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Abstract— In this paper, we address the distributed pose
estimation problem for multi-agent systems, where the agents
have unknown static positions and time-varying orientations.
The interaction graph is assumed to be directed and acyclic
with two leaders that have access to their position and ori-
entation. We propose a nonlinear distributed pose estimation
scheme relying on individual angular velocity measurements
and local relative (time-varying) bearing measurements. The
proposed estimation scheme consists of two cascaded distributed
observers, an almost globally asymptotically stable (AGAS)
attitude observer and an input-to-state stable (ISS) position
observer, leading to an overall AGAS distributed localization
scheme. Numerical simulation results are presented to illustrate
the performance of our proposed distributed pose estimation
scheme.

I. INTRODUCTION

The distributed pose estimation problem for multi-agent
networks consists of estimating the agents’ poses (posi-
tions and orientations) in a distributed manner using some
available absolute and relative measurements. Due to the
importance of this problem in many applications related to
multi-agent autonomous networks, significant research has
been devoted to designing robust and reliable distributed pose
localization schemes. According to the network’s sensing
capabilities, these schemes can be categorized as position-
based, distance-based, and bearing-based schemes. Recently,
the latter category is gaining in popularity because of the
revolutionary development in bearing sensors. As a result,
several bearing-based distributed position estimation solu-
tions have been proposed in the literature [1], [2], [3],
[4]. However, the aforementioned references assume that
the bearings are expressed in a global reference frame
(i.e., knowledge of agents’ orientations with respect to a
global reference frame), which, unfortunately, is not the
case in most of the practical applications since the bearing
measurements are usually obtained locally from a sensor
(e.g., a camera) mounted on the agent. This motivated many
authors to design a distributed attitude observer that can be
fed into a position estimation scheme together with local
bearing measurements to obtain an overall cascaded bearing-
based distributed pose estimation scheme [5], [6]. The idea
consists in using the estimated attitudes to transform the
local relative bearing measurements into the global refer-
ence frame and then use the transformed bearings in the
position estimation law. In [7], [8], [9], [6], the authors
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proposed several orientation estimation algorithms based on
the consensus approach and the Gram-Schmidt procedure.
Later, these algorithms were extended to deal with a time-
varying orientation in an arbitrary dimensional space [10],
[11]. Note that the Gram-Schmidt procedure sometimes fails
when the estimated matrix is singular. In addition, most of
the distributed attitude estimation schemes require relative
attitude measurements, which are difficult to obtain since
no low-cost setup can provide such measurements. To the
best of the authors’ knowledge, there are very few results
in the literature that address the distributed pose estimation
problem for multi-agent networks relying on local relative
bearing measurements without using the relative attitude
information. For instance, the authors of [12], [13], [14]
proposed a distributed pose estimation schemes based only
on local relative bearing measurements and some absolute
measurements (angular and linear velocities).
In this paper, motivated by [12], [13], we propose a dis-
tributed pose estimation scheme for multi-agent networks,
relying only on the angular velocity of each agent and the lo-
cal time-varying inter-agent bearing measurements available
according to a directed graph topology with a leader-follower
structure. A rigorous stability analysis is provided asserting
that the proposed estimation scheme enjoys almost global
asymptotic stability. On top of being much simpler than the
pose estimator in [12], [13], the proposed pose estimation
schemes is endowed with almost global asymptotic stability
guarantees.
The remainder of this paper is organized as follows: Section
II provides some preliminaries needed in this work. In Sec-
tion III, we formulate the distributed pose estimation problem
for multi-agent networks. Section IV presents our proposed
cascaded bearing-based distributed pose estimation solution.
Simulation results and concluding remarks are presented in
Section V and Section VI, respectively.

