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Constructing Feedback Linearizable Discretizations for

Continuous-Time Systems using Retraction Maps.

Ashutosh Jindal1, Ravi Banavar2 and David Martı́n Diego3

Abstract— Control laws for continuous-time dynamical sys-
tems are most often implemented via digital controllers using
a sample-and-hold technique. Numerical discretization of the
continuous system is an integral part of subsequent analysis.
Feedback linearizability of such sampled systems is dependent
upon the choice of discretization map or technique. In this
article, for feedback linearizable continuous-time systems, we
utilize the idea of retraction maps to construct discretizations
that are feedback linearizable as well. We also propose a method
to functionally compose discretizations to obtain higher-order
integrators that are feedback linearizable.

I. INTRODUCTION

Digital controllers facilitate the implementation of

continuous-time control systems via discretization. For non-

autonomous systems i.e., for systems with inputs this is

done via (a) sample and hold technique where the control

input is held constant between two sampling intervals and

(b) a discretization scheme that solves the evolution of the

continuous-time dynamical systems numerically. Different

numerical schemes result in different discretizations of the

continuous time systems. On Euclidean spaces i.e., for

systems evolving on R
n, some of the common numerical

integration schemes are Euler Integrations methods, Runge-

kutta-based methods, Simpson 1/3 rule, etc. [1]. While these

schemes perform well for systems evolving in euclidean

spaces, when implemented for systems evolving on general

manifolds, they do not guarantee that the system states stay

on the manifold. In order to maintain the non-euclidean

structure of the underlying manifold one would like to

construct integrators that respect the underlying geometry

of the continuous-time dynamical system. Such integrators

are called geometric integrators and these result in more

accurate long-term behavior. A summary of geometric in-

tegrator schemes is given in [1], [2]. Retraction maps are a

generalization of euclidean discretizations on non-euclidean

manifolds (see [3], [4]). Retraction maps allow us to con-

struct geometric discretizations that guarantee the system

states stay on the manifold.

Feedback linearization allows us to transform a nonlinear

control system into a linear system via a coordinate trans-
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formation and invertible control feedback. This allows us to

utilize the control design methods such as pole placement

etc available for linear systems to synthesize controls for

the nonlinear system. A study of feedback linearization for

continuous time systems is provided in [5]–[7] and references

therein. A discrete-time equivalent of feedback linearization

is studied in [8]–[11]. Sampling, in general, does not preserve

the feedback linearization, i.e., given a feedback linearizable

continuous time system, under sample and hold method and a

particular choice of discretization the resulting discrete-time

system need not be feedback linearizable (in discrete time)

in general. In [12], with help of an example shows that a

continuous system, under one discretization, may result in

a feedback linearizable discrete-time system while it may

not do so under some other discretization. Under exact

discretization methods, the feedback linearizability of the

sampled time systems has been studied in [13], [14]. Since

feedback linearization allows us to utilize the advantages

of linear control theory, it is of interest to find (numerical)

discretizations that are feedback linearizable.

Contribution: In this article, given a feedback linearization

we utilize retraction maps to construct discretizations that are

feedback linearizable. We also provide a way to compose

these discretizations to generate symmetric discretizations

that are accurate upto second order while maintaining feed-

back linearizability. However, this requires multi-rate sam-

pling.

Organization: The article is organized as follows: in Section

II and III, we provide a brief introduction on retraction maps

and continuous time feedback linearization respectively. The

retraction maps are defined for autonomous systems, we

extend this notion to nonautonomous systems. In section IV

we provide our main result where we utilize the retractions

maps to construct first-order discretizations that are feedback

linearizable and in Section V we present a way to compose

first-order discretizations to construct higher-order feedback

linearizable schemes. This is obtained via multi-rate sam-

pling schemes. We demonstrate these results on a simple

example in Section VI.

II. RETRACTION AND DISCRETIZATION MAPS

Let M be an n dimensional manifold and TM be the asso-

ciated tangent bundle. Let TM ∋ (x, v) 7−→ τM (x, v) := x
be the canonical projection onto the manifold.

