
ar
X

iv
:2

30
5.

08
76

0v
1

 [
m

at
h.

O
C

]
 1

5
M

ay
 2

02
3

Near-optimal control of nonlinear systems with hybrid inputs and

dwell-time constraints

Ioana Lal, Constantin Morărescu, Jamal Daafouz, Lucian Buşoniu

Abstract— We propose two new optimistic planning algo-
rithms for nonlinear hybrid-input systems, in which the input
has both a continuous and a discrete component, and the
discrete component must respect a dwell-time constraint. Both
algorithms select sets of input sequences for refinement at each
step, along with a continuous or discrete step to refine (split).
The dwell-time constraint means that the discrete splits must
keep the discrete mode constant if the required dwell-time is
not yet reached. Convergence rate guarantees are provided
for both algorithms, which show the dependency between the
near-optimality of the sequence returned and the computational
budget. The rates depend on a novel complexity measure of the
dwell-time constrained problem. We present simulation results
for two problems, an adaptive-quantization networked control
system and a model for the COVID pandemic.

I. INTRODUCTION

We consider optimal control of hybrid-input systems in

which the discrete input is subject to a minimum dwell-

time constraint. A hybrid input has both a continuous and

a discrete component, and the dwell-time is the number of

steps elapsed before the discrete input changes its value.

The dwell-time constraint is motivated by preventing fast

switches, either due to physical limitations or to increase per-

formance [7], [1]. Hybrid-input systems occur e.g. in robotics

[3], industrial multiple-tanks systems [16] or the automo-

tive industry [13]. Moreover, in networked control systems

(NCS), the continuous input can be dynamically quantized

[12], where the quantization mode is the discrete input.

Several methods can be used to solve hybrid-input problems

without dwell-time constraints, among which branch-and-

bound approaches [3], switching control [14], or MPC [16].

Optimal control of switched systems is also presented in

[18], [9] (see also references therein), which however do not

consider hybrid inputs or dwell-time constraints. For linear

dynamics, [4] jointly designs a dwell-time constrained mode

sequence and the continuous input.

Differently from these methods, our focus here is on

hybrid-input systems with dwell-time constraints, in which

dynamics can be general nonlinear and cost functions arbi-

trary, as long as both are Lipschitz with respect to the state

and the continuous input. The latter input must be scalar, a

restriction that can be relaxed at extra computational cost. For

such systems, in a first main contribution of this paper (C1),

we propose two methods, called OPHIS∆ and SOPHIS∆:

Optimistic Planning for Hybrid-Input Systems with dwell-

time, and Simultaneous OPHIS∆. Both algorithms produce

I. Lal and L. Buşoniu are with the Automation Department, Technical
University of Cluj-Napoca, Romania. C. Morărescu and J. Daafouz are
with Université de Lorraine, CRAN, UMR 7039 and CNRS, CRAN, UMR
7039, Nancy, France. Email addresses: ioanalal04@gmail.com,
constantin.morarescu@univ-lorraine.fr,
jamal.daafouz@univ-lorraine.fr, lucian@busoniu.net.

at each step an open-loop sequence, and are meant to be

applied in receding horizon. They are an extension to handle

dwell-time constraints of the existing OPHIS and SOPHIS

methods [10]. This extension is nontrivial since it impacts

the way the computational budget is used and thus also the

convergence to a near-optimal solution.

Both algorithms belong to the optimistic planning (OP)

class [8] and iteratively partition the space of infinitely

long hybrid-input sequences, by choosing for refinement

(splitting) one or several sets at each iteration. Dwell-time

constraints in OP were addressed before in problems with

only discrete inputs [2], or autonomous switched systems

[7]. In contrast, here we focus on hybrid-input systems. In

the methods proposed, for each chosen set, a time step is also

selected, together with the type of split (continuous or dis-

crete). The dwell-time constraint is handled during discrete

splits, by checking whether enough steps have passed since

the last switch (in which case the discrete input can take any

possible value) or the constraint is not yet satisfied (in which

case the discrete input must be equal to its previous value). In

OPHIS∆, a single set is expanded, one that has the maximum

upper bound on the value. SOPHIS∆ refines any sets that

may be optimistic regardless of the Lipschitz constants. Thus,

the dependence on these constants is eliminated from set

selection, but still remains in step selection. In practice, this

gives a performance boost for large horizons.

The second contribution (C2) is a convergence analysis of

(S)OPHIS∆, driven by a novel complexity measure for the

dwell-time constrained problem, which requires analyzing

the worst-case complexity. Exploiting this new measure, we

tailor results from [10] to find convergence rates of the two

methods to the optimal value as computation increases.

Finally, (C3) simulation results are given for two problems,

using SOPHIS∆. First, we consider an NCS framework in

which the network can be configured to transmit more or

less data. Switching between these modes cannot happen

too fast, due to an inability to change the configuration of

the network too often. Therefore, a dwell-time constraint

is imposed. To exemplify this general NCS framework, we

chose an inverted pendulum which must be brought upright.

