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ABSTRACT

We introduce the notion of implicit predictors, which character-
ize the input-(state)-output prediction behavior underlying a pre-
dictive control scheme, even if it is not explicitly enforced as an
equality constraint (as in traditional model or subspace predic-
tive control). To demonstrate this concept, we derive and analyze
implicit predictors for some basic data-driven predictive control
(DPC) schemes, which offers a new perspective on this popular
approach that may form the basis for modified DPC schemes and
further theoretical insights.

I. INTRODUCTION

Data-driven predictive control (DPC) is an increasingly popular
control approach that utilizes linear combinations of collected
trajectory data to make predictions instead of relying on a system
model (see, e.g., [1–3]). While exact predictions and equivalence
to model predictive control (MPC) are typically only established
for linear time-invariant (LTI) systems and exact data (with some
nonlinear extensions available; see, e.g., [2, 4]), modified ver-
sions of DPC show promising results even in the absence of these
requirements (e.g., [1,3,5,6]). Most proposed DPC schemes use
regularizations, which have demonstrated benefits and many dif-
ferent interpretations (see, e.g., [3,5]), including relationships to
other approaches such as subspace predictive control (SPC) [7].
However, many of these interpretations (e.g. [8, Thms. 3 and
4]) are based on limit behavior, i.e., regularization weights ap-
proaching zero or infinity. In this study, we aim to characterize
the behavior of DPC for finite weights, as this is how it is typi-
cally applied in practice. To achieve a general characterization,
we do not focus on a specific system class or noise properties
but, instead, just make (reasonable) assumptions about the data.
To make DPC predictions more accessible and relatable to tradi-
tional schemes such as MPC, where consistency with input-state-
output predictors is explicitly enforced via equality constraints,
we introduce the notion of implicit predictors (specified in Def. 1
below). Implicit predictors can be interpreted as the predictive
behavior that is implicitly attributed to the data-generating sys-
tem by the predictive scheme, and we view it as a central and
elucidating object with much to learn from. To show the ben-
efit of this concept, we derive and analyze implicit predictors
for a basic regularized DPC scheme, focusing on two proposed
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choices of (squared) 2-norm regularization (see [3]), and exam-
ine the effect of input and output constraints on these predictors.
The paper is organized as follows. First, in Section II, we in-
troduce the notion of implicit predictors, specify the objective
of this paper, and summarize important preliminaries. In Sec-
tion III, we derive implicit predictors for two types of regularized
DPC and analyze the impact of constraints on these predictors.
Finally, we conclude our work in Section IV and preview future
opportunities we envision for implicit predictors.

II. PROBLEM STATEMENT AND PRELIMINARIES

One could argue that (multi-step) predictors, which establish a
mapping from an initial state x0 and an input (sequence) uf to a
predicted output (sequence) yf , are at the heart of many predic-
tive control schemes. Traditionally, such a predictor ŷf (x0,uf )
may be explicitly included in an optimal control problem (OCP)
as an equality constraint yf = ŷf (x0,uf ). However, even if not
included explicitly (such as in DPC), one may still observe the
predictions following a similar pattern, which we formalize as
follows.

Definition 1. We call ŷ(x0,uf ) an implicit predictor for an OCP
if including the constraint yf = ŷ(x0,uf ) does not alter the (set
of) minimizers (u∗f , y

∗
f ) and the optimal value.

For DPC, we interpret this definition as the predictive behavior
implicitly attributed to the data-generating system by the DPC
scheme. Given this interpretation, we take a somewhat oppos-
ing viewpoint to the bias-variance hypothesis in [3, Sec. V.C].
In fact, we claim that the choice of regularizer (and other pa-
rameters of the OCP) fully specifies a model class given by the
structure of its resulting implicit predictor. Therefore, this con-
cept should be seen as a tool to analyze existing schemes and
explain their behavior. Although this new viewpoint is mainly
theoretical in nature, practitioners can use its results to evaluate
whether the predictive behavior of a given scheme matches their
prior knowledge of the true system properties, and thus select
an appropriate scheme similar to traditional model selection. In
this spirit, we analyze an existing DPC scheme without making
assumptions on the data-generating system class or properties of
measurement noise, allowing for a general characterization. To
prepare this analysis, we recall preliminaries on DPC and its re-
lation to MPC and SPC, while highlighting the role of predictors
in these schemes.
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A. DPC and its relation to MPC

Instead of utilizing a discrete-time state-space model

x(k + 1) = f(x(k), u(k), k) (1a)
y(k) = g(x(k), u(k), k) (1b)

with input u ∈ Rm, state x ∈ Rn, and output y ∈ Rp as in
traditional MPC, predictions in DPC are realized based on pre-
viously collected trajectory data (u(1), y(1)), . . . , (u(ℓ), y(ℓ)) via
linear combinations(

upred
ypred

)
=

(
u(1)

y(1)

)
a1 + . . .+

(
u(ℓ)

y(ℓ)

)
aℓ = Da.

