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Time-Fuel-Optimal Navigation of a Commercial Aircraft in

Cruise with Heading and Throttle Controls using Pontryagin’s

Maximum Principle

Amin Jafarimoghaddam and Manuel Soler

Abstract—In this research, we consider the commercial
aircraft trajectory optimization problem for a general cruise
model with arbitrary spatial wind fields to be solved using
the Pontryagin’s maximum principle. The model features
two fundamental controls, namely ”throttle setting” (which
appears as a singular control) and ”heading angle” (appearing
as a regular control). For a constrained problem with mini-
mum time-fuel objective, we show that the optimal heading
angle is fully defined through the classic Zermelo’s navigation
identity. We also show that the optimal throttle setting can
be characterized through a complete feedback function. The
switching-point algorithm is employed to solve a case study
where we inspect the optimality conditions and graph the
optimal controls together with the optimal state and co-state
variables.

I. INTRODUCTION

The agencies associated with commercial aircraft flights

are inquisitively in demand of new optimization tools to

minimize the direct operating cost, i.e., a combination of

the fuel burn and the arrival time. The optimization of

commercial aircraft trajectories has been the subject of

extensive research, with a variety of optimization techniques

having been applied, however, the Pontryagin’s maximum

principle, has received comparatively little attention in the

literature [1].

Here, we rely on the Pontryagin’s maximum principle

to solve minimum time-fuel commercial aircraft trajectory

optimization problem for a general cruise model in the

presence of an arbitrary spatial wind field.

Focusing only on those approaches using the Pontryagin’s

maximum principle, the commercial aircraft navigation

problem in the cruise phase with various cost functions has

been solved in [2]–[8]. More specifically, the range-optimal

problem has been solved in [2]. The same problem was

revisited w.r.t. the compressibility effects in [3]. Also, the

fuel-optimal cruise at constant altitude with fixed arrival

time has been solved in [4]. Likewise, the fuel-optimal

problem in a vertical plane (including the cruise phase) has

been solved for structured flight segments in [5]. The fuel-

optimal problem in the cruise phase with a one-dimensional

uniform wind field and fixed arrival time has been solved

in [6]. Approaches considering climate impact, such as [7],
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also exist in the literature, in which the contrails avoidance

problem in the cruise phase was solved. Nevertheless, the

study in [7] ignores the speed dynamic and the derivative of

the Hamiltonian w.r.t. the aircraft’s mass and obtains a more

general navigation formula. The direct operating cost with

multiple cruise altitudes in the presence of wind has been

addressed in [8]. It is noteworthy that the speed dynamic

has been ignored in the latter.

To summarize, the reviewed literature ( [2]–[8]) mainly

focuses on simplified cruise models with only one active

control (either ”throttle setting”, or ”heading angle”). How-

ever, solving the optimal control problem associated with

a general cruise model using the Pontryagin’s maximum

principle is particularly challenging due to the involvement

of the two controls. In this research, we tackle this challenge

and solve the problem for the first time.

In this research, we consider a generic (realistic) cruise

model, comprising of two active controls. The controls

are: 1) the heading angle (a regular control), and, 2) the

throttle setting (a singular control). The objective is to min-

imize the direct operating cost. We show that the optimal

heading angle is fully characterized through the classic

Zermelo’s navigation identity even if the problem is subject

to some standard state-inequality constraints (the classic

Zermelo’s navigation identity is the time-optimal, constant-

speed navigation problem between two points inside a fluid

flow [9]). For the optimal throttle setting, we employ suc-

cessive derivatives of the switching function and leverage

the optimality information related to the heading angle to

characterize this singular control as a complete feedback

function. In this respect, we show (through analyzing the

switching function), that the optimal throttle setting is

dependent on the optimal heading angle.

The switching-point algorithm [10] is employed to solve

a case study where the state-inequality constraints are inac-

tive. In short, the switching-point algorithm runs a nonlinear

programming only over the switching times and (possibly)

some other scalar unknowns with a given control feedback.

