previous stability properties is [20], while a
detailed modern treatment can be found in [19, Chap. 6].
The chain recurrence claim is immediate by Fact 2 and the
fact that the “potential” V and the “total energy”

W : (q, q̇) 7→ V (q) + 1
2κ(q̇, q̇), (21)

are respectively decreasing along all nonequilibrium trajec-
tories of (35) (cf. gradient descent) and (20) [19, Prop. 4.66].

B. Boundedness of Forward Trajectories

Forward boundedness is guaranteed when the outer sub-
system evolves on a compact manifold. To use Theorem 1 to
certify the stability of a cascade evolving on a noncompact
manifold (e.g. Rn or any tangent bundle), we require compo-
sitional criteria for forward boundedness. In this section, we
give growth rate criteria suitable for our geometric setting
on the “interconnection term” Σh and a Lyapunov function
for the unforced outer subsystem Σx. The result is analogous
to (and inspired by) [4, Thm. 4.7], which certifies forward
boundedness in Rn using the standard Euclidean norm. In a
Riemannian manifold (X,µ), we use instead the Riemannian
distance and the dual norms on each tangent and cotangent
space induced by the metric. We denote both norms by ||·||µ.

Theorem 2 (Forward Boundedness of a Cascade). Consider
a cascade on X × Y given by

ẋ = f(x, y), (22a)
ẏ = g(y). (22b)

Suppose the following conditions hold on the subsystems:
Σy : For (22b), 0Y ∈ Y is a stable hyperbolic equilibrium.
Σx: W : X → R≥0 is a proper Lyapunov function for

ẋ = f(x, 0Y ) (23)

such that for some constants λ ≥ 0, d0 ≥ 1,

||dWx||µ dist(0X , x) ≤ λW (x) (24)

for all (x, y) ∈ {x ∈M : dist(0X , x) ≥ d0} × B(0Y ).
Σh: For some continuous maps α, β : B(0Y )→R≥0 that

are vanishing and differentiable at 0Y , the intercon-
nection term h : (x, y) 7→ f(x, y)− f(x, 0Y ) satisfies

||h(x, y)||µ ≤ α(y) dist(0X , x) + β(y). (25)

Then, the trajectory of (22a)-(22b) through any initial condi-
tion (x0, y0) ∈ X × B(0Y ) is bounded for all forward time.

Proof. Since W is a proper Lyapunov function for (23), the
forward trajectory through any initial condition of the form
(x0, 0Y ) is bounded, so it suffices to consider initial condi-
tions (x0, y0) with y0 6= 0Y . Fix (x0, y0) ∈ X × B(0Y ) with
y0 6= 0Y and let

(
x(t), y(t)

)
denote its forward trajectory.

STEP 1. There exist positive constants A and ω such that
α
(
y(t)

)
+ β

(
y(t)

)
≤ Ae−ωt for all t ≥ 0.

Proof. Let d(t) := dist(0Y , y(t)) > 0. Since 0Y is hyper-
bolic, there exist C0, ω > 0 such that, for all t ≥ 0,

d(t) ≤ C0e
−ωt. (26)

Next, since α and β are vanishing and differentiable at 0Y ,
a local coordinate calculation (using uniform equivalence of
continuous Riemannian metrics over compact sets) shows

lim sup
t→∞

α
(
y(t)

)
+ β

(
y(t)

)
d(t)

<∞. (27)

The quotient in the previous limit is a continuous function
of t and thus is bounded for all t ≥ 0 by some C1 > 0. With
(26), this yields the desired bound with A := C0C1. H

STEP 2. W
(
x(t)

)
is bounded for all t ≥ 0.

Proof. Since W is a Lyapunov function for (23), we have

Ẇ ≤ dWx

(
h(x, y)

)
≤ ||dWx||µ ||h(x, y)||µ (28)

≤ ||dWx||µ
(
α(y) dist(0X , x) + β(y)

)
, (29)

from (25). Hence, whenever dist(0X , x) ≥ d0 ≥ 1, we have

Ẇ ≤ ||dWx||µ dist(0X , x)
(
α(y) + β(y)

)
. (30)

Define W0 = sup{x : dist(0X ,x)≤ d0}W (x) and consider any
t2 ≥ t1 ≥ 0 where W (x([t1, t2])) ⊆ [W0,∞). Then for all
t ∈ [t1, t2], (24), (30), and the conclusion of Step 1 imply

d
dtW

(
x(t)

)
≤ λAe−ωtW

(
x(t)

)
. (31)

By Grönwall’s inequality, we obtain the bound

W (x(t2)) ≤ e
∫ t2
t1
λAe-ωtdtW (x(t1)) ≤ eλAω W (x(t1)). (32)

This implies that for all t ≥ 0,

W (x(t)) ≤ C := e
λA
ω max

{
W0,W

(
x(0)

)}
. H

Thus, since W is proper and 0Y is attractive, it follows that(
x(t), y(t)

)
is bounded for all t ≥ 0. �

A similar approach can be iterated (as in Corollary 1) to
certify forward boundedness of an upper triangular system.