Here, the dimensions of the data matrix D ∈ RL(m+p)×ℓ and
generator vector a ∈ Rℓ are specified by the length L of recorded
(as well as predicted) trajectories and the number ℓ of data tra-
jectories used for predictions. The rationale for this procedure is
given by a result for linear time-invariant (LTI) systems, which
can be described, e.g., by the specification

x(k + 1) = Ax(k) +Bu(k) (2a)
y(k) = Cx(k) +Du(k), (2b)

of (1). For these LTI systems and assuming L is greater than
the lag of the system, image(D) is equivalent to the set of all
possible system trajectories if and only if [9]

rank(D) = Lm+ n. (3)

Note that the condition (3) not only signifies a minimum rank for
data-driven predictions, but also the maximum rank that the data
matrix D can achieve for exact data. For the case that the indi-
vidual trajectories (u(i), y(i)) are time-shifted sections of a sin-
gle long trajectory, a popular sufficient condition for (3) is given
by Willems’ fundamental lemma [10]. To include the current
initial condition of the system as a starting point for predicted
trajectories, the predicted I/O-sequence is typically partitioned
into a past section (up, yp) and a future section (uf , yf ) with Np

respectively Nf time-steps yielding

(
upred
ypred

)
=


up
uf
yp
yf

 =


Up

Uf

Yp

Yf

 a = Da.

The past section of a predicted trajectory is then forced to match
the I/O-data ξ recorded in the most recent Np time-steps during
closed-loop operation, i.e., the equality constraints

ξ =

(
up
yp

)
=

(
Up

Yp

)
a = Wpa

force any predicted trajectory in (5) to start with the most re-
cently witnessed behavior of the system. In this context, the
past trajectory ξ can also be interpreted as the state of a (usually
non-minimal) state-space realization of the system and properly
specifies its initial condition if Np is chosen larger or equal to its
lag [11].

Remark 1. Although we have introduced the data-driven pre-
dictions in an I/O setting, they can be straightforwardly modified
to a state-space setting [12], which we will use for visualization
of a low dimensional example in Section III.

Now, consider a classical OCP

min
u(k),x(k),y(k)

Nf−1∑
k=0

∥y(k)∥2Q + ∥u(k)∥2R (4)

s.t. x(0) = x0,

x(k + 1) = Ax(k) +Bu(k), ∀k ∈ {0, ..., Nf − 2},
y(k) = C x(k) +Du(k), ∀k ∈ {0, ..., Nf − 1},

(u(k), y(k)) ∈ Uk × Yk, ∀k ∈ {0, ..., Nf − 1}

for MPC with prediction horizon Nf , positive definite weigh-
ing matrices R ∈ Rm×m, Q ∈ Rp×p, convex constraint sets
Uk ⊆ Rm,Yk ⊆ Rp, as well as equality constraints specifying
the initial state condition x0 and predicted behavior based on (2).
It has been shown in [1] that DPC given by

min
uf ,yf ,a

∥yf∥2Q + ∥uf∥2R (5a)

s.t.

 ξ
uf
yf

 =

Wp

Uf

Yf

 a, (5b)

(uf , yf ) ∈ U × Y (5c)

with Q := blkdiag(Q, ..., Q), R := blkdiag(R, ..., R), and

Y :=
{
yf ∈ RpNf

∣∣ y(k) ∈ Yk, ∀k ∈ {0, ..., Nf − 1}
}

U :=
{
uf ∈ RmNf

∣∣u(k) ∈ Uk, ∀k ∈ {0, ..., Nf − 1}
}

based on exact data generated by an LTI system is equivalent
to the MPC in (4). Remarkably, and although the original the-
ory behind exact predictions via linear combination of data does
not apply to arbitrary nonlinear systems or with noise and dis-
turbances in the data, DPC has shown good closed-loop perfor-
mance when applied to these cases. A common feature of these
successful applications, is the addition of a regularization term
h(a) to the cost function, where different choices of h(a) can
have different interpretations for its intended effect on the pre-
dictions ( [1, 3, 5, 6]).