The switching-point algorithm, as in [10], is for a singular

control problem without state-inequality constraints. More-

over, in [10], the decision variables can be the switching

times and values of co-states at the entry of a singular arc.

It is noteworthy that the study in [10] is an extension to the

previous works in this discipline (see e.g., [11] and [12]).
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II. PROBLEM STATEMENT

The point-mass dynamics are commonly used to gener-

ate aircraft trajectories [13], [14]. For commercial aircraft

flights in cruise phase, the point-mass equations in Cartesian

framework can be approximated as [15]:

dx

dt
= v(t) cos (χ(t)) + wx(x(t), y(t), h) =: Fx,

dy

dt
= v(t) sin (χ(t)) + wy(x(t), y(t), h) =: Fy,

dv

dt
=

Π(t)Tmax(h)−D(m(t), v(t), h)

m(t)
=: Fv,

dm

dt
= −Π(t)Cs(v(t))Tmax(h) =: Fm.

(1)

In Eq. (1), x, and y are geometric variables, i.e., the

cruise flight occurs in a horizontal x − y plane, v is the

aerodynamic speed, m is the aircraft mass, and t is time.

In addition, wx and wy are x, and y components of wind

respectively (wx and wy are known geometrical functions),

h is a constant altitude where the cruise flight occurs, Tmax

is the maximum thrust force, D is the drag force, and Cs

is the fuel flow. The controls are the heading angle (χ(t))
and the throttle setting (Π(t)).

The objective is:

min
χ(t),Π(t),tf

J = αtf + (α− 1)m(tf ), 0 ≤ α ≤ 1. (2)

Where tf denotes the final time.

The cruise flight envelope is defined by the dynamic

constraints described in Eq. (1) , along with the following

set of standard state-inequality constraints:

Mmin ≤ M(h, v(t)) ≤ Mmax,

vCAS,min ≤ vCAS(h, v(t)) ≤ vCAS,max,

∀t ∈ [t0, tf ].

(3)

and boundary conditions:

x(tf ) = xf , y(tf ) = yf , v(tf ) = vf ,

x(t0) = x0, y(t0) = y0, v(t0) = v0, m(t0) = m0.

(4)

In above, t0 is the initial time, M is the Mach num-

ber, and vCAS is the calibrated airspeed [16]. Moreover,

xf , yf , vf , x0, y0, v0, and m0 are known values assigned

for the boundary conditions.

The controls are also constrained as:

Πmin ≤ Π(t) ≤ Πmax,

χmin ≤ χ(t) ≤ χmax,

∀t ∈ [t0, tf ].

(5)

It is noteworthy that, for the succeeding analysis, only the

functionality of wx, wy , Tmax, D, Cs, Mach, and VCAS

is of relevance. Nonetheless, these terms will be elaborated

in our case study (see sec.IV).

A. Compact Form Notation

The optimal control problem considered, can be written

in a compact form notation as:

min
U(t),tf

J = Φ(Xf , tf ),

s.t.,

dX

dt
= F (X(t), U(t)),

C(U(t)) ≤ 0, S(X(t)) ≤ 0, ∀t ∈ [t0, tf ],

φ0(X0) = 0, φf (Xf ) = 0.

(6)

Where XT (t) = [x(t), y(t), v(t),m(t)], FT =
[Fx, Fy, Fv, Fm], φ0(X0) = X0 − X(t0), φ0 ∈ R

4,

φf (Xf ) = Xf − X(tf), φf ∈ R
3, UT (t) = [χ(t),Π(t)],

and Φ(Xf , tf ) = αtf + (α − 1)m(tf ). The inequality

constraints are:

C(U(t)) =









χ(t)− χmax

χmin − χ(t)
Π(t)−Πmax

Πmin −Π(t)









. (7)

S(X(t)) =









M(t)−Mmax

Mmin −M(t)
vCAS(t)− vCAS,max

vCAS,min − vCAS(t)









. (8)

By directly adjoining the constraints, we can define an

augmented cost as (see e.g. [17]):

J̄ := Φ(Xf , tf ) + 〈ν0, φ0(X0)〉+ 〈νf , φf (Xf )〉+
∫ tf

t0

(

〈λ(t), F (X(t), U(t)) −
dX

dt
〉+ 〈µ(t), C(U(t))〉+

〈η(t),S(X(t))〉

)

dt.