II. PRELIMINARIES
A. Notations

The sets of real numbers and the n-dimensional Euclidean
space are denoted by R and Rn, respectively. The set of unit
vectors in Rn is defined as Sn−1 := {x ∈ Rn | xTx = 1}.
Given two matrices A,B ∈ Rm×n, their Euclidean inner
product is defined as 〈〈A,B〉〉 = tr(ATB). The Euclidean
norm of a vector x ∈ Rn is defined as ||x|| =

√
xTx, and

the Frobenius norm of a matrix A ∈ Rn×n is given by
||A||F =

√
〈〈A,A〉〉. The matrix In ∈ Rn×n denotes the

identity matrix.
The attitude of a rigid body is represented by a rotation
matrix R which belongs to the special orthogonal group
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SO(3) := {R ∈ R3×3| det(R) = 1, RTR = I3}. The
tangent space of the compact manifold SO(3) is given by
TRSO(3) := {R Ω | Ω ∈ so(3)}, where so(3) := {Ω ∈
R3×3|ΩT = −Ω} is the Lie algebra of the matrix Lie
group SO(3). The map [.]× : R3 → so(3) is defined
such that [x]×y = x × y, for any x, y ∈ R3, where ×
denotes the vector cross product on R3. The inverse map
of [.]× is vex : so(3) → R3 such that vex([ω]×) = ω,
and [vex(Ω)]× = Ω for all ω ∈ R3 and Ω ∈ so(3). Let
Pa : R3×3 → so(3) be the projection map on the Lie algebra
so(3) such that Pa(A) := (A − AT )/2. Given a 3-by-3
matrix C := [cij ]i,j=1,2,3, one has ψ(C) := vex ◦ Pa(C) =
vex(Pa(C)) = 1

2 [c32 − c23, c13 − c31, c21 − c12]T . For any
R ∈ SO(3), the normalized Euclidean distance on SO(3),
with respect to the identity I3, is defined as |R|2I := 1

4 tr(I3−
R) ∈ [0, 1]. The angle-axis parameterization of SO(3), is
given by Rα(θ, v) := I3 + sinθ [v]× + (1− cos θ)([v]×)2,
where v ∈ S2 and θ ∈ R are the rotation axis and angle,
respectively. The orthogonal projection map P : R3 → R3×3

is defined as Px := I3 − xxT

||x||2 , ∀x ∈ R3 \ {03}. One can
verify that PTx = Px, P 2

x = Px, and Px is positive semi-
definite. Given a subset S ⊂ N, where N is a set of natural
numbers, the cardinality of S is denoted by |S|.

B. Graph Theory

Consider a network of n agents. The interaction topology
between the agents is described by a directed graph G =
(V, E), where V = {1, . . . , n} and E ⊆ V × V represent the
vertex (or agent) set and the edge set, respectively. In directed
graphs, (i, j) ∈ E does not necessarily imply (j, i) ∈ E . The
set of neighbors of agent i (from which this agent receives
information) is defined as Ni = {j ∈ V : (i, j) ∈ E}. A
directed path is a sequence of edges in a directed graph G.
A directed graph G is said to be acyclic if it does not have
any directed path that forms a closed loop.

III. PROBLEM STATEMENT

Consider a network of n agents, where the motion of each
agent i ∈ V is governed by the following rotational kinematic
equation:

Ṙi = Ri[ωi]
×, (1)

where Ri ∈ SO(3) represents the orientation of the body-
attached frame of agent i with respect to the inertial frame,
and ωi ∈ R3 is the angular velocity of agent i measured
in the body-attached frame of the same agent. Let pi ∈ R3

denote the position of agent i with respect to the inertial
frame. In this work, we assume that the positions of the
agents are fixed and do not change with time, i.e., ṗi = 0,
for all i ∈ V .
The measurement of the local relative bearing between agent
i and agent j is given by

biij := RTi bij , (2)

where bij :=
pj−pi
||pj−pi|| and biij are the relative bearing

measurements between agent i and agent j expressed in
the inertial frame and the body-attached frame of agent i,

respectively. The following assumptions are needed in our
design:

Assumption 1: The angular velocity of each agent is
available for measurement and bounded.

Assumption 2: By assigning a number to each agent, we
assume that agents 1 and 2 are the leaders and the other
agents are the followers. We also assume that

a. The directed graph G is acyclic and each leader has at
least one directed path to each follower.

b. The leaders know their pose, and have no neighbors i.e.,
Nk = {∅} ∀k = 1, 2.

c. Each agent i ∈ Vf , where Vf := V \ {1, 2} denotes the
set of followers, measures biij and receives (R̂j , p̂j , b

j
ji)

from its neighbors j ∈ Ni.
d. No two agents are collocated, and the set of neighbors of

each agent i ∈ Vf satisfies Ni ⊆ {1, 2, 3, ..., i − 1} and
|Ni| ≥ 2 with at least two non-collinear bearing vectors
measured by each agent.