Defintion 2.1 (Discretization Map (see [3], [4])): Let

U ⊂ TM be an open neighborhood of the zero section of

the tangent bundle TM . U ∋ (x, v) 7−→ R(x, y) ∈M ×M
is a discretization map if it satisfies

http://arxiv.org/abs/2305.09149v1


1) (x, 0x) 7−→ R(x, 0x) = (x, x)
2) T(x,0x)R

2 − T(x,0x)R
1 = IdTxM : T(x,0x)TxM ≃

TxM −→ TxM is equal to the identity map on TxM
for any x in M .

As a consequence is easy to show that any discretization map

R is a local diffeomorphism.

Defintion 2.2 (Adjoint Discretization): Let R be a dis-

cretization on M . Consider the inversion map (x, y) ∋
M ×M 7−→ IM (x, y) := (y, x) ∈ M ×M . The adjoint of

R is defined by U ∋ (x, v) 7−→ R∗(x, v) := IM (R(x,−v)).
A discretization is called symmetric if R = R∗.

Given X ∈ X a vector field on M and a discretization map

R we have the following discretization map and a fixed time

discretization map t 7−→ (t− αh, t+ (1− α)h), α ∈ [0, 1].
Proposition 2.1: The discretization of X defined by

R−1(xk, xk+1) = hX (τM (R−1(xk, xk+1)))
︸ ︷︷ ︸

∈M

is a first-order discretization of X and second-order if R is

symmetric.

Proposition 2.2: Let M andN be n dimensional manifold

and M ∋ x 7−→ φ(x) =: y ∈ N be a diffeomorphism. For a

given discretization R on M , Rφ := (φ× φ) ◦R ◦ Tφ−1 is

a discretization on N (see Figure 2.1).

Proof: For any given y ∈ N we have that

Rφ(y, 0y) =
(
(φ× φ) ◦R ◦ Tφ−1

)
(y, 0y)

=
(
(φ× φ) ◦R ◦ Tφ−1

)
(φ(x), 0φ(x))

= (φ× φ)−1R(x, 0x)

= (φ× φ)−1(x, x) = (y, y)

this proves the first condition.

Now, given a vector uy ∈ TyN we
(
T(y,0y)R

2
φ − T(y,0y)R

1
φ

)
(y, uy)

=
d

ds

∣
∣
∣
s=0

[(φ ◦R1 ◦ Tφ−1)(y, suy)

− (φ ◦R2 ◦ Tφ−1)(y, suy)]

= Tyφ

(
d
ds

∣
∣
∣
s=0

[R1(t(Tφ−1)(y, uy))

−R2(t(Tφ−1)(y, uy))]

)

= Tyφ((Tφ
−1)(y, uy)) = (y, uy)

using the linearity of the map Tyφ and that R is a discretiza-

tion map.

Using the inversion map IM one can easily show that R∗

φ =
(φ × φ) ◦ R∗ ◦ Tφ−1 is the adjoint discretization of Rφ.

Further, Rφ is symmetric if R is symmetric. From definition

of R and Rφ, Figure 2.1 commutes.

III. CONTINUOUS TIME CONTROL SYSTEM

Let M be an m dimensional manifold and U ⊂ R
n be

open. For each u ∈ U let X(·, u) ∈ X(M) be a vector field

on M . Then for a fixed T > 0, a continuous-time dynamical

system on M is given by

d

dt
x(t) = X(x(t), u(t)) for all t ∈ [0, T ], (3.1)

TM TN

M ×M N ×N

R

Tφ

φ× φ

Rφ

Fig. 2.1. R and Rφ commutes as shown above

with t 7−→ x(t) ∈ M and t 7−→ u(t) for all t ∈ [0, T ]. A

point (x0, u0) ∈ M × U is said to be an equilibrium point

of (3.1) if X(x0, u0) = 0.

A. Feedback Linearization of Continuous Time systems

Let M and N be two n-dimensional manifolds and φ :
M −→ N be a diffeomorphism. Let X ∈ X(M) be a vector

field on M . Then Xφ := Tφ ◦X ◦ φ−1 is a vector field on

N . Further for the dynamical system

d

dt
y(t) = Xφ(y(t), u(t)) for all t ∈ [0, T ] (3.2)

with y(0) = φ(x(0)) satisfy y(t) = φ(x(t)) where x(t) is a

solution of (3.1) with t ∈ [0, T ].
Defintion 3.1 (Feedback Linearization): Let O(x0) ∋ x0