(9)

In the above equation, the scalar multipliers are denoted

by ν0 ∈ R
4, and νf ∈ R

3, while the inequality multipliers

are represented by µT (t) = [µχ
u(t), µ

χ
l (t), µ

Π
u (t), µ

Π
l (t)],

and η(t) ∈ R
4. Additionally, the co-states are given by

λT (t) = [λx(t), λy(t), λv(t), λm(t)].

For this optimal control problem, the Hamiltonian is

defined as [17]:

H(X(t), U(t), λ(t), µ(t), η(t)) :=

〈λ(t), F (X(t), U(t))〉 + 〈µ(t), C(U(t))〉+

〈η(t),S(X(t))〉.

(10)

The optimality conditions are:

∂H

∂U
= 0,

〈µ(t), C(U(t))〉 = 0, µ(t) ≥ 0, ∀t ∈ [t0, tf ],

〈η(t),S(X(t))〉 = 0, η(t) ≥ 0, ∀t ∈ [t0, tf ].

(11)



The co-state dynamics and the transversality conditions

read:

dλT

dt
= −

∂H

∂X
,

λ0 := λ(t0) = −
[ ∂φ0

∂X0

]T
ν0,

λf := λ(tf ) =
∂Φ

∂Xf

+
[ ∂φf

∂Xf

]T
νf ,

Hf := H(tf ) = −
∂Φ

∂tf
− νTf

∂φf

∂tf
.

(12)

Let τ be a possible time instant within the boundary arc

at which the co-state variables are discontinuous. The jump

conditions at the junction times read [18]:

λT (τ−) = λT (τ+)− νT (τ)
∂S

∂X
|t=τ ,

ν(τ) ≥ 0, 〈ν(τ),S(X(τ))〉 = 0.
(13)

III. CLASSIFICATION OF THE CONTROLS

The control problem defined through Eq. (1) to Eq. (5)

is regular on the heading angle (χ(t)), and singular on the

throttle setting (Π(t)).
In order to classify the controls, we write:

F (X(t), χ(t),Π(t)) = Q(X(t), χ(t)) + Π(t)P (X(t)).
(14)

In above:

Q(X(t), χ(t)) =









v(t) cos(χ(t)) + wx(x(t), y(t), h)
v(t) sin(χ(t)) + wy(x(t), y(t), h)

−D(m(t),v(t),h)
m(t)

0









,

(15)

and,

P (X(t)) =









0
0

Tmax(h)
m(t)

−Cs(v(t))Tmax(h)









. (16)

A. The Optimal χ(t) (Heading Angle)

We initially note that the state-inequality constraints

(S(X(t))) are functions of v, and h. Since h is a constant,

from Eq. (13), it is straightforward to show that the jump

condition (upon existence), applies only to λv(t).
The optimal χ(t), associated with the interior arc (

µ
χ
l (t) = µχ

u(t) = 0), can be formulated through successive

time-derivatives of the first-order optimality condition for

χ(t). To this end, we write:

∂H

∂χ
= 0 → 〈λ(t),

∂Q

∂χ
〉 = 0 → tan(χ(t)) =

λy(t)

λx(t)
. (17)

The first time-derivative of Eq. (17) reads:

d

dt
tan(χ(t)) =

dλy

dt
λx(t)−

dλx

dt
λy(t)

λ2
x(t)

. (18)

From Eq. (12),the co-state dynamics
dλy

dt
, and dλx

dt
can

be written as:

dλx

dt
= −

(

λx(t)
∂wx

∂x
+ λy(t)

∂wy

∂x

)

,

dλy

dt
= −

(

λx(t)
∂wx

∂y
+ λy(t)

∂wy

∂y

)

.