B. The role of predictors and SPC

In the case of linear MPC, its well-known multi-step predictor
can be expressed as

ŷMPC(x0,uf ) = Ox0 + T uf , (6)

where O and T are often referred to as the extended observabil-
ity matrix and the impulse response matrix, respectively (see,
e.g. [13]). Using (6), we can state the OCP (4) also as

min
uf ,yf

∥yf∥2Q + ∥uf∥2R (7)

s.t. yf = Ox0 + T uf , (uf , yf ) ∈ U × Y,
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which may be useful to eliminate optimization variables and to
analyze the structure of its solution. Essentially, instead of us-
ing the state-space model (2) as a one-step predictor for each
time-step in (4), consecutive applications of the one-step pre-
dictor yield the multi-step predictor (6) used in (7). Note that
(6) trivially acts as an implicit predictor for the original MPC
problem (4). By including the constraint yf = ŷMPC(x0,uf ),
other constraints and variables can be eliminated, resulting in
(7). However, this removal should be seen separately to Defini-
tion 1 and is not our focus.

Instead of estimating a state-space model (2) for MPC, an al-
ternative approach based on subspace identification [13] is given
by SPC [7]. Here, a linear multi-step predictor

ŷSPC(ξ,uf ) = KSPC

(
ξ
uf

)
(8)

can be estimated directly from data as the solution

KSPC := argmin
K

∥∥∥∥Yf −K

(
Wp

Uf

)∥∥∥∥2
F

= Yf

(
Wp

Uf

)+

(9)

to a least squares problem with the Frobenius norm ∥ · ∥F . Cru-
cially, this form of SPC is related to DPC as follows.

Lemma 1. The SPC predictor (8) is an implicit predictor for
the unregularized DPC problem (5) with exact trajectory data
generated by an LTI system.

Proof. Follows from [14, Thm. 1]. ■

While the result in [14] is actually stated as (5) being equiva-
lent to SPC, we rather rephrase it in the context of implicit pre-
dictors. This is because (5b) cannot be removed (without chang-
ing the set of feasible ξ) as it also implies ξ ∈ image(Wp), which
is not captured by the SPC predictor.

Introducing implicit predictors as explicit equality constraints
can be useful to change the solution strategy for some OCPs.
This, however, is not our focus in this work. Instead, we want
to highlight this notion as a way to think about what kind of
behavior is (implicitly) attributed to the system by DPC schemes,
even though the predictor is not given as an equality constraint
in any of the following cases.

III. IMPLICIT PREDICTORS IN REGULARIZED DPC

While in the case of deterministic LTI systems, adding additional
trajectory data, i.e., columns to D, cannot increase its rank past
rank(D) ≤ mL + n, this is typically not the case for systems
with noise or nonlinearities. Instead, adding trajectory data gen-
erated by an LTI system with some output noise and persistently
exciting enough input data (see, e.g., [10]) will almost surely in-
crease its rank until D has full row rank for wide enough (at least
square) data matrices [8, Lem. 3] and similar behavior can be ob-
served for nonlinear systems with (or without) noise. Through-
out this section, we will thus make the following assumption.

Assumption 1. The data matrix D has full row rank.

We want to emphasize that Assumption 1 takes into account
the presence of measurement noise, and we do not make any fur-
ther assumptions about the class of system generating the data.
Once the OCP tuning parameters (including regularization) are
determined, the solution becomes deterministic with respect to
the provided data D (including potential output noise, which is
included in Wp, Yf and cannot be distinguished from the true
output data), regardless of the type of system that generated it.
Since the aim of this work is to characterize the predictive be-
havior and not to compare it to the (unknown) true system dy-
namic (as e.g., in [8]), this allows for a very general analysis.
The assumption thus helps in shifting the focus away from what
initially caused the lack of rank deficiency and towards what pre-
dictions are being made by DPC based on the given data (in-
cluding noise). Furthermore, having more data than necessary
in (3) is typically preferred, where some authors report good re-
sults with D being square [15, Sect. 5.2.4]. As the assumption
aligns with this case, we believe it is a reasonable starting point
but future work will consider data matrices with ranks between
the practical minimum given by (3) and the maximum given by
Assumption 1. Crucially, due to Assumption 1 there is a vec-
tor a satisfying (5b) for any triple (ξ,uf , yf ), resulting in arbi-
trary and meaningless predictions if the scheme is not suitably
modified. However, adding a regularization h(a) leading to the
regularized DPC scheme

min
uf ,yf ,a

∥yf∥2Q + ∥uf∥2R + h(a) s.t. (5b)–(5c) (10)

has shown good results with respect to its predictive capabili-
ties. Note that, while (5b) does not restrict the choice of any
(ξ,uf , yf ) in terms of feasibility due to Assumption 1, it still
defines a relation to a, which can be used to express the effect of
h(a) in the following way.

