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Abstract— We propose an early termination technique for
mixed integer conic programming for use within branch-and-
bound based solvers. Our approach generalizes previous early
termination results for ADMM-based solvers to a broader
class of primal-dual algorithms, including both operator split-
ting methods and interior point methods. The complexity for
checking early termination is O(n) for each termination check
assuming a bounded problem domain. We show that this
domain restriction can be relaxed for problems whose data
satisfies a simple rank condition, in which case each check
requires an O(n?) solve using a linear system that must be
factored only once at the root node. We further show how this
approach can be used in hybrid model predictive control as
long as system inputs are bounded. Numerical results show
that our method leads to a moderate reduction in the total
iterations required for branch-and-bound conic solvers with
interior-point based subsolvers.

I. INTRODUCTION
A. Literature Review

Mixed integer conic programming (MICP) is a power-
ful tool for modelling many real-world applications, e.g.
hybrid model predictive control [1], portfolio optimization
[2], power electronics [3] and robust truss topology [4].
The branch-and-bound (B&B) method is the most commonly
used technique for the search of an optimal solution in MIP
solvers. B&B algorithms must solve a sequence of relaxed
convex subproblems, and the number of such problems
increases exponentially w.r.t. the number of integer variables.

Many techniques have been developed to speed up MIP
computation. Cutting plane methods are widely used to
reduce the problem search space and can reduce significantly
the number of nodes that a B&B must visit. Presolve [5] can
be regarded as a collection of preprocessing methods before
solving a MIP, including bound strengthening, coefficient
strengthening, constraint reduction and conflict analysis. In
addition to presolving a MIP one also apply many heuristic
methods to accelerate the computation. Most acceleration
methods can be broadly classified into two types, start and
improvement heuristics [6], both of which are crucial for
pruning nodes in B&B algorithms. Start heuristics aim to
find a feasible solution as early as possible when the B&B
algorithm starts, e.g. feasibility pump [7]. On the other hand,
improvement heuristics search for feasible points of better
objective value based on information from feasible points
already obtained, e.g. RINS [8] and the crossover method [9].

Pruning is usually an effective method to reduce the total
number of nodes to be solved in B&B. Suppose U is the
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upper bound corresponding to the value of the best integer
feasible solution so far. After updating the upper bound
U with a new integer feasible point, one can prune any
unevaluated nodes that are known to have an optimal value,
or any lower bound thereof, greater than U. Consequently,
if a dual feasible point of a relaxed problem within a B&B
search can be generated prior to convergence with its dual
objective already larger than the current upper bound U,
then one can stop the node computation immediately before
solving it to optimality. This is called early termination and
has been implemented in dual feasible algorithms [10], [11],
[12], [13].

At the core of any B&B method is an optimization
algorithm for solving convex problems. Many state-of-the-
art conic optimization algorithms are primal-dual methods
and most of them can be classified into two types: one is a
second-order method called interior point method (IPM) [14]
and another one is a first-order method called operator
splitting method (OSM) [15]. Both of them start from an
infeasible initial point, and attain a feasible point when
the algorithm converges to a global optimum or generate a
certificate of infeasibility otherwise. This makes early termi-
nation difficult since primal-dual methods do not typically
reach a dual feasible point until the algorithm converges
at optimality. Recently, [16] proposes a heuristic method
generating a dual feasible point for a specialized primal-
dual IPM, but the feasibility of dual iterates is still not
theoretically guaranteed and it applies only to mixed-integer
quadratic programming.

B. Contributions and Organization

In this paper we generalize an early termination strategy
for mixed integer conic programming, initially proposed for
ADMM [17], to any primal-dual optimization method. We
develop efficient methods to find a dual feasible point for
early termination at each iteration. We relax the boundedness
assumption in [17] to a more general rank condition on
the problem data which is applicable for many real-world
scenarios. We propose a simple correction step that costs
O(n) flops for bounded problems, and a more general
optimization-based one costing O(n?) flops at each iteration
once we obtain a factorization at the start of a MICP. Both
costs are relatively small compared to the factorization time
O(n?®) per iteration in IPMs and no worse than the per
iteration cost of OSMs.

Section 2 provides background on conic optimization.
Section 3 presents our early termination strategy for mixed
integer conic programming and describes how to implement



it in both OSMs and IPMs. Numerical results are shown in
Section 4 and conclusions summarized in Section 5.

C. Notation

We denote the n x n symmetric matrices by S™, and the
set of positive semidefinite matrices S7;. We denote |I| as the
number of elements in the discrete set I. The norm || - || is
the Euclidean norm. The projection Il¢ () denotes projecting
x € R™ onto set C. The support function of C is

oc(x) == sup(z,y).
yel

We denote the dual cone K* and polar cone K° of a convex
cone K by K* := {y € R" | sup,ex(z,y) > 0}, and
K°:={y € R" | sup,ex(z,y) < 0}, respectively.