The motor command is the continuous input, while the way

in which we quantize this value is the discrete input. Then,

we discuss a Susceptible-Infectious-Removed (SIR) model

[11], for pandemic evolution, where SOPHIS∆ is used to

determine an optimal strategy to vaccinate the population

and choose the level of quarantine needed. When only the

vaccination strategy is given as a discrete control input, we

recover the results from [11], while adding a continuous input

to represent the level of quarantine gives better results.

http://arxiv.org/abs/2305.08760v1

Summarizing, we provide two novel algorithms for opti-

mal control of dwell-time constrained hybrid-input systems,

and analyze their relation between computation and near-

optimality. The key analytical novelty is the dwell-time

constraint on the discrete input, which adds complexity to

the structure of the tree expanded compared to [10], and

requires a closer look into how discrete and continuous

splits are interspersed. A different complexity measure is

therefore obtained than in [10], leading in turn to different

convergence rates. Compared to [2], the continuous input

makes the problem significantly more challenging. Finally,

the practical relevance of the algorithms is illustrated in two

interesting problems from very different domains.

Next, Section II formalizes the problem, and Section III

describes the two algorithms. The convergence rate analysis

is given in Section IV, followed by the simulation results in

Section V. Conclusions are presented in Section VI.

II. PRELIMINARIES

We consider a discrete-time nonlinear hybrid-input system:

xk+1 = f(xk, uk), uk = [ck, dk]
T (1)

where x ∈ X ⊆ Rm is the state and u ∈ U is the input,

which consists of both a continuous action ck ∈ R and

a discrete mode dk ∈ {0, 1, ..., p}, p ∈ N. Thus, U =
R × {0, 1, ..., p}. We define a switch as a change from

one value of d to another at consecutive steps. The dwell

time constraint ∆ is the number of steps during which the

discrete input must remain unchanged after a switch. We

also define a reward function ρ : X × U → R, representing

immediate performance (negative cost) for each state-action

pair (xk, uk): rk+1 = ρ(xk, uk). Given an initial state x0

and an infinitely-long sequence of actions (inputs) u∞ =
(u0, u1, ...), its infinite-horizon discounted value is:

v(u∞) =

∞
∑

k=0

γkρ(xk, uk) (2)

with γ ∈ (0, 1) the discount factor (γ = 1 is excluded).

Denote by S
∞
∆ the set of infinitely-long action sequences

that respect the dwell-time constraint.The objective is to find

the constrained optimal value v∗∆ := supu∞∈S∞
∆
v(u∞) and

a sequence u∞ ∈ S
∞
∆ that achieves v∗∆. Note that generally

the constrained optimal value is worse than the unconstrained

one, so enforcing a dwell-time constraint may lead to a

performance loss. We make the following assumptions.

Assumption 1. (i) We have rk ∈ [0, 1] and ck ∈ [0, 1].
(ii) Both the dynamics and the rewards are Lipschitz

with respect to the state and the continuous action, i.e.,

∃Lf , Lp s.t. ∀x, x′ ∈ X and c, c′ ∈ [0, 1]:

‖f(x, [c, d]T)− f(x′, [c′, d]T)‖ ≤ Lf (‖x− x′‖+ |c− c′|)

|ρ(x, [c, d]T)− ρ(x′, [c′, d]T)| ≤ Lρ(‖x− x′‖+ |c− c′|)

(iii) γLf < 1.

Bounded costs like in (i) are typical in e.g. reinforcement

learning for control [17], and together with discounting they

ensure boundedness of the sequence values. The bounded

continuous action is needed because we will numerically

refine its interval, and is often naturally satisfied due to

physical limitations, while the unit interval can be reached

by scaling other intervals. Note that now U = ([0, 1] ×
{0, 1, ..., p}). In (ii), Lipschitz continuity is only imposed

w.r.t. the continuous component c of the action, whereas the

variation w.r.t. d can be arbitrary. Note also that (ii) allows

nondifferentiable dynamics and rewards, helping to model

e.g. saturations, actuator dead-zones, etc. and is not a greatly

restrictive property, since usual dynamics and cost functions

satisfy it. The relationship in (iii) means that the dynamics

should become contractive when combined with a shrink rate

equal to γ. This condition is the strongest among the three;

it may be relaxed in future work using stability, see [6].

The next property applies to constrained as well as uncon-

strained sequences.

Lemma 2. [10] For any two sequences u∞,u′
∞ ∈ U∞:

|v(u∞)− v(u′
∞)|

≤ Lρ

D−1
∑

k=0

|ck − c′k|γ
k 1− (γLf)

D−k

1− γLf
+

γD

1− γ
(3)

where D is the first step k at which dk 6= d′k.

The two terms on the right-hand side of the inequality cor-

respond to the continuous and discrete actions, respectively.

III. (S)OPHIS WITH A DWELL-TIME CONSTRAINT

This section introduces two new algorithms for the hybrid-

input problem with dwell-time constraints of Section II.