IV. APPLICATION OF THE RESULTS

We now revisit the motivating example (2a)-(2b). It is
easily verified that (2b) takes the form of the Euler-Lagrange
dynamics (20) for the kinetic energy metric and Rayleigh dis-
sipation κ = ν = dφ⊗ dφ and the Morse potential function
V : S1 → R, φ 7→ 1− cosφ. Thus by Remark 4, (2b) is al-
most globally asymptotically stable and locally exponentially
stable with respect to y = (φ, φ̇) = (0, 0), and moreover its
chain recurrent set consists solely of hyperbolic equilibria.
Clearly, the same is true for x = (θ, θ̇) = (0, 0) with respect
to the restriction of (2a) to y = (φ, φ̇) = (0, 0).

By Theorem 1, for almost global asymptotic stability
it will suffice to show forward boundedness, which we
accomplish using the total energy (21). The natural choice of
metric on the tangent bundle X = TS1 is the Sasaki metric
[21] i.e. κ̃ = dθ ⊗ dθ + dθ̇ ⊗ dθ̇. Then, considering (without
loss of generality) the range of angles θ ∈ [−π, π), we have√

sin2 θ + θ̇2︸ ︷︷ ︸
||dWx||κ̃

√
θ2 + θ̇2︸ ︷︷ ︸

dist(0X ,x)

≤ θ2 + θ̇2 ≤ π2

2︸︷︷︸
λ

(1− cos θ + θ̇2

2 )︸ ︷︷ ︸
W (x)

,



since | sin θ| ≤ |θ| and θ2 ≤ π2

2 (1− cos θ) for θ ∈ [−π, π),
verifying that (24) holds. Furthermore, we compute

(1− cos 2φ)(sin θ + θ̇)︸ ︷︷ ︸
||h(x,y)||κ̃

≤ (1− cos 2φ)
√

2︸ ︷︷ ︸
α(y)

√
θ2 + θ̇2︸ ︷︷ ︸

dist(0X ,x)

, (33)

so (25) holds as well. Thus it follows by Theorem 2 that
all forward trajectories of (2a)-(2b) with y = (φ, φ̇) starting
in the basin of attraction of (2b) are bounded, and so the
system is almost globally asymptotically stable and locally
exponentially stable with respect to (0, 0, 0, 0) ∈ TT2.

V. DISCUSSION

The disturbance robustness of systems with some similar
properties, and the connection to gradient-like systems, was
discussed in [10, Sec. IV]. However, those results (when
combined with [9]) can only certify the stability of a cascade
if the outer subsystem is almost globally input to state stable,
requiring also “ultimate boundedness” with respect to any
bounded disturbance, absent from our motivating example.

Our main results show that an upper triangular system
consisting of almost globally asymptotically stable, gradient-
like subsystems with no degenerate equilibria is itself almost
globally asymptotically stable if all forward trajectories are
bounded. Since globally asymptotically stable systems are
gradient-like (with a single chain recurrent point, i.e. the
stable equilibrium), the result is analogous to the fact that
a cascade of globally asymptotically stable subsystems is
globally asymptotically stable as long as all trajectories are
bounded [4, Prop. 4.1]. Our second theorem generalizes a
classic compositional method of verifying forward bounded-
ness using growth rate criteria on the interconnection term
and a Lyapunov function for the unforced outer subsystem.
Unfortunately, the Riemannian distance function used in our
condition can be difficult to compute explicitly in complex
examples, but even loose upper and lower bounds on this
distance could potentially be used to verify the inequalities.

Gradient-like dynamics are common in the closed-loop
subsystems of geometric controllers [2], [5]. Indeed, since
cascades of mechanical systems with suitable dissipation and
potential enjoy the required stability and chain recurrence
properties, we see promising directions for the constructive
synthesis of cascaded geometric controllers with almost
global asymptotic stability for underactuated robotic sys-
tems, e.g. those possessing a geometric flat output (such
as quadrotors and aerial manipulators) [22], which enjoy a
cascade-like structure where the evolution of the system in
the shape space is uniquely determined by the evolution in
the symmetry group. Indeed, for a reference trajectory with
constant acceleration, the error dynamics of the geometric
quadrotor controller proposed in [2] take the form (1a)-(1b),
and the subsystems are dissipative mechanical systems.