Now, we will state the problem that is considered in this
work.

Problem 1: Consider a network of n rotating agents
with fixed positions. Suppose Assumptions 1-2 are satis-
fied. Design a bearing-based distributed pose (position and
orientation) estimation scheme endowed with almost global
asymptotic stability guarantees.

IV. MAIN RESULTS

A. Bearing-based Distributed Attitude Estimation on SO(3)

For i ∈ Vf , we propose the following attitude observer on
SO(3):

˙̂
Ri = R̂i

ωi − kRR̂Ti ∑
j∈Ni

kij(R̂jb
j
ij × R̂ib

i
ij)

× , (3)

where kR, kij > 0, R̂i ∈ SO(3) is the estimate of Ri, and
R̂l = Rl, l ∈ {1, 2}. Under Assumption 2, one has ||pi −
pj || 6= 0 and consequently the bearing measurement biij , for
every i ∈ V and j ∈ Ni, is well defined. Defining the attitude
estimation error R̃i := RiR̂

T
i , the last term of (3) can be

rewritten as follows:∑
j∈Ni

kij(R̂jb
j
ij × R̂ib

i
ij) =

∑
j∈Ni

kij(bij × R̃Ti bij)

+
∑
j∈Ni

kij

(
(R̃Tj − I3)bij × R̃Ti bij

)
=− 2ψ(MiR̃i)

+
∑
j∈Ni

kij

(
(R̃Tj − I3)bij × R̃Ti bij

)
,

(4)

where Mi :=
∑
j∈Ni

kijbijb
T
ij . The last equation was ob-

tained using the fact x × y = 2ψ(yxT ), ∀x, y ∈ R3. It is
always possible to choose kij > 0 such that the matrix Mi is
positive semi-definite with three distinct eigenvalues. From



(1) and (3), it follows that the time derivative of the attitude
estimation error, for every i ∈ Vf , is given by

˙̃Ri =−Ri

ωi − kRR̂Ti ∑
j∈Ni

kij(R̂jb
j
ij × R̂ib

i
ij)

× R̂Ti
+Ri[ωi]

×R̂Ti . (5)

Since [x+y]× = [x]×+[y]× and [Rx]× = R[x]×RT , ∀x, y ∈
R3 and R ∈ SO(3), and in view of (4), one can simplify
the last equation as follows:

˙̃Ri = −2kRR̃i

[
ψ(MiR̃i)

]×
+ kRR̃i

∑
j∈Ni

kijgij(R̃j)

× ,
(6)

where gij(R̃j) := (R̃Tj − I3)bij × R̃Ti bij . Note that the
term gij(R̃j) is bounded and vanishes when R̃j = I3.
Furthermore, system (6) can be viewed as a cascaded system,
where the attitude estimation errors of the neighbors are
considered as inputs to the following unforced system:

˙̃Ri = −2kRR̃i

[
ψ(MiR̃i)

]×
. (7)

The following lemma provides the stability properties of the
equilibria of system (7).

Lemma 1: Let kij > 0 such that Mi is positive semi-
definite with three distinct eigenvalues. Then, the following
statements hold for all i ∈ Vf :

i) All solutions of (7) converge to the following set of
isolated equilibria: Υ := {I3} ∪ {R̃i = Rα(π, vi)|vi ∈
E(Mi)}, where E(Mi) ⊂ S2 is the set of unit eigenvec-
tors of matrix Mi.

ii) The desired equilibrium R̃i = I3 is locally exponentially
stable.

iii) The linearized system of (7), at each undesired equilib-
rium Υ/{I3}, has at least one positive eigenvalue.

iv) The undesired equilibria Υ/{I3} are unstable and the
desired equilibrium R̃i = I3 is AGAS.
Proof: Consider the following Lyapunov function can-

didate:
Li =

1

4
tr
(
Mi

(
I3 − R̃i

))
, (8)

whose time-derivative, along the trajectories of (7), is given
by

L̇i =
kR
2

tr
(
MiR̃i

[
ψ(MiR̃i)

]×)
. (9)

Using the facts that tr (B[x]×) = tr (Pa(B)[x]×) and
tr ([x]×[y]×) = −2xT y, for every x, y ∈ R3 and B ∈ R3×3,
one has

L̇i = −kR||ψ(MiR̃i)||2 ≤ 0. (10)