These algorithms are generalizations of (S)OPHIS [10], and

simplify to them when the problem is unconstrained (∆ =
1). Moreover, when the continuous input does not exist,

OPHIS∆ specializes to OPδ from [2]. The set and step

selection rules, as well as continuous-input refinements, are

similar to those for (S)OPHIS. The novelty in (S)OPHIS∆
is the way in which a discrete split is carried out, which is

different depending on whether the minimum dwell-time has

been surpassed. This will have non-trivial consequences for

the complexity of the algorithms in the analysis.

A set of hybrid inputs consists of a continuous-action

interval µ and a discrete action set σ for each step k:

Si =
∞
∏

k=0

(µi,k, σi,k) (4)

where
∏

means the repeated application of the cross-product

×, and notation (µ, σ) means a set in which c ∈ µ and d ∈ σ.

For clarity, from now on we will refer to the set per step k,

(µi,k, σi,k), as a pair, and the infinite-horizon Si as a set.

For a set i, Di and Ci are respectively the discrete

and continuous horizons (numbers of refined discrete and

continuous steps). Any step k < Ci has already been refined

and its interval is thus strictly smaller than [0, 1], whereas

for all k ≥ Ci, µi,k = [0, 1]. For all k < Di, σi,k = di,k, a

single, definite value, and for all k ≥ Di, σi,k = {0, 1, ..., p}.

A sequence of actions in set i is then (ui,0, ui,1, ui,2, ...),

where ui,k =
[

ci,k, di,k
]T

and ci,k ∈ µi,k, di,k ∈ σi,k.

Each set has a corresponding dwell-time ∆i, equal to the

number of steps since the last switch for the discrete input:

∆i = max
∆′

s.t. di,Di−∆′′ = di,Di , ∀∆
′′

≤ ∆
′

(5)

Consider now reward ri,k+1 = ρ(xi,k, ui,k), where we

refer by ci,k to the specific action that is at the center of

interval µi,k. Define then the sample value of a set i:

v(i) =

Di−1
∑

k=0

γkri,k+1 (6)

Each continuous interval µi,k has a length ai,k. For k ≥ Ci,

ai,k = 1. For each set, we define its diameter δ(i) in the

semimetric of (3), so that:

sup
u∞,u′

∞∈Si

|v(u∞)− v(u′
∞)| ≤ δ(i)

δ(i) = Lρ

∑Di−1
k=0 ai,kγ

k 1−(γLf)
Di−k

1−γLf
+ γDi

1−γ

(7)

For compactness, denote the contribution of step k in the con-

tinuous part of the diameter with λk := Lρakγ
k 1−(γLf)

D−k

1−γLf
.

The algorithms work by iteratively (a) selecting sets to

refine, (b) choosing a continuous or discrete step to split,

and (c) performing a split accordingly. These 3 stages are

repeated as long as budget is still available and they are

detailed below, followed by an example. For both methods,

budget n is the allowed number of calls to f and ρ.

(a) Set selection:A set Si† is selected for refinement, differ-

ently in OPHIS∆/SOPHIS∆. In OPHIS∆, given the sample

value and diameter of set i, define the upper bound:

B(i) = v(i) + δ(i) (8)

so that v(u∞) ≤ B(i), ∀u∞ ∈ Si, which follows from

Lemma 2. OPHIS∆ selects for refinement at each iteration

an optimistic set, by maximizing the upper bound:

i† = arg maxi∈A
B(i) (9)

where A is the collection of all sets created so far.

In SOPHIS∆, we eliminate the dependency of the set

selection rule on the Lipschitz constants. To this end, we

expand at each iteration all sets that may be optimistic for any

value of this constant (note however that Assumption 1 (ii)

is still required). Denote by H the depth in the tree created

by both methods, equal to the total number of continuous

and discrete expansions done to reach a certain set. Since

all sets at depth H have the same shape, their diameters

δ(i) are the same, so the maximum-upper-bound set at that

depth can only be a set with the largest value v(i). Thus, at

each depth H that still has unexpanded nodes, we expand

set i† with the greatest v value among all sets at that depth.

We also configure a maximum depth Hmax(n) up to which

the expansions are allowed to continue, in order to prevent

expanding indefinitely. If Hmax grows fast with budget n, the

algorithm will favour deep searches, whereas a slower growth

with n focuses the search on breadth. See the convergence

rates in Section IV for more insight on how to select Hmax.

(b) Step and split type selection: After selecting a set Si† ,

we must choose a step to refine, and decide whether we

split discretely or continuously. To this end, we look at the

contribution of each step k up to Di† − 1 to the diameter

(7), as well as at the contribution γ
D

i†

1−γ of the first unrefined

step (at the discrete horizon). Whichever contribution is the

greatest dictates where we split. Thus:

k† = arg maxk∈{0,1,...,D
i†−1

}λ
†
k (10)

If λ†
k ≤ γ

D
i†

1−γ , we split discretely, at horizon Di† . Otherwise,

we make a continuous split, along step min(k†, Ci†). By

this rule, we always have Di ≥ Ci for any set i.
Step selection for SOPHIS∆ remains the same as for

OPHIS∆, so it will unfortunately still depend on the Lip-

schitz constant, and there is no way to avoid this.