Lemma 2. Under Assumption 1, the regularized DPC problem
(10) is equivalent to

min
uf ,yf

∥yf∥2Q + ∥uf∥2R + h∗(ξ,uf , yf ) s.t. (5c) (11)

with unique

h∗(ξ,uf , yf ) := min
a

h(a) s.t. (5b). (12)

Proof. The OCP (10) can be trivially decoupled with the outer
problem (11) and inner problem (12) by optimizing over one of
the optimization variables while treating the others as parame-
ters. The constraint (5c) is irrelevant to the inner problem be-
cause (uf , yf ) act as parameters there. On the other hand, the
constraint (5b) is irrelevant to the outer problem because a is
eliminated by solving the inner problem and (5b) does not re-
strict the choice of (ξ,uf , yf ) due to Assumption 1. While the
minimizer a∗(ξ,uf , yf ) to (12) may be non-unique depending
on the choice of h(a) and the number ℓ of data trajectories (i.e.,
the width of D), the resulting optimal value of the inner problem
h∗(ξ,uf , yf ) = h(a∗(ξ,uf , yf )) is trivially unique by optimal-
ity. ■

While any trajectory (ξ,uf , yf ) can be predicted via linear
combination of collected data trajectories, the regularizer h(a)

2475-1456 ©2023 IEEE



assigns to every such trajectory a (possibly non-unique) opti-
mal generator vector a∗(ξ,uf , yf ) and associated unique cost
h∗(ξ,uf , yf ). Therefore, the regularizer h(a) is, ideally, chosen
in a way that incentivizes predictions that seem likely based on
the given data in D by assigning them low (or even zero) cost
while avoiding unlikely predictions via high costs.

We will now analyze this behavior for different choices of
h(a) and characterize the associated implicit predictors. Note
that we treat the influence of equality constraints (5c) on the im-
plied predictor separately in Section III.C.

A. (Squared) 2-norm regularization

Commonly seen in regularized DPC is (squared) 2-norm regular-
ization, where we choose h(a) = λa∥a∥22 with weighing param-
eter λa. Here, the inner problem (12) is a quadratic minimiza-
tion with linear equality constraints and positive definite Hessian
2λaI , which yields the unique minimizer

a∗(ξ,uf , yf ) =

Wp

Uf

Yf

+ ξ
uf
yf

 (13)

and associated cost

h∗(ξ,uf , yf ) = λa

 ξ
uf
yf

⊤

Wp

Uf

Yf

Wp

Uf

Yf

⊤


−1 ξ
uf
yf

.

Utilizing a block LDU decomposition of the weighing matrix,
one can further show that

h∗(ξ,uf , yf ) = λa(yf − ŷSPC)
⊤Qreg(yf − ŷSPC) (14)

+ λa

(
ξ
uf

)⊤
((

Wp

Uf

)(
Wp

Uf

)⊤
)−1(

ξ
uf

)
,

where we introduced

Qreg :=
(
Yf (I −Π)Y ⊤

f

)−1
,

Π :=

(
Wp

Uf

)⊤
((

Wp

Uf

)(
Wp

Uf

)⊤
)−1(

Wp

Uf

)
, (15)

and occasionally omit the arguments of ŷSPC(ξ,uf ) for brevity.
The expression (14) highlights the connection between DPC and
SPC for this regularization. However, this regularizer not only
incentivizes predictions that align with the SPC predictor but
also introduces a bias associated with the additional quadratic
cost term in (ξ,uf ). This (typically unwelcome) bias justifies
the introduction of a projection in the regularizer [3], which we
will analyze in Section III.B.

Even though predictions that align with the SPC predictor are
incentivized with this regularization, the SPC predictor does not
act as an implicit predictor in this case. In contrast to the un-
regularized deterministic case, where the rank deficiency of D
implies a subspace for predictions, the implicit predictor is in-
stead implied by optimality.