VI. CONCLUSION

In this work, we present sufficient conditions for the
almost global asymptotic stability of a cascade in which the
subsystems are only almost globally asymptotically stable.

The result is extended inductively to upper triangular sys-
tems of arbitrary size. The approach relies on the forward
boundedness of trajectories (which can be verified by growth
rate criteria on the interconnection term and on a Lyapunov
function for the unforced outer subsystem) and the absence
of chain recurrent points other than hyperbolic equilibria in
the unforced outer subsystem. The results are analogous to
classic results for cascades of globally asymptotically stable
systems. The compositional nature of the criteria facilitates
stability verification for arbitrarily complex cascades, so long
as the subsystems enjoy certain fundamental properties.
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APPENDIX

A. CHAIN RECURRENCE AND DECREASING FUNCTIONS

In this appendix, we localize the chain recurrent set R(Φ)
of a continuous semiflow Φt : M →M to a particular subset
of the state space, with the aid of a function which is
decreasing along all trajectories outside this subset. While
similar results appear to be known [17], we do not know of
a reference providing these facts in our exact setting (e.g. for
semiflows on possibly noncompact manifolds).

Theorem 3. Assume there exists a proper continuous func-
tion V : M → R and a subset S ⊆M such that V (S) is
nowhere dense in R and V is decreasing on trajectories
outside of S. Then R(Φ) ⊆ S.

Proof. Fix any x 6∈ S. Since V (S) is nowhere dense and
x 6∈ S, there exist b > a > 0 such that

[a, b] ⊆ V (Φ[0,∞)(x)) and {a ≤ V ≤ b} ∩ S = ∅. (34)

Since V is decreasing along trajectories outside of S and
since V -sublevel sets are compact, this implies the existence
of T > 0 such that V (ΦT (x)) ≤ a and Φ[T,∞)({V ≤
b}) ⊆ {V ≤ a}. Compactness of {V ≤ a} also implies
the existence of ε > 0 such that the distance between any
point in {V ≤ a} and any point in {V ≥ b} is at least 2ε. By
construction there does not exist an (ε, T )-chain from x to
x, so x is not chain recurrent. This completes the proof. �

Corollary 2. Assume there exists a proper continuous func-
tion V : M → R and a subset S ⊆M such that V is constant
on each connected component of S, each connected compo-
nent of S is isolated, and V is decreasing on trajectories
outside of S. Then R(Φ) ⊆ S.

Proof. For each t ∈ R, the set St := S ∩ {V ≤ t} is compact
since V is proper, so each St has finitely many components
since components of S (hence also St) are isolated. This im-
plies that V (St+1 \ St) ⊆ (t, t+ 1] is finite for each t. Thus,
V (S) =

⋃∞
n=1 V (Sn+1 \ Sn) is not dense in any nonempty

open subset of R, so V (S) is nowhere dense. The desired
result now follows from Theorem 3. �

We conclude the analysis with the derivation of Fact 2,
which is related to the analysis in [17, Cor. 2.4], however the
setting of that work differs from our own, since it considers
stochastic processes evolving on Rn.

Corollary 3. If E(Φ) consists of isolated points and there is
a proper, continuous function V : M → R that is decreasing
along nonequilibrium trajectories, then R(Φ) = E(Φ).

Proof. Since E(Φ) ⊆ R(Φ), it suffices to show that R(Φ) ⊆
E(Φ). Since each connected component of S = E(Φ) is a
singleton, V is automatically constant on each component
of S, so the desired result follows from Corollary 2. �

Remark 5. If the Riemannian metric on M is replaced with
a new one, the conclusions of Theorem 3 and Corollary 2
imply that the new chain recurrent set is still contained in
S, and the conclusion of Corollary 3 implies that the new
chain recurrent set coincides with the old, i.e. E(Φ).

B. TWO CLASSES OF GRADIENT-LIKE SYSTEMS

In this appendix, we consider two important classes of
systems of particular relevance to geometric control design,
which are already widely known to be almost globally
asymptotically stable. With the aid of Corollary 3, we
verify the lesser-known fact that such systems have a chain
recurrent set consisting solely of hyperbolic equilibria. The
following facts are not particularly novel (see e.g. the dis-
cussion in [10, Sec. IV] and [17]), but they are relevant to
our larger interests, so we present them for completeness.

A. Gradient Systems

We first consider dynamical systems induced by descend-
ing the gradient of a Morse function (i.e. a function whose
critical points are all nondegenerate [19]) with a unique
minimum. We note that Morse functions with unique min-
ima, including “perfect” ones with the minimum possible
number of critical points, are well-known for those manifolds
typically encountered in geometric control.