and O(u0) ∋ u0 be open neighorhoods around x0 and u0
of M and U , respectively. Let O(x0) ∋ x 7−→ φ(x) := y ∈
N := R

n be a diffeomorphism to its image and O(x0) ×
O(u0) ∋ (x, u) 7−→ ψ(x, u) := v ∈ R

m such that for each

fixed x, ψ(x, ·) : U −→ R
n is invertible. A given continuous

time system (3.1) is said to be (locally) feedback linearizable

around (x0, u0) on O(x0) × O(y0) if there exists matrices

A ∈ R
n×n and B ∈ R

n×m such that Xφ(y, u) = Ay + Bv
with v = ψ(φ−1y, u). The feedback linearized dynamical

system is given by

d

dt
y(t) = Ay(t) +Bv(t) for all t ∈ [0, T ]. (3.3)

For background on feedback linearization, we refer the reader

to [5]–[7] and references therein.

IV. NUMERICAL DISCRETIZATION OF

CONTINUOUS-TIME SYSTEMS

Continuous time control systems are implemented via

digital controllers using sample and hold method where the

control input u is held constant at a fixed value between two

successive samples i.e., u(t) = uk for all t ∈ [tk, tk +
h[ for all k ∈ N where h is the fixed sampling period.

Further, since analytical solutions for (3.1) are often not

available in closed form, the solutions are to be approximated

numerically.

Defintion 4.1: Let U ⊂ R
m be open and for each u ∈

U , X(·, u) ∈ X(M) is a vector field on x. Let R be

a discretization map on M then using Proposition 2.1 a

discretization of X(·, u) is defined by

R−1(xk, xk+1) = hX(τM (R−1(xk, xk+1)), uk) (4.1)

where the control input u is held constant over the interval

[tk, tk+1[ i.e., u(t) = uk for all t ∈ [tk, Tk+1].



A different choice for R leads to different numerical dis-

cretization schemes. For example, on Euclidean spaces (M =
R

m), R(x, v) = (x, x + v) results in the Explicit Euler

discretization scheme xk+1 = xk + hX(xk, uk), while

R∗(x, v) = (x − v, x) defines the Implicit Euler Dis-

cretization with xk+1 − hX(xk+1, uk) = xk. Solving (4.1)

implicitly for xk+1, the sampled discrete-time system can be

explicitly written as

xk+1 = F (xk, uk;h) (4.2)

where xk ∈ M and uk ∈ U for all k ∈ N and M × U ∋
(x, u) 7−→ f(x, u) ∈ M is a smooth map (if F is not well

defined on entire M one may very well work with a local

definition of F , by replacing M with an open neighborhood

around x0 in M ). From the properties of retraction maps,

one can show that at equilibrium point (x0, u0) one has

F (x0, u0;h) = x0.

A. Feedback Linearization of Discrete time system

The idea of feedback linearization can be extended to

discrete-time systems as follows. Consider the discrete-time

system given by (4.2).

Defintion 4.2 (Feedback Linearization (discrete-time)):

Let O(x0) ∋ x0 and O(u0) ∋ u0 be open neighborhoods

around x0 and u0. Let O(x0) ∋ x 7−→ y =: φ(x) ∈
N := R

n be a diffeomorphism onto its image, and

O(x0) × O(u0) ∋ (x, u) 7−→ v =: ψ(x, u) ∈ R
m be

such that for each x, ψ(x, ·) is locally invertible. The

discrete-time system (4.2) is said to be feedback linearizable

if there exist matrices Ah and Bh such that

φ(Fh(x, u)) = Ahφ(x) +Bhψ(x, u) = Ahy +Bhv

The discrete-time system (4.2) is linearized to

yk+1 = Ahyk +Bhvk (4.3)

The feedback linearizability of discrete-time systems has

been dealt with in great detail in [8]–[11]. For sampled

time continuous time system the feedback linearizability

is in general not preserved, i.e., a feedback linearizable

continuous time system when implemented with sample and

hold may not result in a feedback linearizable discrete-time

system. The linearizability is not only dependent upon the

underlying continuous-time system but also on the choice

of discretization (see [12]). Using this as our motivation we

are interested in the following problem – given a feedback

linearizable continuous time system (3.1) is it possible to

construct a numerical discretization (4.2) that is feedback

linearizable?