(c) Performing a split: A continuous split can be done along

any step k ≤ Ci, by dividing the interval µi,k into M
equal pieces and thus generating M new sets. A discrete

split is always done at horizon Di. If ∆i < ∆, the dwell-

time constraint is active, and only one new set is added,

making discrete action dk definite and equal to dk−1, since

a switch from the value of dk−1 to another is not yet

possible. If ∆i ≥ ∆, the dwell-time constraint is satisfied,

any discrete action is eligible, and a discrete split adds p+1
new sets that make discrete action dk definite, one set for

each discrete possibility. Overall, a tree structure is created,

each node being a set. To each set chosen for refinement,

children are added corresponding to either distinct intervals

for continuous splits, or distinct discrete actions.

Example: An example of the constructed tree is given in

Figure 1, with M = 3, d ∈ {0, 1}, ∆ = 2. In the figure,

the full blue lines correspond to discrete splits, while the red

dotted lines mean continuous refinements. For the discrete

splits, 0 and 1 are added to the branches, to signify the last

discrete action. The grey-filled nodes correspond to sets that

have ∆i < ∆, and are therefore constrained. For those sets,

if a discrete split is chosen, the algorithm will only add one

child. Any children added by a continuous split of a grey

node will also be grey, because continuous action changes

do not impact the dwell-time.

To better understand set splitting, we start by looking

at the root node 0; all continuous intervals are [0, 1] and

all discrete actions are not yet defined. Then, by a dis-

crete split, we get two new sets, where the first discrete

action is defined as 0 for one set, and 1 for the other.

Sets 1 and 2 are now: S1 = ([0, 1], 0) × ([0, 1], {0, 1})∞

and S2 = ([0, 1], 1) × ([0, 1], {0, 1})∞. Both sets have

∆i = 0 and are unconstrained, because no switch has

yet occurred. Then, set 1 is split discretely, getting two

children nodes 3 and 4. Set 3 is unconstrained, since the

last two values of d are equal. However, set 4 is now

constrained, since a switch has been done. Say now that

when 4 is chosen for refinement, a continuous split on step

0 is done. This adds 3 constrained children, 7, 8, and 9,

each corresponding to a third of interval for the first contin-

uous step: S7 = ([0, 1/3], 0)× ([0, 1], 1)× ([0, 1], {0, 1})∞,

S8 = ([1/3, 2/3], 0) × ([0, 1], 1) × ([0, 1], {0, 1})∞, S9 =
([2/3, 1], 0)×([0, 1], 1)×([0, 1], {0, 1})∞. Since they inherit

the discrete input sequence from set 4, they all have ∆i = 1.

Therefore, when a discrete split is done next for sets 7,

0

0 0

1

1

1 1 1 0 10

0

1

2

3

7 8 9 10 11 12

19

6

13 14 15

16 17 18 20 21

4 5

1

Fig. 1. Example of tree for M = 3, d ∈ {0, 1}, ∆ = 2

8, or 9, only one child corresponding to d1 = d0 = 1
is added; denote these children by 16, 17, and 18. Now,

∆16 = ∆17 = ∆18 = 2, so these nodes are no longer

constrained, and the next discrete split from these nodes will

again have 2 branches, for 0 and 1.

The pseudocode of the two methods is presented in the

supplementary material at the end.

IV. ANALYSIS

In this section, we aim to prove that the sub-optimality

of the algorithms converges to 0 as budget n increases.

Due to the introduction of the minimum dwell-time, the

analysis from the unconstrained case [10] cannot be directly

applied. We must instead characterize the more complicated

tree expanded by the (S)OPHIS∆ algorithms. To do this, a

novel problem complexity measure (branching factor of the

constrained tree) is defined that takes the minimum dwell-

time into account. The range of values of this measure is

dictated by the largest possible tree. By exploiting the new

measure, we are then able to tailor the unconstrained-case

results to obtain convergence rates of the new algorithms.

First, recall that we want to find the constrained discounted

optimal value v∗∆, and a dwell-time respecting sequence i∗

that approximately achieves it. Similarly to [10], we have

that: v∗∆ − v(i∗) ≤ δmin (11)

i.e. the algorithm is near-optimal up to the smallest diameter

of any set expanded. Thus, deeper trees give better solutions.