(19)

Plugging Eq. (19) into Eq. (18), and with the help of Eq.

(17), we obtain:

dχ

dt

(

1 + tan(χ(t))2
)

= −
∂wx

∂y
+

(∂wx

∂x
−

∂wy

∂y

)

tan(χ(t)) +
(∂wy

∂x

)

tan(χ(t))2.

(20)

We observe that this equation is the Zermelo’s navigation

identity [9].

Eq. (20) defines the optimal χ(t) for the interior arc

even with active state-inequality constraints. Moreover, with

the assumption that χ(t) is continuous in time, it will be

straightforward to compute the boundary arc too.

B. The Optimal Π(t) (Throttle Setting)

Let us assume that the state-inequality constraints are

inactive, i.e., η(t) = 0, ∀t ∈ [t0, tf ].
The first-order optimality condition for Π(t) reads:

∂H

∂Π
= 0 → 〈λ(t), P (X(t))〉 + µΠ

u (t)− µΠ
l (t) = 0. (21)

we define the switching function as:

S(t) = 〈λ(t), P (X(t))〉. (22)

The bang-singular classification for the optimal Π(t) is:

Π(t) =











Πmin S(t) > 0,

Πmax S(t) < 0,

undetermined S(t) = 0.

(23)

The optimal Π(t) is called bang-bang if S(t) has isolated

zeros on an interval I ⊂ [t0, tf ]; whereas the optimal Π(t)
is called singular if S(t) = 0 holds for all t ∈ I .

For the singular Π(t), since S(t) = 0, we have:

S(k)(t) := dk

dtk
S(t) = 0, k = 1, 2, ....

It can be checked that the singular Π(t) appears in

S(2)(t); that is to say, order of the singular arc is one.

Since the Hamiltonian is not an explicit function of time,

we have: H(t) = constant (∀t ∈ [t0, tf ]). Therefore, from

Eq. (12), we have: H(t) = −α. Moreover, ∂H
∂χ

= 0 holds

at all times.

On using Eq. (14), the co-state dynamics can be written

as:

dλT

dt
= −λT (t)

( ∂Q

∂X
+Π(t)

∂P

∂X

)

. (24)

The first time-derivative of the switching function is

computed as:

S(1)(t) = 〈
dλ

dt
, P (X(t))〉+ 〈λ(t),

dP

dt
〉 = 0. (25)



Noting that dP
dt

= ∂P
∂X

dX
dt

, it is straightforward to show

that Π(t) drops from S(1)(t). As a result, S(1)(t) can be

expressed as follows:

S(1)(t) = 〈λ(t),A(X(t), χ(t))〉. (26)

In Eq. (26), the vector A is:

A(X(t), χ(t)) =
∂P

∂X
Q(X(t), χ(t))−

∂Q

∂X
P (X(t)).

(27)

It should be noted that the vector A can also be repre-

sented using Lie bracket notations.

We exploit the following set of algebraic equations to

express the co-states in explicit terms:

S(t) = 0 → 〈λ(t), P (X(t))〉 = 0,

S(1)(t) = 0 → 〈λ(t),A(X(t), χ(t))〉 = 0,

H(t) = −α → 〈λ(t), Q(X(t), χ(t))〉 = −α,

∂H

∂χ
= 0 → 〈λ(t),

∂Q

∂χ
〉 = 0.

(28)

The above algebraic linear system can be simply solved

by any platform supporting symbolic computations such as

MATLAB. To this end, we write the solution to system (28)

as:

det[ ¯̄M]









λx(t)
λy(t)
λv(t)
λm(t)









= adj[ ¯̄M]R. (29)

Where:

¯̄M =









0 0 P3 P4

A1 A2 A3 A4

Q1 Q2 Q3 0
tan(χ(t)) −1 0 0









, (30)

and,

R =









0
0
−α

0









. (31)

In Eq. (30), subscripts stand for the vector elements.