Since system (7) is autonomous, by virtue of LaSalle’s
invariance theorem, the attitude error R̃i should converge
to the largest invariant set contained in the set characterized
by L̇i = 0, i.e., ψ(MiR̃i) = 0. As per [15, Lemma 2],
ψ(MiR̃i) = 0 implies that R̃i ∈ Υ.
Since the matrix Mi is positive semi-definite with three

distinct eigenvalues, it follows that the equilibrium points,
in the set Υ, are isolated. Moreover, following the same
arguments as in [16, Theorem 1], one can show that the
desired equilibrium R̃i = I3 is locally exponentially stable
and the dynamics of the first order approximation of R̃i
around each undesired equilibrium has at least one positive
eigenvalue. Accordingly, the desired equilibrium R̃i = I3 of
(7) is AGAS. This completes the proof.
In the next lemma, we will study the ISS property of the
forced attitude error dynamics (6), with respect to its inputs
(i.e., R̃j with j ∈ Ni), using the notion of almost global ISS
introduced in [17].

Lemma 2: Let Mi be positive semi-definite with three
distinct eigenvalues. Then, system (6) is almost globally ISS,
for each i ∈ Vf , with respect to I3 and inputs R̃j .

Proof: Since system (6), subject to the bounded input∑
j∈Ni

kijgij(R̃j), evolves on the compact manifold SO(3),
condition A0, given in [17], is fulfilled. Moreover, according
to Lemma 1, conditions A1 and A2, given in [17], are also
fulfilled.
Now, consider the following real-valued function:

|R̃i|2I =
1

4
tr(I3 − R̃i), (11)

whose time-derivative, along the trajectories of (6), is given
by

d

dt
|R̃i|2I = −kRψ(R̃i)

T

ψ(MiR̃i)−
1

2

∑
j∈Ni

kijgij(R̃j)

 .

(12)
The last equation was obtained using the following iden-
tities: tr (B[x]×) = tr (Pa(B)[x]×) and tr ([x]×[y]×) =
−2xT y, for every x, y ∈ R3 and B ∈ R3×3. Moreover,
since ψ(R̃i)

Tψ(MiR̃i) = ψ(R̃i)
TQiψ(R̃i), with Qi :=∑

j∈Ni
kij ([bij ]

×)
T

[bij ]
×, one has

d

dt
|R̃i|2I = −kRψ(R̃i)

T

Qiψ(R̃i)−
1

2

∑
j∈Ni

kijgij(R̃j)

 .

(13)
Using the fact that ||ψ(R̃i)||2 = 4(1 − |R̃i|2I)|R̃i|2I ≤ 1 and
at least two bearing vectors are noncollinear, one obtains

d

dt
|R̃i|2I ≤ −4kRλ

Qi(1− |R̃i|2I)|R̃i|2I

+
kR
2
||
∑
j∈Ni

kijgij(R̃j)||

≤ −4kRλ
Qi |R̃i|2I + 4kRλ

Qi

+
kR
2

∑
j∈Ni

kij ||gij(R̃j)||, (14)

where λQi is the smallest eigenvalue of Qi, which is positive
definite under the assumption that at least two bearing vectors
are noncollinear. Furthermore, using the fact that 2

√
2|R|I =

||I −R||F , one verifies that ||gij(R̃j)|| ≤ 2
√

2|R̃j |I . Hence,



it follows from (14) that
d

dt
|R̃i|2I ≤ −4kRλ

Qi |R̃i|2I + 4kRλ
Qi +

√
2kR

∑
j∈Ni

kij |R̃j |I .

(15)
It is clear that, in view of (15), system (6) satisfies the
ultimate boundedness property defined in [17, Proposition 3].
Consequently, as per [17, Proposition 2], one can conclude
that system (6) is almost globally ISS with respect to I3 and
inputs R̃j .

In the remainder of this section, we will prove
almost global asymptotic stability of the equilibrium
(R̃3 = I3, R̃4 = I3, . . . , R̃n = I3) of the n-agent network
governed by the cascaded dynamics (6). Thanks to the
cascaded structure of the interaction graph topology G, as per
Assumption 2, a mathematical induction argument, together
with Lemma 1 and Lemma 2, can be used to prove the result.