The main part of the analysis focuses on the description

of the near-optimal constrained tree, a sub-tree of the full

tree that only contains optimistic nodes obeying the dwell-

time constraint. This subtree is in fact the one expanded

by (S)OPHIS∆, so characterizing its size is important as

it describes the amount of computationrequired. Define then

the set of constrained near-optimal nodes at depth H as:

∆T
∗
H ={i at H | v(i) + δH ≥ v∗∆,

and ∀k < Di for which dk−1 6= dk,

dk−j = dk−1, for 1 ≤ j ≤ ∆, k − j ≥ 0}

(12)

The constrained near-optimal tree has branching factor K:

Definition 3. The asymptotic branching factor is the smallest

K such that ∃C ≥ 1 for which |∆T
∗
H | ≤ CKH/∆, ∀H , where

|.| represents set cardinality.

The branching factor is a new measure of complexity for

the dwell-time constrained problem. In a simple problem,

K will be small, whereas a complex problem requires ex-

panding many nodes at each depth, leading to a large K. We

formalize this next.

Theorem 4. Branching factor K is in the range [K,K],
where K = 1 and K = max(∆(p+ 1),M∆)1/∆.

Proof. The smallest possible value K = 1 follows easily

from the case when the near-optimal tree consists of a single,

optimal path. To find the greatest possible value K, we look

at the situation in which all rewards are identical, therefore

all nodes at each depth have the same v and B and they are

all expanded. We want to find the maximum number of nodes

at depth H , taking into account the h continuous expansions

and the discrete number of splits D. Recall that a continuous

expansion adds M new nodes, and a discrete one adds

either p + 1 new nodes or just 1, respecting the dwell-time

constraint. The number of nodes at depth H = h+D does

not depend on the order of continuous and discrete splits.

We can therefore consider a different tree, which has first D
discrete expansions, all respecting the dwell-time constraint,

followed by h continuous splits. This tree will have the same

number of nodes at depth H as the original one. Reference

[2] proves that |∆T
∗
D| ≤ (p+1)2∆[∆(p+1)]D/∆. Therefore:

|∆T
∗
H | ≤ (p+ 1)2∆[∆(p+ 1)]D/∆Mh

≤ (p+ 1)2∆[∆(p+ 1)]H/∆MH (13)

So, K = max(∆(p+ 1),M∆)1/∆, and K ∈ [K,K].

Let us now compare the complexity of the dwell-time-

constrained problem with the unconstrained case from [10].

In that setting, the unconstrained tree T ∗
H at depth H has size

roughly mH , where the branching factor is m ∈ [1,max(p+
1,M)]. Compared to mH , the constrained tree size KH/∆

intuitively emphasizes that discrete choices are made once

every ∆ steps. Further, note that the full constrained tree

is strictly smaller than the full unconstrained tree, so when

expanding full trees using the same budget, the constrained

algorithms will reach deeper and have better near-optimality.

Now, this is not immediately visible in the formula, since

to extract an easy to interpret branching factor we had to

make some conservative replacements (both h and D by H).

Therefore, to get more insight, consider two cases. In case (i)

∆(p+ 1) ≫ M∆, so |∆T
∗
H | ≃ [∆(p+ 1)]H/∆, significantly

smaller than |T ∗
H | = (p+1)H . In other words, since there are

many discrete actions, the reduction due to the constraints is

significant. Case (ii) M ≫ p+1, so |∆T
∗
H | ≃ MH , the same

as |T ∗
H |; since continuous expansions dominate, the reduced

number of discrete children is less important.

The above applies when in both types of problems (con-

strained and unconstrained), the full tree is expanded. In

general, when the two branching factors do not have their

maximal values, a clear relationship between the complexity

of the constrained and unconstrained problems cannot be

established. It could be that the introduction of the constraints

makes a constrained-optimal solution easier to distinguish,

hence reducing the branching factor/complexity; or, con-

versely, the constraint could eliminate an optimal solution

that would have been easy to find, increasing complexity.

Next, denote m = K1/∆, meaning that m ∈
[1,max(∆(p+1),M∆)]. We replace this equivalent branch-

ing factor in Theorems 11 and 13 of [10] to get convergence

rates of (S)OPHIS∆, as follows. Recall that i∗ denotes the

sequence returned by either algorithm; and define f(n) =
Õ(g(n)) to mean that f(n) ≤ a(log g(n))bg(n) for some

a, b > 0; i.e. f behaves like g up to a logarithmic factor.

Convergence rate for OPHIS∆: For large budget n:

a) for K > 1: v∗∆ − v(i∗) = Õ

(

γ

√

2τ2(τ∗−1)∆ log n

τ∗2 log K

)

b) for K = 1: v∗∆ − v(i∗) = Õ
(

γn1/4 τ
τ∗

√

2(τ∗−1)
ZC

)

where τ = log(M)
log(1/γ) and τ∗ = ⌈τ⌉.