In order to obtain the optimal singular Π(t), we write:

S(2)(t) =
d

dt
S(1)(t) =

d

dt
〈λ(t),A(X(t), χ(t))〉 =

〈
dλ

dt
,A(X(t), χ(t)〉 + 〈λ(t),

dA

dt
〉 = 0.

(32)

The time-derivative of A is computed as:

dA

dt
=

∂A

∂X

dX

dt
+

∂A

∂χ

dχ

dt
. (33)

With the help of Eq. (32), and Eq. (33), together with

the co-state dynamics (Eq. (24)), one arrives at:

S(2)(t) = 0 → Π(t) = −
〈λ(t),B〉+ 〈λ(t), ∂A

∂χ
〉dχ
dt

〈λ(t),D〉
. (34)

In above, the vectors B, and D are:

B =
∂A

∂X
Q(X(t), χ(t))−

∂Q

∂X
A(X(t), χ(t)),

D =
∂A

∂X
P (X(t))−

∂P

∂X
A(X(t), χ(t)).

(35)

The generalized Legendre-Clebsch (LC) second-order

necessary conditions dictate [19]:

− 〈λ(t),D〉 ≥ 0, ∀t ∈ Ωs. (36)

Where Ωs is an interval where the optimal Π(t) is

singular1.

1) The Special Case α = 0: Since R = ~0 if α = 0, the

solution to Eq. (29) becomes intractable. On this occasion,

from Eq. (29), we have:

det
[ ¯̄M

]

= 0 →
d

dt
det

[ ¯̄M
]

= 0. (37)

Therefore, from Eq. (37), we obtain the optimal singular

Π(t) as:

Π(t) = −
∂
∂X

det
[ ¯̄M

]

Q(X(t), χ(t))
∂
∂X

det
[ ¯̄M

]

P (X(t))
. (38)

It is noteworthy that we can also handle the case α = 0
asymptotically, i.e., to compute for α → 0.

IV. CASE STUDY

In accordance with our analysis presented in the previous

sections, we consider inequality constraints only w.r.t. the

throttle setting, i.e., Πmin ≤ Π(t) ≤ Πmax, ∀t ∈ [0, tf ].
We use the BADA3 model for Tmax(h), Cs(v), and

D(m, v, h) [20]. In addition, air density is approximated

by International Standard Atmospheric (ISA) model:

Tmax(h) = CT1

(

1−
h

CT2

+ h2CT3

)

,

P (h) = P0

(Θ0 − βh

Θ0

)
g

βR , ρ(h) =
P (h)

R(Θ0 − βh)
,

D(m, v, h) =
1

2
ρ(h)sv2

(

CD1
+ CD2

C2
l

)

,

Cl =
2mg

ρsv2
, Cs(v) = Cs1

(

1 +
v

Cs2

)

.

(39)

In above, s is the aerodynamic lift surface and ρ is the

air density. CTi
, i = 1, 2, 3, s, CDi

, i = 1, 2, Csi , i = 1, 2,

R, β, P0, g, and θ0 are known constants for a medium-haul

aircraft (see [16] for a quick access to their specific values

and definitions).

Since h is a constant (i.e., the altitude where the cruise

flight occurs), the maximum thrust force Tmax(h) will be

a constant too.

The wind components are simulated by a general second-

order polynomial for each component.

1In the current study, all computations related to the optimal χ(t) and
singular Π(t) were carried out symbolically in MATLAB. This involved
solving the co-state system defined by Eq. (29) and deriving symbolic
formulas for A, B, and D.