Theorem 3. Consider the regularized DPC problem (10) with
regularizer h(a) = λa∥a∥22 and without additional input and
output constraints. Under Assumption 1,

ŷDPC(ξ,uf ) = (λaQreg +Q)
−1

λaQregŷSPC(ξ,uf ) (16)

is an implicit predictor for this problem.

Proof. The implicit predictor (16) is the minimizer

ŷDPC(ξ,uf ) = argmin
yf

∥yf∥2Q + ∥uf∥2R + h∗(ξ,uf , yf )

to an inner optimization problem, where uf and ξ act as pa-
rameters. Since dropping any terms independent of yf does not
change the minimizer, we can simplify the problem as

argmin
yf

λa(yf − ŷSPC)
⊤Qreg(yf − ŷSPC) + y⊤f Qyf

=argmin
yf

y⊤f (λaQreg +Q) yf − 2ŷ⊤SPCλaQregyf ,

which yields an unconstrained quadratic minimization problem
with the minimizer given by (16). Now, since ŷDPC(ξ,uf ) is the
parametric minimizer for any (ξ,uf ), the minimizers (u∗f , y

∗
f ) to

the regularized DPC problem must naturally satisfy the relation
y∗f = ŷDPC(ξ,u

∗
f ) for any ξ. Hence, including the equality con-

straint yf = ŷDPC(ξ,uf ) with the regularized DPC problem does
not change its optimal value or minimizers, making ŷDPC(ξ,uf )
an implicit predictor of this OCP. ■

While this implicit predictor does not match the SPC predic-
tor, it still represents a subspace just like the latter and is visu-
alized in Fig. 1 for different regularization weightings λa. For
very high λa, the predictor starts aligning with the SPC predic-
tor (and even matches it for λa → ∞) as one would expect
from the costs given by (14). For lower λa, the implicit pre-
dictor tilts towards limλa→0 ŷDPC(ξ,uf ) = 0 as seen in Fig. 1.a,
which is also reasonable, since it represents the optimal solution
to argminyf

∥yf∥2Q. These behaviors perfectly match the view-
point that “control and identification regularize each other” [3]
in DPC. However, we emphasize that this means the (implicitly)
predicted system behavior of regularized DPC is linear and ei-
ther consistent with the SPC predictor (for λa → ∞) or more
optimistic than SPC in the sense that it biases these most likely
predictions (in the least squares sense, see (9)) towards more fa-
vorable predictions given by the control objective. While this
optimism in the predictions may indeed be one reason why DPC
performs better than SPC in some case studies (e.g. [3, Fig. 2]),
it should be recognized that this also leads to potentially unde-
sirable predictive behavior, which we will highlight when dis-
cussing additional constraints in Section III.C.

B. Projection-based (squared) 2-norm regularization

While we only introduced Π in (14) for notation purposes, we
next exploit its role as a projection matrix. However, instead of
Π itself, we will focus on I−Π, which is an orthogonal projector
on ker

( (
W⊤

p U⊤
f

)⊤ )
. Intuitively, these projection matrices

can be thought of as splitting any a = Πa + (I − Π)a into a

2475-1456 ©2023 IEEE
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Figure 1: The implicit predictor (grey) is equal for both analyzed unconstrained DPC schemes and its structure is given by a subspace
that “tilts” between ŷDPC(ξ,uf ) = 0 and the SPC predictor (8) depending on λa. The parametric DPC solutions (ξ,u∗f (ξ), y

∗
f (ξ)) for

the different regularizations (green/orange) evolve on this subspace, confirming its validity.

part Πa that aligns with the SPC solution and a part (I − Π)a
that does not. In [3], the regularizer h(a) = λa∥(I − Π)a∥22
was introduced because, although it penalizes deviations from
the SPC predictor just as h(a) = λa∥a∥22, it does not intro-
duce any further bias like the latter in (14). In the following,
we will phrase this important result in our framework and sub-
sequently analyze the associated implicit predictor. We first note
that the inner problem given by (12) is, again, a quadratic mini-
mization problem with linear constraints and the same (unique)
minimizer as before in (13). This can easily be verified by plug-
ging a∗(ξ,uf , yf ) into the KKT system of (12). Uniqueness of
a∗(ξ,uf , yf ) may not be immediately obvious, since the Hessian
2λa(I−Π)⊤(I−Π) = 2λa(I−Π) is only positive semi-definite
due to (I −Π) being a projector on a subspace of Rℓ. However,
since