Convergence rate for SOPHIS∆: For large n:

a) for K > 1, we take Hmax = nǫ, with ǫ ∈ (0, 0.5) and we

have:

v∗∆ − v(i∗) = Õ

(

γˆ
(

τ
τ∗

√

(τ∗−1)(1−2ǫ)∆ logn
logK

)

)

b) for K = 1, we take Hmax = n1/3, and we have:

v∗∆ − v(i∗) = Õ

(

γˆ
(

n1/6 τ
τ∗

√

2(τ∗ − 1)min{ 1
CZ , 1}

)

)

where Z = max(M,p+ 1).
These results say that the sub-optimalities of both

OPHIS∆ and SOPHIS∆ converge to 0 as n → ∞. The

simpler the problem (smaller K), the faster the convergence

to 0. In particular, for K = 1 convergence is exponential

in a power of n. For K > 1, the multiplication by ∆
at the numerator of the power of γ for both algorithms

intuitively says that all other things being equal, a larger

dwell-time leads to faster convergence. SOPHIS∆ converges

a bit slower than OPHIS∆, shown by the different powers

of n for K = 1, and by the appearance of ǫ for K > 1.

Further, the results point to a rule for selecting Hmax: try

first with Hmax = n1/3, and if that does not work well, take

Hmax = nǫ and tune ǫ ∈ (0, 0.5); for small ǫ, SOPHIS∆ is

nearly as fast as OPHIS∆. Note that SOPHIS∆ expands sets

for all possible Lipschitz constant values, which intuitively

means that it implicitly optimizes the Lipschitz constant for

the set selection component. In practice, when larger budgets

are available, SOPHIS∆ is preferred, whereas for smaller

budgets, the OPHIS∆ approach of focusing this limited

budget on one value of the Lipschitz constant still pays off.

V. SIMULATION RESULTS

In this section, we present two examples, with the simu-

lations done with SOPHIS∆, since it provides better results

than OPHIS∆ for long time horizons. The first problem is a

quantized NCS framework, applied to an inverted pendulum,

and the second a model of the COVID pandemic evolution.

For both examples, the algorithm works in receding horizon,

so at each step in time, we use it to get an open-loop sequence

of actions, from which we apply the first action.

A. Quantized NCS framework

The first problem concerns a Networked Control System

(NCS), in which we must transmit commands to an actuator

via a network. The precision of the transmitted values is

important for performance. By default, many bits are needed

-5

0

5 one trit
ad. quant. =4
ad. quant. =1
20 trits

-2
0
2

u
c

One trit

-2
0
2

u
c

Adaptive quantization =4

0
0.5

1

u
d

Adaptive quantization =4

-2
0
2

u
c

Adaptive quantization =1

0
0.5

1

u
d

Adaptive quantization =1

0 0.5 1 1.5

Time [s]

-2
0
2

u
c

60 trits

Fig. 2. Inverted pendulum: State showing the swingup required to reach
the target state, quantized continuous inputs, and quantization modes in time

in order to transfer a precise value. However, a network

with many bits is costly, so we consider sending a more

precise value when necessary, and a rougher quantization the

rest of the time. This determines a hybrid-input framework,

where the value to be transmitted is the continuous input,

and the mode of the network (quantization level) is the

discrete input, chosen adaptively by the algorithm. Moreover,

a dwell time constraint is needed because we cannot switch

the configuration of the network too fast.

In the algorithms, we use M = 3, and therefore, following

the tree structure, we use for convenience trits instead of bits.

One trit means the left, center or right interval in a continuous

split, and needs 2 bits to be represented. On the actuator’s

side, a decoding will be made to get the actual control value.

If t trits have been sent, this means the interval [0, 1] has been

split t times. For example, if we transmit the sequence of 3
trits: left, center, right, we get first [0, 1/3], then [1/9, 2/9],
and in the end [5/27, 2/9]. The actual control value will be

the center of this last interval, 11/54.

This NCS framework is general: it works for any single-

continuous-input system. Next, we apply it to an inverted

pendulum, with the nonlinear model given as α̈ = 1/J ·
[mgl sin(α) − bα̇ − K2α̇/R + Ku/R], with J = 1.91 ·
10−4kgm2, m = 0.055kg, g = 9.81m/s2, l = 0.042m,

b = 3 · 10−6Nms/rad, K = 0.0536Nm/A, R = 9.5Ω. We

have two states, the angle α and the angular velocity α̇.

The angle wraps in [−π, π] and α̇ ∈ [−15π, 15π]. The DC

motor voltage u ∈ [−3, 3]V . The sample time is Ts = 0.05s
and we use Euler integration. We use the quadratic reward

function ρ(xk+1, uc) = 1 − 0.75x2
1,k+1/π

2 − 0.25(uc)
2/9.

We start from x0 = [−π, 0] (pendulum down) and want

to get to xf = [0, 0] (pendulum up). We set our discrete

modes to either 0 – which means sending a sufficiently large

number of trits (60) to represent the continuous value after

any number of splits made in practice by the algorithms, or 1

– sending just one trit. We use SOPHIS∆ with M = 3, Lρ =
1.2, Lf = 0.8, γ = 0.8, n = 20000. As baselines, we look

at always sending one trit or 60. Figure 2 shows the states,

the applied quantized control voltage, and the modes over

time for 4 cases: one trit always, adaptive quantization with

dwell-time 4, adaptive quantization with dwell-time 1, and 60

trits always. Constantly using large amount of trits of course

gives the best results, but with high network usage. However,

the results with adaptive quantization are very similar, and

having ∆ = 4 does not lead to a loss in performance

compared to ∆ = 1, while switching is significantly reduced.