Without loss of generality, we can consider wx =
wx(x, y), and wy = wy(x, y), and drop h. We also note that

the vertical component of wind is assumed to be zero [15],

[13]. Therefore, for the sake of consistency with the fluid

flow behavior, the continuity equation must be satisfied, i.e.,
∂wx

∂x
+

∂wy

∂y
= 0. With this observation, the wind components

become:

wx(x, y) = (a0w̄
b
x) + (a1

w̄b
x

xf

)x+ (a2
w̄b

x

x2
f

)x2+

(a3
w̄b

x

yf
)y + (a4

w̄b
x

y2f
)y2 + (a5

w̄b
x

xfyf
)xy,

wy(x, y) = −

∫

∂wx

∂x
dy + f(x)

f(x) = w̄b
y + (b0

w̄b
y

xf

)x+ (b1
w̄b

y

x2
f

)x2.

(40)

In above, ai, i = 0, .., 5, and bi, i = 0, 1 are in general di-

mensionless random values between −1 and +1. Moreover,

w̄b
x, and w̄b

y are average dimensional wind constants.

Upon conducting an estimation of real wind data (w.r.t.

various, though small, atmospheric zones) using the afore-

mentioned second-order model, we observed a very good

level of consistency. In particular, the total modeling error

for the wind components was found to be below 10 percent

in relation to low-resolution wind data. It is worth noting

that in this study, we adopt a generalized approach and do

not fine-tune the model based on specific data sets.

The tabulated parameters in table (I) are those we have

fixed in our simulations. Therefore, one can check that the

only free parameter in our simulations is α.

TABLE I
BOUNDARY CONDITIONS, BOUNDS, AND THE SELECTED SNAPSHOT OF

THE WIND PARAMETERS

x0 0(m) xf 1.5×106(m)
y0 0(m) yf 7×105(m)
v0 200(m/s) vf 200(m/s)
m0 59000(kg) h 10000(m)

Πmax 1 Πmin 0

w̄b
x 40(m/s) w̄b

y -20(m/s)
a0 0.77406 a1 -0.86240

a2 -0.63294 a3 0.47414

a4 0.39342 a5 0.55398

b0 0.00380 b1 -0.14900

V. COMPUTATIONAL ALGORITHM

Preliminary analysis (using a single-shooting Euler-based

direct transcription method with high number of grids)

implies that the optimal Π(t) contains at most one (interior)

singular arc between two boundary arcs.

We have employed the switching-point algorithm, taking

the switching times and the initial heading as decision vari-

ables (see [10] for more information about the switching-

point algorithm and the associated mathematical justifica-

tions).

More specifically, we extend the state dynamics by Eq.

(20), and the nonlinear programming becomes:

min
χ(0),t1,t2,tf

Ĵ = Φ(Xf , tf),

s.t.,

dX

dt
= F (X(t), χ(t),Π(t)),

dχ

dt

(

1 + tan(χ(t))2
)

= −
∂wx

∂y
+

(∂wx

∂x
−

∂wy

∂y

)

tan(χ(t)) +
(∂wy

∂x

)

tan(χ(t))2,

φ0(X0) = 0,

φf (Xf ) = 0,

0 ≤ t1 ≤ t2 ≤ tf .

(41)

With:

Π(t) =











Πmax t ∈ [0, t1),

Eq.(34) ∨ Eq.(38) t ∈ [t1, t2],

Πmin t ∈ (t2, tf ].

(42)

We have adopted the interior-point/barrier algorithm of

the nonlinear programming solver fmincon from MAT-

LAB® Optimization Toolbox as the optimization module.

We use the results due to the above nonlinear program-

ming to compute the co-state variables (and accordingly,

the switching function) over the boundary arcs. This is

doable by backward and forward integration of the co-state

dynamics from t1, and t2 respectively.

A. Special Case with a Constant Wind Field

Assuming a constant wind field, it is demonstrated that

the optimization problem formulated in Eq. (41) can ex-

clude χ(0) as a decision variable.

Suppose that: wx = constant =: Wx, and wy =
constant =: Wy .