B. Constructing feedback linearizable discretization maps

Consider the continuous time system given by (3.1). Let

φ and ψ be as in Definition (3.1). Suppose (3.1) is feedback

linearizable to (3.3). Keeping v(t) = vk for all t ∈ [tk, tk+1[,
let R be a discretization for (3.3) such that it preserves the

linearity of (3.3) i.e. it results in a discrete system

yk+1 = Ahyk +Bhvk

where Ah and Bh are fixed matrices of appropriate order.

Given a discretization map R for (3.3), using Proposition

2.2 one can construct a discretization map

Rφ−1 = (φ× φ)−1 ◦R ◦ Tφ (4.4)

and a discretization scheme

R−1
φ−1(xk, xk+1) = hX(τM (R−1

φ−1(xk, xk+1), uk)) (4.5)

Theorem 4.1: Let R be a discretization map for the feed-

back linearized continuous system (3.3) preserving linearity,

then the nonlinear system (3.1) has a discretization given

by (4.5) that is feedback linearizable in the discrete-time

domain.

Proof: Define yk = φ(xk) and ψ(xk, uk) = vk for all

k. From (4.4) we have

R−1
φ−1(xk, xk+1) = (Tφ−1 ◦R−1 ◦ (φ× φ))(xk , xk+1)

= (Tφ−1 ◦R−1)(yk, yk+1),

and

X(τM (R−1
φ−1(xk, xk+1)), uk)

= X
(
τM ((Tφ−1 ◦R−1)(yk, yk+1)), uk)

)

= Xφ

(
τN (R−1(yk, yk+1)), uk)

)

From (4.5) we have (xk, xk+1) =
Rφ−1(hX(τM (R−1

φ−1(xk, xk+1))) and therefore we have

(φ× φ)(xk , xk+1)

= (φ× φ) ◦Rφ−1(hX(τM (R−1
φ−1(xk, xk+1)), uk)

= R
(
(hXφ(τN (R−1(yk, yk+1)), uk)

)

and therefore we have

(yk, yk+1) = R(hXφ(τN (R−1(yk, yk+1)), uk)).

But since R preserves linearity and Xφ(y, u) = Ay + Bv
with v = ψ(φ−1y, u), we have

yk+1 = Ahyk +Bhψ(xk, uk)

= Ahyk +Bhvk

This concludes the fact that discretization given by (4.5) is

feedback linearizable under the coordinate change x 7−→
φ(x) = y and a modified control input (x, u) 7−→ ψ(x, u) =
v.

Remark 4.1: It is important to note that independent of

the order of R one can ensure an accuracy of Rφ up to the

first order. This is due to the fact that while implementing

(3.1) via the sample and hold, the control input u is to be

held constant on the interval [tk, tk+1[. This is in general not

possible while simultaneously keeping the linearized control

input v constant over [tk, tk+1[ as v(t) = ψ(x(t), u(t)).
Instead of employing the exact control input u(t) over the

interval, we apply the control uk satisfying vk = ψ(xk, uk)
for all t where xk is the state sampled at t = tk.



C. Linearizability of Adjoint discretization

Given a discretization map, Rφ−1 one can construct an

adjoint discretization R∗

φ−1 as given by the Definition 2.2.

From proposition 2.2 we have

R∗

φ−1 = (φ× φ)−1 ◦R∗ ◦ Tφ. (4.6)

Using the definition of R∗ and the inversion map, R∗ induces

a following discretization scheme

(R∗)−1(yk+1, yk) = −hXφ(τN ((R∗)−1(yk+1, yk), vk)).

Suppose R is such that it preserves the linearity of (3.1) for

−h as well i.e., the following discretization

R−1(yk, yk+1) = −hXφ(τN (R(yk, yk+1)), uk)

results in a linear discrete-time system of the form

yk+1 = A−hyk +B−hvk (4.7)

then we have the following result.