Proposition 1 (Gradient System). For a Riemannian man-
ifold (Q, κ) and a proper Morse function V : Q→ [0,∞)
with a unique minimum at 0Q ∈ Q, the dynamical system

q̇ = −gradκ V (q) (35)

is almost globally asymptotically stable and locally expo-
nentially stable with respect to 0Q, and all chain recurrent
points of (35) are hyperbolic equilibria.

Proof. The almost global asymptotic stability of (35) with
respect to 0Q is proved in [20, Proposition 2.1] for compact
Q. However, the extension to the noncompact case is imme-
diate since the sublevel sets of V are compact and forward
invariant, since by direct computation,

V̇ = dV (−gradκV ) = −κ
(
gradκV, gradκV

)
≤ 0. (36)

Since the equilibria of (35) are simply the critical points
of V , the nondegeneracy of the critical points of Morse
functions ensures hyperbolicity and therefore the local ex-
ponential stability of 0Q. Finally, since V is decreasing
on nonequilibrium trajectories and hyperbolic equilibria are
isolated, Corollary 3 implies that the chain recurrent set of
(35) is exactly the set of equilibria. �

B. Dissipative Mechanical Systems

We now turn our attention to the important class of dissipa-
tive mechanical systems arising from kinetic energy, potential
energy, and damping. Such systems have been studied at
length, since the introduction of artificial dissipation and
potential shaping via feedback can result in closed-loop
dynamics of this form with desirable limit behavior. We
direct the reader to the seminal work [20] which studies
the global stability properties of such systems, as well as
the more recent reference [19, Chap. 6] which provides a
comprehensive and detailed overview. Closed loop dynamics
of this form have enabled trajectory tracking on arbitrary Lie



groups and have also featured in the inner and outer sub-
systems of cascaded geometric controllers for underactuated
robotic systems [2], [5].

Proposition 2 (Dissipative Mechanical System). For a Rie-
mannian manifold (Q, κ), a strict Rayleigh dissipation ν,
and a proper Morse function V : Q→ [0,∞) with a unique
minimum at 0Q ∈ Q, the Euler-Lagrange dynamical system

κ

∇q̇ q̇ = −gradκ V (q)− κ] ◦ ν[(q̇) (37)

is almost globally asymptotically stable and locally expo-
nentially stable with respect to 0TQ = (0Q, 0) ∈ TQ, and
all chain recurrent points of (37) are hyperbolic equilibria.

Proof. It is clear that the equilibrium set of (37) is precisely
the image of the critical points of V in the zero section
of TQ, and moreover these equilibria can be verified to be
hyperbolic since ν is a strict linear dissipation and the critical
points of a Morse function are nondegenerate. Moreover,
only 0TQ is (locally exponentially) stable, while all other
equilibria are unstable, since 0Q is the unique minimum of
V . Considering the total energy function given by

W : (q, q̇) 7→ V (q) + 1
2κ(q̇, q̇), (38)

we compute

Ẇ = dV (q)q̇ + κ(
κ

∇q̇ q̇, q̇) (39)

= dV (q)q̇ + κ(−gradκ V (q)− κ] ◦ ν[(q̇) , q̇) (40)
= dV (q)q̇ − dV (q)q̇ − ν(q̇, q̇) = −ν(q̇, q̇) ≤ 0. (41)

For any trajectory t 7→ q(t) of the Euler-Lagrange dynamics,
(37) and strictness of ν imply that ν(q̇(t), q̇(t)) > 0 for
almost all t if and only if the trajectory is nonequilibrium,
so W is decreasing along nonequilibrium trajectories. Thus,
by Corollary 3, the chain recurrent set of (37) is exactly the
set of equilibria. Becuase W is proper (since V is proper and
ν is positive definite) and nonincreasing along trajectories, all
forward trajectories are precompact and therefore converge
to the chain recurrent set [11]. Since hyperbolic equilibria
are isolated, all trajectories converge to some equilibrium.
Application of the global stable manifold theorem shows
that almost no trajectories converge to an unstable hyperbolic
equilibrium, so the unique stable equilibrium 0TQ is almost
globally asymptotically stable. �

Remark 6. A primary contribution of [20] is the observation
that the global limit behavior of a dissipative mechanical
system is essentially determined by the global limit behavior
of the associated gradient system, which is often called the
“lifting property” of dissipative mechanical systems [19].
Here, we have shown that a similar lifting property holds
for these systems in regards to the chain recurrent set.
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