Stability analysis of a network with one follower
For a network with one follower, according to (6), one has
the following attitude dynamics:

˙̃R3 = −2kRR̃3

[
ψ(M3R̃3)

]×
. (16)

where M3 is positive semi-definite with three distinct
eigenvalues. Note that

∑
j∈N3

k3jg3j(R̃j) = 0 since
N3 = {1, 2} and R̂l = Rl (i.e., R̃l = I3), l ∈ {1, 2},
as par Assumption 2. It follows from Lemma 1 that the
equilibrium point R̃3 = I3 of system (16) is AGAS.

Stability analysis of a network with two followers
The attitude dynamics of a network with two followers are
given by

˙̃R3 = −2kRR̃3

[
ψ(M3R̃3)

]×
(17)

˙̃R4 = −2kRR̃4

[
ψ(M4R̃4)

]×
+ kRR̃4

∑
j∈N4

k4jg4j(R̃j)

× ,
(18)

where M3 and M4 are positive semi-definite with three
distinct eigenvalues.

Proposition 1: Under Assumption 2, the equilibrium
point (R̃3 = I3, R̃4 = I3) of system (17)-(18) is AGAS.

Proof: According to Assumption 2, one has either 3 ∈
N4 or 3 /∈ N4. In the case where 3 /∈ N4, the R̃3-subsystem
and the R̃4-subsystem are independent, and the almost global
asymptotic stability of the equilibrium point (R̃3 = I3, R̃4 =
I3) can be directly deduced from Lemma 1. On the other
hand, if 3 ∈ N4, the two subsystems (R̃3-subsystem and R̃4-
subsystem) are cascaded, and as such, in view of Lemma 1
and Lemma 2, it follows that the R̃4-subsystem is almost
globally ISS with respect to I3 and input R̃3, and the R̃3-
subsystem is AGAS at R̃3 = I3. Finally, in view of [18,
Theorem 2], it follows that the cascaded system (17)-(18) is
AGAS at (R̃3 = I3, R̃4 = I3).

Stability analysis of a network with n− 2 followers
Consider the following attitude dynamics of a network with
n− 2 followers:

˙̃R3 = −2kRR̃3

[
ψ(M3R̃3)

]×
(19)

˙̃R4 = −2kRR̃4

[
ψ(M4R̃4)

]×
+ kRR̃4

[∑
j∈N4

k4jg4j(R̃j)

]×
(20)

...
˙̃Rn−1 = −2kRR̃n−1

[
ψ(Mn−1R̃n−1)

]×
+ kRR̃n−1

 ∑
j∈Nn−1

k(n−1)jg(n−1)j(R̃j)

× (21)

˙̃Rn = −2kRR̃n

[
ψ(MnR̃n)

]×
+ kRR̃n

[ ∑
j∈Nn

knjgnj(R̃j)

]×
,

(22)

where Mi, i ∈ Vf , is positive semi-definite with three distinct
eigenvalues. Now, we can formally state the stability proper-
ties of the equilibrium point (R̃3 = I3, R̃4 = I3, . . . , R̃n =
I3) of the n-agent cascaded system (19)-(22).

Theorem 1: Under Assumption 2, the equilibrium point
(R̃3 = I3, R̃4 = I3, . . . , R̃n = I3) of the n-agent cascaded
system (19)-(22) is AGAS.

Proof: We will prove the claimed result by induction.
First, it follows from Proposition 1 that the cascaded system
(19)-(20) is AGAS at (R̃3 = I3, R̃4 = I3). Second, we
assume that the cascaded (n− 1)-agent subsystem (19)-(21)
is AGAS at (R̃3 = I3, R̃4 = I3, . . . , R̃n−1 = I3). Finally,
using the proof by induction, with the fact that the R̃n-
subsystem is almost globally ISS with respect to I3 and
inputs from the cascaded (n−1)-agent subsystem (19)-(21),
one can show that the n-agent cascaded system is AGAS at
(R̃3 = I3, R̃4 = I3, . . . , R̃n = I3) according to [18]. This
completes the proof.