Theorem 4.2: Let R be a discretization of (3.3) preserving

linearity for h as well as −h. Let R∗ be the adjoint of R,

then R∗

φ−1 given by (4.6) results in a discretization

xk+1 = F ∗(xk, uk;h) (4.8)

i.e., feedback is linearizable. Moreover, the linearizing co-

ordinate is given by x 7−→ φ(x) := y and the linearized

system is given by

yk = A−hyk+1 +B−hvk (4.9)

with vk = ψ(xk+1, uk).
The proof of the above theorem follows a similar process

to that of Theorem 4.1 and is hence omitted. Moreover,

the control input uk is to be calculated implicitly from the

control input vk. Similar to Rφ−1 , R∗

φ−1 is also accurate upto

first order.

V. CONSTRUCTING HIGHER ORDER DISCRETIZATIONS

Defintion 5.1 (Global and truncated error): Consider the

continuous time system (3.1), then for a given discretization

(4.2) the n-step global error is defined as

e(k) := x(tk)− xk,

where x(tk) is the exact solution of (3.1) evaluated at t = hk.

The one-step truncated error at tk is

x̃k = (F (x(tk), uk))− x(tk)) /h
For an r-order discretizations, the one-step truncation error

is bounded above by ‖x̃k‖ ≤ K ‖h‖r [15]. For first-order

methods, the error varies linearly with the stepsize, therefore

one requires a smaller stepsize to have better accuracy. For

instance, in order to have an accuracy of an order of 10−4

the stepsize h is to be of the order of 10−4, whereas for

second-order methods a stepsize of an order of 10−2 shall

suffice. The discretizations R in Definition 2.1 are in general

first order. However, if R is symmetric then it is accurate up

to second accurate. This serves as our motivation to construct

symmetric discretization.

A. Symmetric Discretizations

Let M be an n dimensional manifold and X ∈ X(M) be

a vector field on M . Let R be a discretization map on M
and R∗ be its associated adjoint. Define by composition a

discretization scheme as follows :

R−1(xk, xk+1/2) =
h

2
X(τM (R−1(xk, xk+1/2)))

(R∗)−1(xk+1/2, xk+1) =
h

2
X(τM ((R∗)−1(xk+1/2, xk+1)))

(5.1)

In the above equation, xk+1/2 ∈ M is to be taken as an

intermediate point and is to be solved implicitly to get a

discrete system of type (4.2). For any x, y ∈M the following

is true

(R∗)−1(x, y) = ITM ◦R−1(y, x) (5.2)

and

X(τM ((R∗)−1(x, y))) = X(τM (R−1(y, x))) (5.3)

where TM ∋ (x, vx) 7−→ ITM (x, vx) = (x,−vx) ∈ TM .

Proposition 5.1: Discretization given by (5.1) is symmet-

ric.

Proof: Replacing (xk, xk+1) and h with (xk+1, xk) and

−h in (5.1) we have

R−1(xk+1, xk+1/2) = −
h

2
X(τM (R−1(xk+1, xk+1/2)))

(R∗)−1(xk+1/2, xk) = −
h

2
X(τM ((R∗)−1(xk+1/2, xk)))

Using (5.2) and (5.3) we get

(R∗)−1(xk+1/2, xk+1) =
h

2
X(τM ((R∗)−1(xk+1/2, xk+1))),

R−1(xk, xk+1/2) =
h

2
X(τM (R−1(xk, xk+1/2)))

i.e., (5.1), thereby proving (5.1) is symmetric.

Remark 5.1: Since (5.1) is symmetric and therefore is

second order.

For nonautonomous systems, the control input uk is held

constant between t ∈ [tk, tk+1[, (5.1) is then modified as

R−1(xk, xk+1/2) =
h

2
X(τM (R−1(xk, xk+1/2)), uk)

(R∗)−1(xk+1/2, xk+1)

=
h

2
X(τM ((R∗)−1(xk+1/2, xk+1)), uk)

(5.4)

Under closed-loop performance i.e., applying a feedback

control uk = u(xk) (5.1) loses its symmetric nature. This

can be overcome by employing multirate sampling methods.

B. Multirate Sampling

Defintion 5.2 (Multirate Sampling): Consider a continu-

ous time system given by (3.1). Let h be the sampling

time interval i.e., xk = x(tk) and tk+1 = tk + h. For a

fixed N ∈ {1, 2, . . . , n}, and for each i ∈ {1, 2, . . .N} let



(x, u) 7−→ Fi(x, u) =: Fu
i (x) be discretizations of (3.1).