Transmitting only one trit all the time degrades the precision

of the continuous input and reduces performance. Note that

the unquantized input (not shown) is approximately the same

as the quantized one, so the algorithm does not waste time

refining it more than needed.

B. Susceptible-Infectious-Removed (SIR) model

We apply SOPHIS∆ for a pandemic evolution model, to

design the vaccination and quarantine strategy. The model is

taken from [11] and its states are: the number of susceptible

(S), infectious (I), removed (R) people. In addition, when

we include the vaccination control, a new state is introduced:

vaccinated (W) and the model becomes SIRW. The control

variable is ud ∈ {0, 1}, with 0 meaning no vaccines are

administered, and 1 that the maximum percentage of S
persons are vaccinated. First, we use OPD [2] (the method

OPHIS specializes to when there is no continuous action)

just to validate the correctness of our class of methods. As

in [11], we take the values of the parameters: βbaseline =
0.3566, γ = 0.0858 and start from the same initial condi-

tions: In0 = 0.0038, Sn0 = 1−In0, Rn0 = 0,Wn0 = 0. With

OPD, we recover the same results as [11], for the mono-

objective setting there (achieving the minimum number of

infected persons). Then, we add the continuous control

variable, equivalent to the level of quarantine. A higher level

decreases the infection rate of the virus β [15]. We set the

new value as βbaseline−0.5∗uc. The reward function used is

r = 1−0.9998I−0.0001uc−0.0001ud, focusing mostly on

reducing the number of infections, but still including small

penalties for vaccination (due to its costs) and quarantine (as

it impacts the economy). The simulation results for dwell-

time 2 are given in Figure 3, in which the algorithm works

well. Compared to
∫ 70

0 I = 8945.42, the objective function

in [11], we now get 6167.6. However, recall that we use an

additional control variable, which helps reducing the number

of infections. In the unconstrained case, we get 5762.5.1

VI. CONCLUSION

This work presented two new optimistic planning algo-

rithms, OPHIS∆ and SOPHIS∆, suited for hybrid-input

systems in which the discrete input must respect a dwell-

time constraint. The analysis proved that the sub-optimality

for each algorithm converges to 0, as the budget increases.

Two simulation examples were given. In the future, we plan

to analyze the stability of the algorithms.
1SOPHIS∆ also outperforms [5] on the SIR model in that paper, which

natively has 2 control variables. Details are skipped due to space limits.

0 5 10 15 20 25 30 35 40 45
2
6

10
14

S

104

0 5 10 15 20 25 30 35 40 45

100
300
500

I

0 5 10 15 20 25 30 35 40 45
0

500

R

0 5 10 15 20 25 30 35 40 45
0
5

10

W

104

0 5 10 15 20 25 30 35 40 45
0

0.5
1

u
c

0 5 10 15 20 25 30 35 40 45

Time [days]

0
0.5

1

u
d

Fig. 3. SIR: States and inputs in time with dwell-time 2

REFERENCES

[1] L. I. Allerhand and U. Shaked, “Robust stability and stabilization
of linear switched systems with dwell time,” IEEE Transactions on

Automatic Control, vol. 56, no. 2, pp. 381–386, 2010.
[2] L. Buşoniu, J. Daafouz, M. C. Bragagnolo, and I.-C. Morărescu, “Plan-

ning for optimal control and performance certification in nonlinear
systems with controlled or uncontrolled switches,” Automatica, vol. 78,
pp. 297–308, 2017.

[3] M. Buss, M. Glocker, M. Hardt, O. Von Stryk, R. Bulirsch, and
G. Schmidt, “Nonlinear hybrid dynamical systems: modeling, optimal
control, and applications,” in Modelling, Analysis, and Design of
Hybrid Systems. Springer, 2002, pp. 311–335.

[4] C. Duan and F. Wu, “Analysis and control of switched linear systems
via dwell-time min-switching,” Syst. & Ctl. Letters, vol. 70, 2014.

[5] J. K. Ghosh, U. Ghosh, M. Biswas, and S. Sarkar, “Qualitative analysis
and optimal control strategy of an SIR model with saturated incidence
and treatment,” Diff. Eqns. & Dyn. Sys., pp. 1–15, 2019.

[6] M. Granzotto, R. Postoyan, L. Buşoniu, D. Nešić, and J. Daafouz, “Op-
timistic planning for the near-optimal control of nonlinear switched
discrete-time systems with stability guarantees,” in IEEE CDC, 2019,
pp. 3405–3410.

[7] A. Heydari, “Optimal switching with minimum dwell time constraint,”
Journal of the Franklin Institute, vol. 354 (11), pp. 4498–4518, 2017.