ker

Wp

Uf

Yf

 ⊂ ker

(
Wp

Uf

)
and (I−Π) projects onto the latter kernel, we have (I−Π)a ̸= 0
for any nonzero a in the former kernel, i.e., the Hessian and the
constraint matrix only share the trivial nullspace by construc-
tion, making the KKT matrix nonsingular and thus a∗(ξ,uf , yf )
unique [16, Sect. 10.1.1]. The additional cost introduced by the
regularizer is therefore given as

h∗(ξ,uf , yf ) = λa

 ξ
uf
yf

⊤Wp

Uf

Yf

+,⊤

(I −Π)

Wp

Uf

Yf

+ ξ
uf
yf

 ,

which can be shown to be equivalent to

h∗(ξ,uf , yf ) = λa(yf − ŷSPC)
⊤Qreg(yf − ŷSPC) (17)

by, again, utilizing block LDU decompositions of the inverses
involved in the weighing matrix. The resulting cost is similar to
(14), which should not be too surprising, since the projection-
based regularization was introduced to remove the bias related
to additional costs in (ξ,uf ) and only penalize deviations from
ŷSPC(ξ,uf ), which is exactly captured by (17). Furthermore, this
expression allows us to state the following result regarding the
implicit predictor, which is, again, implied by optimality.

Theorem 4. Consider the regularized DPC problem (10) with
regularizer h(a) = λa∥(I −Π)a∥22 and without additional input
and output constraints. Under Assumption 1, (16) is an implicit
predictor for this problem.

Proof. The proof can be carried out analogously to Theorem 3
by noting that the only difference between the regularizer costs
(17) and (14) is irrelevant to the implied predictor since it does
not depend on yf . ■

This result may be surprising to readers familiar with both
DPC regularizations, since the minimizers (u∗f , y

∗
f ) can differ

drastically depending on the chosen regularizer. However, it
shows that the predictive aspect of both DPC schemes is the
same in the sense that, while (u∗f , y

∗
f ) may differ (especially for

increasing λa, as seen in Fig. 1.d), the relation y∗f = ŷDPC(ξ,u
∗
f )

holds for both as visualized in Fig. 1.

Remark 2. We can easily extend Theorems 3 and 4 towards ref-
erence tracking cost ∥yf−yref∥2Q, which adds a linear term in the
cost function and thus yields an affine implicit predictor, which
is biased towards the unconstrained minimum yref.

C. Predictions affected by (output) constraints

As previously noted, the implied predictors associated with reg-
ularized DPC tend to predict more optimistically (with respect to
the control objective) than the SPC predictor. This phenomenon
will be further highlighted in this section, where we investigate
the effect of additional constraints. In the following, we will re-
strict our attention to a polyhedral set Y , which is a common as-
sumption in (linear) predictive control. Similar results can be ex-
pected for differently shaped sets, although they are not as nice to
characterize accurately. Moreover, we introduce X ⊆ dom(ξ),
which should not be seen as a constraint on an optimization vari-
able (because ξ is a parameter of the OCP), but instead can be
viewed as the set of realistically occurring initial conditions in
practical operation.

Theorem 5. Consider the regularized DPC problem (10) with
regularizer h(a) = λa∥a∥22 or h(a) = λa∥(I − Π)a∥22 and with
constraint sets U ,Y , where the latter is a polyhedron. Under
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Figure 2: The implicit predictor (grey) for the analyzed DPC
schemes with (output) constraints is a PWA function. For in-
creasing λa, the parametric DPC solutions (orange/green, see
Fig. 1 for a legend) tend to stay on the segment that matches the
unconstrained predictor (if possible).

Assumption 1, an implicit predictor ŷDPC(ξ,uf ) can be charac-
terized as the minimizer to the multiparametric quadratic pro-
gram (mpQP)

argmin
yf

y⊤f (λaQreg +Q) yf − 2ŷ⊤SPC(ξ,uf )λaQregyf (18)

s.t. yf ∈ Y

with parameters (ξ,uf ), which is a continuous piecewise affine
(PWA) function on partitions of the domain X × U .