The N th step evolution is then given by

xk+N = F
uk+N−1

N ◦ . . . ◦ F
uk+1

2 ◦ Fuk

1 (xk) (5.5)

Sampling states xk at a rate N times that of control input

uk we get a multistep discretization given by

xk+N = F̄ (xk, uk, . . . uk+N−1) (5.6)

The control input uk, . . . , uk+N−1 are to be computed a

priori at tk are functions of the state xNm, Nm < k.

Setting N = 2 and F1 and F2 as F and F ∗ from (4.2)

and (4.4) respectively. Under multirate sampling, the discrete

system generated by (5.4) is given by

xk+1/2 = F (xk, uk;h/2)

xk+1/2 = F (xk+1, uk+1;−h/2).

Let uk = u(xk) be a closed-loop control input for discretiza-

tion (4.1). Setting uk+1 = u(xk+1) renders (5.4) symmetric

and the discretization is given by

F (xk, u(xk);h/2) = F (xk+1, u(xk+1);−h/2) (5.7)

which is symmetric and therefore is accurate up to second

order. Corresponding continuous time control input is

u(t) =

{

uk, t ∈ [tk, tk+1/2[

uk+1, t ∈ [tk+1/2, tk+1[

where tk+1/2 = tk +
h
2 and tk+1 = tk + h.

Theorem 5.2: Consider the continuous time system given

by (3.1). Let Rφ be its discretization as given by (4.4) and

(4.5) be its associated discretization. Then one can construct

a symmetric discretization given by (5.4), the resulting

discrete system given by

F (xk, uk;h/2) = F (xk+1, uk+1;−h/2) (5.8)

is symmetric and is of second order. Moreover, (5.8) is

feedback linearizable under coordinates x 7−→ φ(x) =: y and

the modified control input is given by (x, u) 7−→ ψ(x, u) =:
v. The linearized system is given by

Ah′yk +Bh′vk = A−h′yk+1 +B−h′vk+1 (5.9)

where h′ = h/2.

Proof: (5.8) being symmetric is trivial from the defini-

tion itself. Since φ is a local diffeomorphism we have

φ(F (xk, uk;h
′)) = φ(F (xk+1 , uk+1);−h

′)

Ah′φ(xk) +Bh′ψ(xk, uk) = A−h′φ(xk+1) +

B−h′ψ(xk+1, uk+1)

Ah′yk +Bh′vk = A−h′yk+1 +B−h′vk+1,

thereby completing the proof.

Remark 5.2: The control input vk, vk+1 can be computed

apriori at t = tk from zk. The control input uk and uk+1

are than computed implicitly solving ψ(xk, uk) = vk, with

xk = φ−1(zk).
Remark 5.3: Theorem 5.2 is different from the result in

[12] in the sense that here the rate of multi-sampling is fixed

apriori while [12] the order of discretization is chosen so that

the resulting scheme is feedback linearizable.

VI. EXAMPLE

In order to demonstrate the ideas discussed we consider the

following example. Consider the following dynamical system

evolving on M = R
2 and U = R.

d

dt

(
x1(t)
x2(t)

)

=

(
a sin(x2(t))

−(x1(t))
2 + u(t)

)

(6.1)

where a ∈ R \ {0} is fixed and given. Define φ(x1, x2) =
(x1, a sin(x2)) := (y1, y2) and ψ(x1, x2, u) = (−(x1)

2 +
u)a cos(x2) := v. The linearized system is then given by

d

dt

(
y1(t)
y2(t)

)

=

(
y2(t)
v(t)

)

. (6.2)

Choosing the Explicit Euler discretization i.e., R2 × R
2 ∋

(y, w) 7−→ R(y, w) = (y, y + w)) ∈ R
2 × R

2, the discrete

system is given by

y1,k+1 = y1,k + hy2,k,

y2,k+1 = y2,k + hvk.
(6.3)

Lifting R via φ−1 to get a discretization for (6.1), Rφ−1

induces the following discretization scheme

x1,k+1 = x1,k + ha sin(x2,k)

x2,k+1 = arcsin(sin(x2,k) + h(−x21,k + uk) cos(x2,k)).
(EES)

which can be compactly written as xk+1 = F (xk, uk;h)
with F ((x1, x2), u;h) = (x1 + ha sin(x2), arcsin(sin(x2) +
h(−x21+u) cos(x2))). It is easy to see that (EES) is feedback

linearizable for around the equilibrium point (0, 0, 0).
The associated adjoint scheme R∗(y, w) = (y − w,w)

defines the Implicit Euler Discretization. Lifting R∗, R∗

φ−1

induces the following discretization scheme

xk = F (xk+1, uk;−h) (IES)