From the system dynamics Eq. (1), we can write:

dx

dt
= v(t) cos(χ(t)) +Wx,

dy

dt
= v(t) sin(χ(t)) +Wy .

(43)

Since Wx, and Wy are constants, from Eq. (20) we have:

χ(t) = χ(0) = constant. Therefore, by integrating Eq.

(43) from 0 to tf , and after some elementary manipulations,

we get:

tan(χ(0)) =
yf −Wytf − y0

xf −Wxtf − x0
. (44)

Therefore, in case of having a constant wind field, the

initial heading angle χ(0) is a function of the constant wind

components, boundary conditions, and the final time tf .

VI. NUMERICAL RESULTS

We have obtained optimal results for various values of α.

From the definition of the cost function, α determines the

trade-off between fuel-optimal and time-optimal problems.

For each studied α, we have checked the second-order



optimality condition (Eq. (36)) for the singular arc and the

first-order optimality condition for the boundary arcs. In

addition, for each stage of α, we have compared our results

with the results due to a single-shooting Euler-based direct

transcription method with high number of grids (see Fig.

1). Upon examining this figure, we can ascertain that the

optimal costs derived from the direct method and the present

indirect method exhibit remarkable similarity. However, it

is noteworthy that the estimated singular arc generated by

the direct method exhibits chattering behavior around the

singular solution by the indirect method.

Moreover, we note that the switching-point algorithm

does not directly account for λ(tf ). From the transver-

sality conditions, we can check that λm(tf ) = α − 1.

By computing the co-state variables over the boundary

arcs (after nonlinear programming), we have checked that

|λm(tf )−(α−1)| < 10−4. This also stands as an additional

confirmation of the obtained optimal results (see Fig. 8).

The optimal controls Π(t), χ(t), and the optimal states

(m(t) as a function of v(t)) are shown in Fig. 2, Fig. 3, and

Fig. 4 respectively. Based on Fig. 2 and Fig. 4, it is clear

that an increase in α leads to a corresponding increase in

the optimal speed by adjusting the throttle setting.

From Fig. 2, it can be observed that as α increases, the

first ”bang” segment of the optimal throttle Π(t) expands.

This implies that there is a specific value of α at which the

optimal Π(t) switches to a ”bang-bang” control..

The optimal co-state variables in different values of α

are graphed in Fig. 5-Fig. 8.

As depicted in Fig. 8, λm(t) displays only marginal

changes with respect to time. Hence, it may be reasonable

to consider it as a constant for analysis purposes, especially

in engineering applications where rough estimations of

optimality are sufficient.

Fig. 9 illustrates the impact of α on the optimal x − y

trajectories. Upon examination of the figure, it is apparent

that the parameter α exhibits negligible influence on the

evolution of the x−y trajectories. More precisely, the x−y

trajectories are more contingent on the wind configuration.

VII. CONCLUSION AND FUTURE WORKS

Pontryagin’s maximum principle was applied to solve

a general (realistic) version of the optimization problems

related to commercial aircraft trajectory in cruise phase.

The analysis focused on the control functions, namely the

”heading angle” (regular control) and the ”throttle setting”

(singular control), from which optimality formulas were

derived. To handle the singular control, the switching-point

algorithm was utilized as an alternative approach to the

conventional shooting methods. We have observed that the

singular Π(t) vanishes in larger values of α. Therefore, an

open line of research is to explore the condition in which

the singular Π(t) disappears. Moreover, our case study did

not involve state-inequality constraints. This can also be a

subject for the future research.

Fig. 1. The optimal Π(t) (black), and S(t) (red) where α = 0.4,
compared to single-shooting Euler-based direct transcription method with
400 nodes (blue dots); The optimal cost by the direct method:-30109.35,
The optimal cost by the indirect method:-30109.38

Fig. 2. The optimal Π(t) in different α

Fig. 3. The optimal χ(t) in different α
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