B. Bearing-based Distributed Pose Estimation

Consider the distributed attitude observer (3) together with
the following distributed position estimation law:

˙̂pi =− kR

[ ∑
j∈Ni

kij

(
R̂jb

j
ij × R̂ib

i
ij

)]×
p̂i

− kp
∑
j∈Ni

R̂iPbiij R̂
T
i (p̂i − p̂j), (23)

for each i ∈ Vf , where kp, kR, kij > 0, p̂i ∈ R3 is the
estimate of pi, R̂i ∈ SO(3) is the estimate of Ri obtained
from the distributed attitude observer (3), and (R̂l, p̂l) =
(Rl, pl), l ∈ {1, 2}. Define the position estimation error as
p̃i := pi − R̃ip̂i. Its time derivative, in view of (6) and (23),
is given by

˙̃pi = −kp
∑
j∈Ni

Pbij p̃i + kp
∑
j∈Ni

Pbij (pj − R̃ip̂j), (24)



with i ∈ Vf . We have used the fact that Pbij (pi − pj) = 0
and Pbiij = RTi PbijRi to obtain the last equality. It follows
from (24) that

˙̃pi = −kp
∑
j∈Ni

Pbij p̃i + kp
∑
j∈Ni

Pbijfj(p̃j , R̃j , R̃i), (25)

where fj(p̃j , R̃j , R̃i) :=
(

(R̃j − I3)− (R̃i − I3)
)
R̃Tj (pj −

p̃j) + p̃j . It is clear that fi(p̃j , R̃j , R̃i) = 0 for p̃j = 0 and
R̃j = R̃i = I3. Again, system (25) can be seen as a cascaded
system, where the attitude and position estimation errors of
the neighbors as well as the attitude estimation error of agent
i are considered as inputs to the following unforced system:

˙̃pi = −kp
∑
j∈Ni

Pbij p̃i. (26)

Next, we study the stability of the equilibrium point p̃i = 0
of system (26) and the ISS property of system (25).

Proposition 2: Consider system (26) under Assumption
2. The equilibrium point p̃i = 0, i ∈ Vf , is globally
exponentially stable (GES).

Proof: Under the assumption that at least two bearing
vectors are non-collinear (Assumption 2), for every i ∈ Vf ,
the matrix

∑
j∈Ni

Pbij is positive definite, and hence, the
equilibrium p̃i = 0 of the unforced position error dynamics
(26) is GES.

Lemma 3: Suppose Assumption 2 is satisfied. Then, for
every i ∈ Vf , system (25) is ISS with respect to its inputs
p̃j , R̃j and R̃i.

Proof: Consider the following Lyapunov function can-
didate:

Vi =
1

2
p̃Ti p̃i, (27)

whose time-derivative, along the trajectories of (25), is given
by

V̇i = p̃Ti

−kp ∑
j∈Ni

Pbij p̃i + kp
∑
j∈Ni

Pbijfj(p̃j , R̃j , R̃i)

 .

Since ||Ax|| ≤ ||A||F ||x||, for every A ∈ R3×3 and x ∈
R3, and in view of the positive definitness of the matrix∑
j∈Ni

Pbij (implied from Assumption 2), one has

V̇i ≤ −kpλP
i ||p̃i||

2 + kpP̄
∑
j∈Ni

||p̃i|| ||fj(p̃j , R̃j , R̃i)||, (28)

where λPi denotes the smallest eigenvalue of the matrix∑
j∈Ni

Pbij and P̄ denotes the upper bound of the projection
matrix norm, i.e., ||Pbij ||F ≤ P̄ . Applying Young’s inequal-
ity on the last two terms of (28), leads to

V̇i ≤− kpλP
i ||p̃i||

2 + kpP̄
∑
j∈Ni

(
ξi||p̃i||2

+
1

4ξi
||fj(p̃j , R̃j , R̃i)||2

)
(29)

≤− kp
(
λP
i − P̄ ξi|Ni|

)
||p̃i||2 +

kpP̄

4ξi

∑
j∈Ni

||fj(p̃j , R̃j , R̃i)||2.

(30)

Choosing 0 < ξi <
λP
i

P̄ |Ni|
, for every i ∈ Vf , and using

the fact that 8|R|2I = ||I − R||2F and |R|I ≤ 1, for every
R ∈ SO(3), one can show that

V̇i ≤− α1(||p̃i||) +
∑
j∈Ni

(
α2(||p̃j ||) + α3(|R̃j |I) + α4(|R̃i|I)

)
,

(31)

where αk(.) ∈ K∞ with k ∈ {1, 2, 3, 4}. It follows from
(31) that system (25) is ISS with respect to inputs p̃j , R̃j
and R̃i.