A symmetric integrator can be defined for Example (6.1) by

composing Rφ−1 and R∗

φ−1 . Using multi-rate sampling with

states sampled at a rate twice that of control. The symmetric

integrator for (6.1) is given by

F (xk+1, uk+1;−h) = F (xk, uk;h). (SES)

One can check that (SES) is also feedback linearizable and

the linearized system is given by

A−h′yk+1 +B−h′vk+1 = Ah′yk +Bh′vk (6.4)

with Ah′ =

(
1 h′

0 1

)

and Bh =

(
0
h′

)

for h′ = h/2 and

vk = ψ(xk, uk).
The three schemes were simulated under the following

parameters: For all three schemes, we had a = 1, and the

initial condition was chosen as x(0) = (0.25, π/6). For

K =
[
−10 −10

]
, the control schemes were chosen as

in Table 6.1. The schemes were simulated for various step

sizes and the error was compared with the standard ODE

solver (ODE45) available in MATLAB. The simulation was

run for t ∈ [0, 5] and the trajectories for the discrete-time

system (EES) and continuous-time system (6.1) are plotted



Discretization Associated Control

(EES) vk = Kyk
(IES) vk = Kyk+1

(SES) vk = Kyk, vk+1 = Kyk+1

TABLE 6.1

CONTROL INPUT FOR VARIOUS DISCRETIZATION SCHEMES.

(K =
[

−10 −10
]

)

Order of error magnitude

Stepsize (EES) (IES) (SES)

h = 10−1 10−1 10−1 10−2

h = 10−2 10−3 10−3 10−4

h = 10−3 10−4 10−4 10−6

h = 10−5 10−5 10−4 10−8

TABLE 6.2

ORDER OF ERROR MAGNITUDE FOR VARIOUS STEP SIZES.

in Figure 6.1. The corresponding error is plotted in Figure

6.3. The control input is plotted in 6.2. Similarly, the system

trajectory for (SES) is plotted in Figure 6.4, and the control

input and error in Figures6.5 and 6.6 respectively. To show

the multi-rate sampling, A zoomed-in version of the control

signal around tk = 0 is also plotted in figure 6.7. It can

be seen that the absolute error for (SES) is significantly

smaller than that of (EES). In Figure 6.8, we compare the

(percentage) relative error 100∗‖e(tk)‖ / ‖x(tk)‖, for (EES),

(IES) and (SES). While percentage error increases for (EES)

and (IES), the absolute error is actually quite small (the

increase is partly because of the precision errors when x
becomes small). For various stepsizes, Table 6.2 records the

order of the error magnitude for the various discretization. It

can be seen that (SES) outperform (EES) and (IES) and the

error is proportional to h2.

VII. CONCLUSIONS

In this article, we have utilized the idea of retraction maps

and their lifts under diffeomorphism to construct feedback

linearizable discretization. Given a continuous-time feedback

linearizable system, we show that one can build first-order

discretization that preserves feedback linearizability. This is

0 1 2 3 4 5
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0

0.2

0.4

0.6

tk (s)

x1,k
x2,k
x1(tk)

x2(tk)

Fig. 6.1. System State xk for (EES) plotted against exact discretization
(ODE45) x(tk) for stepsize h = 10−2 and tk ∈ [0, 5].
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Fig. 6.2. Control input uk for (EES) plotted against exact discretization
(ODE45) u(tk) for stepsize h = 10−2 and tk ∈ [0, 5].
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Fig. 6.3. Magnitude of global error for (EES) for a stepsize h = 10−2

and tk ∈ [0, 5].

done by lifting a discretization of the linearized continuous

time system. We have also shown a way to functionally

compose two first-order discretizations to design second-

order discretizations that are feedback linearizable. However,

this comes at the cost of multi-rate sampling.
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Fig. 6.7. Zoomed-in Control input uk for (EES) stepsize h = 10−2 and
tk ∈ [0, 0.05].
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