[8] J.-F. Hren and R. Munos, “Optimistic planning of deterministic
systems,” in EWRL, 2008, pp. 151–164.

[9] M. Kamgarpour and C. Tomlin, “On optimal control of non-
autonomous switched systems with a fixed mode sequence,” Auto-

matica, vol. 48, no. 6, pp. 1177–1181, 2012.
[10] I. Lal, C. Morărescu, J. Daafouz, and L. Buşoniu, “Optimistic planning

for control of hybrid-input nonlinear systems,” 2023, Accepted in
Automatica.

[11] G. B. Libotte, F. S. Lobato, G. M. Platt, and A. J. S. Neto, “Deter-
mination of an optimal control strategy for vaccine administration in
COVID-19 pandemic treatment,” Computer Methods and Programs in

Biomedicine, vol. 196, p. 105664, 2020.
[12] K. Liu, E. Fridman, and K. H. Johansson, “Dynamic quantization of

uncertain linear networked control systems,” Automatica, vol. 59, pp.
248–255, 2015.

[13] J. Lygeros, C. Tomlin, and S. Sastry, “Hybrid systems: modeling,
analysis and control,” Tech. Rep. UCB/ERL M, vol. 99, 2008.

[14] J. Mareczek, M. Buss, and G. Schmidt, “Robust global stabilization of
the underactuated 2-DOF manipulator R2D1,” in IEEE ICRA, vol. 3,
1998, pp. 2640–2645.

[15] L. Pribylová and V. Hajnova, “SEIAR model with asymptomatic
cohort and consequences to efficiency of quarantine government
measures in COVID-19 epidemic,” arXiv preprint: 2004.02601, 2020.

[16] O. Slupphaug, J. Vada, and B. A. Foss, “MPC in systems with
continuous and discrete control inputs,” in IEEE ACC, 1997.

[17] R. S. Sutton and A. G. Barto, RL: An introduction. MIT press, 2018.
[18] F. Zhu and P. J. Antsaklis, “Optimal control of hybrid switched

systems: A brief survey,” Discrete Event Dynamic Systems, vol. 25,
pp. 345–364, 2015.

Supplementary material for “Near-optimal control of nonlinear systems with hybrid inputs and

dwell-time constraints”

Algorithm 1: OPHIS∆

Input: state x0, model f , reward fcn. ρ, split factor

M , discrete set {0, 1, ..., p}, budget n,

Lipschitz constants Lf and Lρ, discount

factor γ, dwell-time constraint ∆
1 initialize collection of sets A with S0, D0 = C0 = 0
2 while budget n not yet exhausted do

3 select set i† = arg maxi∈A
B(i);

4 select dimension with max contribution for

continuous actions

k† = arg maxk∈{0,1,...,D
i†
}λk;

5 if λk† ≤ γ
D

i†

1−γ then /*split discretely*/

6 if ∆i† < ∆ then

7 create one child set from i†;

8 child sets inherit continuous intervals and

discrete actions up to dimension Di† − 1;

9 action dD
i†

= dD
i†

−1;

10 ∆child = ∆i† + 1
11 else

12 create p+ 1 children sets from i†;

13 create one child set for each d - this

action is added for dimension Di† ;

14 if di† == di†−1 then

15 ∆child = ∆i† + 1;

16 else

17 ∆child = 1

18 any children will have D = Di† + 1 and

C = Ci† ;

19 else /*split continuously*/

20 expand set i† along k† by creating its M
children sets;

21 children sets inherit continuous intervals and

discrete actions up to dimension Di† − 1;

22 interval at step k† is refined by splitting into

M equal parts;

23 all children will have D = Di† , ∆child = ∆i†

and C = Ci† if k† 6= Ci† , or C = Ci† + 1 if

k† = Ci† ;

Output: sequence û of set i∗ = argmaxi∈A v(i)

Algorithm 2: SOPHIS∆

Input: state x0, model f , ρ, split factor M , discrete

set {0, 1, ..., p}, budget n, Lipschitz constants

Lf and Lρ, discount factor γ, dwell-time

constraint ∆, Hmax(n)
1 initialize collection of sets A with S0, D0 = C0 = 0
2 while budget still available do

3 H = smallest depth with unexpanded nodes;

4 if H ≥ Hmax(n) then

5 stop and exit the loop;

6 else

7 while H < Hmax(n) do

8 select set i† = arg maxi∈A
v(i);

9 select dimension with max contribution

for continuous actions

k† = arg maxk∈{0,1,...,D
i†
}λk;

10 if λk† ≤ γ
D

i†

1−γ then

11 split discretely (see Alg. 1)

12 else

13 split continuously (see Alg. 1)

14 H = H + 1

Output: sequence û of set i∗ = argmaxi∈A v(i)

	I Introduction
	II Preliminaries
	III (S)OPHIS with a dwell-time constraint
	IV Analysis
	V Simulation results
	V-A Quantized NCS framework
	V-B Susceptible-Infectious-Removed (SIR) model

	VI Conclusion
	References