Thanks again to the cascaded nature of the interaction graph
topology G which allows the use of a similar induction proof
as in the previous section, together with Proposition 2 and
Lemma 3 as well as a result from Theorem 1, to establish
the stability property of the equilibrium point (R̃3 =
I3, R̃4 = I3, . . . , R̃n = I3, p̃3 = 0, p̃4 = 0, . . . , p̃n = 0) of
the n-agent network governed by the cascaded dynamics
(6) and (25).

Stability analysis of a network with one follower
Consider the attitude error dynamics (16) cascaded with the
following position error dynamics:

˙̃p3 = −kp
∑
j∈N3

Pb3j p̃3 + kp
∑
j∈N3

Pb3jfj(p̃j , R̃j , R̃3), (32)

where fj(p̃j , R̃j , R̃3) = −(R̃3 − I3)pj since (R̂l, p̂l) =
(Rl, pl), l ∈ {1, 2}, as per Assumption 2.

Proposition 3: Suppose Assumption 2 is satisfied. Then,
the cascaded system (16) and (32) is AGAS at (R̃3 =
I3, p̃3 = 0).

Proof: From Lemma 1 and Proposition 2, one can
conclude that the R̃3-subsystem is AGAS at R̃3 = I3 and
the p̃3-subsystem, with R̃3 = I3, is GES at p̃3 = 0. Thus, as
per Lemma 3, the cascaded system (16) and (32) is AGAS
at (R̃3 = I3, p̃3 = 0).

Stability analysis of a network with two followers
Consider the attitude error dynamics (17)-(18) cascaded with
the following position error dynamics:

˙̃p3 = −kp
∑
j∈N3

Pb3j p̃3 + kp
∑
j∈N3

Pb3jfj(p̃j , R̃j , R̃3) (33)

˙̃p4 = −kp
∑
j∈N4

Pb4j p̃4 + kp
∑
j∈N4

Pb4jfj(p̃j , R̃j , R̃4). (34)

Proposition 4: Suppose Assumption 2 is satisfied. Then,
the cascaded system (17)-(18) and (33)-(34) is AGAS at
(R̃3 = I3, R̃4 = I3, p̃3 = 0, p̃4 = 0).

Proof: It follows from Propositions 1 and 3 that the
equilibrium point (R̃3 = I3, R̃4 = I3) of (17)-(18) is AGAS,
and the equilibrium point (R̃3 = I3, p̃3 = 0) of (17) and (33)
is AGAS. Therefore, using the fact that the p̃4-subsystem is
ISS with respect to p̃3, R̃3, and R̃4, one can establish the
claim in Proposition 4.



Stability analysis of a network with n− 2 followers
For a network with n − 2 followers, we consider the atti-
tude error dynamics (19)-(22) cascaded with the following
position error dynamics:

˙̃p3 = −kp
∑
j∈N3

Pb3j p̃3 + kp
∑
j∈N3

Pb3jfj(p̃j , R̃j , R̃3) (35)

˙̃p4 = −kp
∑
j∈N4

Pb4j p̃4 + kp
∑
j∈N4

Pb4jfj(p̃j , R̃j , R̃4) (36)

...
˙̃pn−1 = −kp

∑
j∈Nn−1

Pb(n−1)j
p̃n−1

+ kp
∑

j∈Nn−1

Pb(n−1)j
fj(p̃j , R̃j , R̃n−1) (37)

˙̃pn = −kp
∑
j∈Nn

Pbnj
p̃n + kp

∑
j∈Nn

Pbnj
fj(p̃j , R̃j , R̃n).

(38)

In the following theorem, we establish the stability properties
of the overall rotational and transnational cascaded estima-
tion scheme.

Theorem 2: Considering the cascaded attitude and posi-
tion estimation schemes given by (3) and (23), respectively,
where Assumption 2 is satisfied. Suppose that the result
in Theorem 1 holds. Then, the equilibrium point (R̃3 =
I3, R̃4 = I3, . . . , R̃n = I3, p̃3 = 0, p̃4 = 0, . . . , p̃n = 0)
of the overall cascaded system (19)-(22) and (35)-(38) is
AGAS.