Proof. Derivation of the mpQP can be carried out analogously to
Theorems 3 and 4, by noting that only the output constraints are
explicitly relevant to the implied predictor and other constraints
only specify the domain of its parametric solution. The structure
of the minimizer follows from standard mpQP results (see, e.g.,
[17, Cor. 5.2]). ■

While PWA functions are not uncommon in (linear)
MPC (mainly in relation to its explicit solution [17]),
we want to stress that the PWA function characterized
in Theorem 5 is in its interpretation very different to
an optimal control law u∗f (ξ), since it characterizes the
predictive behavior we associate with regularized DPC.
While this implicit predictor coincides with (16) on the set
Z :=

{
(ξ,uf ) ∈ X × U

∣∣(16) satisfies ŷDPC(ξ,uf ) ∈ Y
}
, i.e.,

where the unconstrained solution naturally satisfies the output
constraints, it changes drastically wherever this coincidence
does not occur, as seen in Fig. 2. However, at this point, a
discussion on the uniqueness of implicit predictors is due.
While the implicit predictors derived so far are kept as general
as possible (i.e., they are independent of input cost weights R
and constraints U), by Definition 1 agreement with the predictor
needs to occur only at optimal points (u∗f , y

∗
f ) for it to be

valid. In other words, if the actual solution to the constrained
regularized DPC problem (10) naturally stays on Z , i.e., we
have (ξ,u∗f ) ∈ Z for all ξ ∈ X , then its predictive behavior
is equally well explained by both the linear predictor (16) and
the PWA solution to (18). Moreover, the DPC solution favors
this phenomenon for increasing λa, as highlighted in Fig. 2,

since deviations of the unconstrained predictor, in this case, are
increasingly penalized by the regularizer. However, it should be
obvious that (even with very large λa) a match of both predictors
cannot occur for such ξ, where (16) cannot be satisfied for any
(uf , yf ) ∈ U × Y . In that case, the DPC solution will definitely
change its predictive behavior in favor of satisfying the output
constraints in accordance with (18). In other words, regularized
DPC as in (10) will simply provide a “very unlikely” solution
if all “more likely” solutions (in the sense of proximity to
its unconstrained predictions or even the SPC predictor) are
infeasible. Consequentially, from the viewpoint of an explicit
solution to the OCP [17], where X acts as a constraint of the
parameter ξ, its set of feasible states is equal to X regardless of
other constraints U ,Y .

Finally, we want to highlight that the implicit predictor in The-
orem 5 is independent of the input constraints, since U only af-
fects its domain but, in contrast to Y , not its structure. Therefore,
the linear implicit predictor (16) remains valid in the absence of
output constraints (i.e., Y = RpNf ), even if additional inputs
constraints U ⊂ RmNf are considered.

D. A remark on the numerical example

To visualize the implicit predictors, we deliberately chose a very
low dimensional example with n = p = m = Nf = Q =
R = 1, ℓ = 3 and treated it in a state-space setting (see Rem. 1).
Furthermore, the constraint sets involved in Fig. 2 are given by
U = Y = [−1, 1]. The data generating system is LTI with pa-
rameters (A,B,C,D) = (2,−0.5, 1, 0) and zero-mean Gaus-
sian measurement noise with variance σ2 = 0.01. However, we
would like to emphasize that the structure of the implicit predic-
tor does not depend on the data generating system class but only
the data itself and the OCP parameters.

IV. CONCLUSIONS AND OUTLOOK

By introducing the notion of implicit predictors, we related
the input-(state)-output prediction behavior of regularized DPC
schemes to more traditional predictive control schemes such as
MPC and SPC, where the predictor is explicitly enforced as an
equality constraint. The structure of these implicit predictors
seems very relevant to us since they can be interpreted as the
behavior that the data-driven predictions attribute to the system
based on given data and independently of its actual (unknown)
behavior. To demonstrate this concept, we derived implicit pre-
dictors for a basic regularized DPC scheme and analyzed their
structure for two popular choices of (squared) 2-norm regular-
ization and its dependence on constraints.

In future work, we will continue this structural analysis with
general ranks beyond Assumption 1 and further common DPC
modifications such as slack variables [1, 6], (terminal) equality
constraints [6], and different regularization choices such as the
1-norm [1, 3] or general p-norms. Although currently limited
to providing a novel perspective on current DPC practices, we
believe that these analyses have the potential to establish a foun-
dation for new schemes that promote advantageous properties of

2475-1456 ©2023 IEEE



the implicit predictor, and for new theoretical insights, includ-
ing DPC stability proofs such as in [6], but based on the implicit
predictor.
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