Proof: Similar to the proof of Theorem 1, we will
prove the result of this theorem by induction. First, from
Proposition 3, it is clear that the equilibrium point (R̃3 =
I3, p̃3 = 0) of (19) and (35) is AGAS. Second, we assume
that the cascaded (n−1)-agent subsystem (19)-(21) and (35)-
(37) is AGAS at (R̃3 = I3, R̃4 = I3, . . . , R̃n−1 = I3, p̃3 =
0, p̃4 = 0, . . . , p̃n−1 = 0). Finally, using the induction
arguments, in view of the result from Theorem 1 and the
fact that the p̃n-subsystem is ISS with respect to R̃n as well
as inputs from the cascaded (n − 1)-agent subsystem (19)-
(21) and (35)-(37), one can show that the equilibrium point
(R̃3 = I3, R̃4 = I3, . . . , R̃n = I3, p̃3 = 0, p̃4 = 0, . . . , p̃n =
0) of the overall cascaded system (19)-(22) and (35)-(38) is
AGAS. This completes the proof.

V. SIMULATION

In this section, we present some numerical simulations to
illustrate the performance of our proposed distributed pose
estimation scheme. We consider an eight-agent system in
a 3-dimensional space with the following positions: p1 =
[0 0 0]T , p2 = [2 0 0]T , p3 = [2 2 0]T , p4 = [0 2 0]T , p5 =
[0 0 2]T , p6 = [2 0 2]T , p7 = [2 2 2]T and p8 = [0 2 2]T .
The rotational subsystem is driven by the following angular
velocities: ω1 = [1 − 2 1]T , ω2(t) = [− cos 3t 1 sin 2t]T ,
ω3(t) = [− cos t 1 sin 2t]T , ω4(t) = [− cos 2t 1 sin 5t]T ,
ω5(t) = [− cos 5t 1 sin 9t]T , ω6(t) = [− cos 2t sin 9t 1]T ,
ω7(t) = [− cos 4t 1 2]T and ω8(t) = [−2 1 sin 9t]T . The
initial rotations of all agents are chosen to be the identity.

We use a directed graph with a leader-follower structure (see
Assumption 2) to model the interaction graph of the eight-
agent system as it is shown in Figure 1. Accordingly, the
neighbors sets of the agents are given as N1 = N2 = {∅},
N3 = {1, 2}, N4 = {2, 3}, N5 = {1, 4}, N6 = {2, 4, 5},
N7 = {3, 4, 6} and N8 = {1, 7}. The initial conditions
of our proposed estimation scheme are chosen as: p̂3(0) =
[−2 0 − 1]T , p̂4(0) = [−1 2 2]T , p̂5(0) = [−2 2 4]T ,
p̂6(0) = [0 0 0]T , p̂7(0) = [−4 0 1]T , p̂8(0) = [−3 1

2 2]T ,
R̂3(0) = Rα(0.1π, v), R̂4(0) = Rα(0.2π, v), R̂5(0) =
Rα(0.3π, v), R̂6(0) = Rα(0.9π, v), R̂7(0) = Rα(0.4π, v)
and R̂8(0) = Rα(0.5π, v) with v = [1 0 0]T . The gain
parameters are taken as follows: kp = 1, kR = 1 and kij = 1
for every (i, j) ∈ E . The time evolution of the average
attitude and position estimation error norms are provided in
Figure 2 and Figure 3, respectively.
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Fig. 1. The interaction graph (the black circles represent the leaders)
.

Fig. 2. Time evolution of the average attitude estimation error norm.

VI. CONCLUSIONS

In this work, we proposed an almost globally asymp-
totically stable bearing-based distributed pose estimation
scheme for multi-agent networks, with a directed and acyclic
interaction graph topology, with two leaders that have access
to their respective pose information with respect to a global
reference frame. The individual angular velocity and local
inter-agent time-varying bearing measurements are assumed
to be available. The proposed scheme consists of a cascade of
an almost globally asymptotically stable distributed attitude
observer and an ISS distributed position observer. It is



Fig. 3. Time evolution of the average position estimation error norm.

worth pointing out that the distributed attitude observer is an
interesting contribution on its own right as it is stand-alone
(i.e., does not depend on the position estimation) and could
be used in other applications that involve rotating multi-agent
systems. An interesting extension of this work, would be the
consideration of the case where the agents are allowed to
have simultaneous translational and rotational motion.
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