II. BACKGROUND

A. Problem Formulation

We will consider MICPs in the general form:
1
min §a:TP33 +q'z
st. Gx=h (1)
Ar+s=0b, se K,
[<z< u, xp € Z,

where G € RP*" A € R™" h € RP,b € R™ and
K is a proper cone. The vector x € R"™ is the decision
variable with interval bounds defined by [,% € R", and I
denotes the entries of x constrained to a finite integer set Z.
The objective function is convex quadratic with symmetric
positive semidefinite P € S’} and vector ¢ € R™. We denote
the continuous relaxation of (1) as

1
min §xTPx +q'x
st. Gr=nh CP(Z, U) )
Arxr+s=0b, seK,
I <z <u,

where the integer relaxation of Z is incorporated into the
box constraint [ <[ <z <wu < a.
B. Dual Form for Operator Splitting Methods

Following [17], the dual of the continuous relaxation (2)
is

1
max ——x ' Pr—h'z+bly— 1) (Ys)
TYyp.z 2 ,

st Pr+q+G z—ATy+y, =0, ®)
zeR" ye Ky € R", 2z € RP,

where the support function oy ) (ys) is explicit, i.e.
o) (o) = u'y +1Ty, )

where y;7 = max{y,,0}, vy, = min{y,,0},, which is
suitable to generate a correction for early termination of any
MIP based on an operator splitting solver, e.g. OSQP [18]
and PDHG [19].

C. Dual Form for Primal-Dual Interior-Point Methods

For IPMs that rely on logarithmically homogeneous self-
concordant barrier (LHSCB) functions [14], there is no
standard explicit barrier function for box constraints. We
instead reformulate the box constraint [ < z < u into two
nonnegative inequalities = > [,z < u that have well-defined
barrier functions, and obtain another dual formulation as:

1

max — §xTP33 —hTz=bTy—uly, +1Ty_

Y, Y+,Y—,2
st Pr+q+G z2+ATy+y, —y_ =0
xeRn7y€K*7 Y- Zoay-‘r 207Z€Rpa

(&)

where K* = —K° for a proper cone K. If we define y;, :=
y4+ —y— for (5), then we find that the dual form for IPMs (5)
is the same as its counterpart (3) for OSMs. We can therefore
design a unified dual correction mechanism for both IPMs
and OSMs, which we describe in Section III.

The primal-dual IPM typically requires factorization of a
matrix in the form

P GT AT
K=|G 0 0 (6)
A 0 -H*

to compute the search direction for every iteration k, where
HP is the scaling matrix depending on the choice of cones
but it is always positive semidefinite. By adding small
perturbation to diagonals of K, the matrix can become
quasi-definite and be factorized by LDL decomposition with
complexity O((n + p + m)3) [20], [21]. It can always
generate a sequence (z¥,s* 2% y* yF) such that s* € K
and y* € K*, which is the same as in OSMs.

D. Branch and Bound

The B&B method computes the optimal solution x in (1)
by exploring different integer combinations in a tree. It
repeatedly branches on some entries of = in the integer
index set I and solves the continuous relaxation (2) until a
global optimizer is found. Meanwhile, B&B always maintain
a globally upper bound U, which corresponds to the best
integer feasible solution of (1) found so far. The upper bound
is very useful to prune unsolved nodes and save computation.
We would exploit it in our early termination strategy later.

III. EARLY TERMINATION FOR PRIMAL-DUAL
ALGORITHMS

In this section we first review the early termination tech-
nique we proposed in [17], arguing that it is also applicable
in other OSMs, and then tailor it for primal-dual IPMs.
We also relax our boundedness assumption and improve the
optimization-based correction discussed in [17] and discuss
how we can apply it into hybrid MPC problems.

The key for our proposed early termination is to utilize
the current dual iterate which has a conic feasible y* from
a primal-dual algorithm, either an OSM or an IPM, and
then remove linear dual residuals by adding compensation
to unconstrained dual variables. We thereby obtain a dual
feasible solution for (3) or (5) and generate the corresponding



dual cost for early termination. To ensure our early termi-
nation always works, we make the following boundedness
assumption as in [17].

Assumption 3.1: The domain of x in the MIP relax-
ation (2) is bounded, i.e. [,u € R™ are both finite.
The assumption is applicable for many real world scenarios,
e.g. x is an 0-1 switching signal or subjected to some
physical limitations, like in some QP problems where ||z||
is bounded. We will show how to relax this assumption in
Section III-C.

A. Correction for OSMs

ADMM can generate iterates y* € K°, Vk > 0 in [22].
For any dual iterates (z*,y* yF, 2*) generated by ADMM,
we can offset the residual

k= Paf 4 g+ GT2F — ATyF 4 of @)

by setting Ay¥ = —r* so that (z*,y*, yF + AyF, 2F) is a
dual feasible point for (3), which is suitable for the early
termination technique proposed in [17]. A useful property
of ADMM is that it always generates a 3" satisfying conic
constraints K°. However, such a property can be generalized
to any OSM because we always tackle a conic constraint s €
K by either the projection to the polar cone K°, i.e. o (v¥),
or the projection to K, i.e. IIxc(v*). The former is what we
want for early termination directly, like Google’s primal-dual
hybrid gradient (PDHG) solver [19]. For the latter, Due to
the Moreau decomposition [Section 2.5 [23]],

v =g (v) + o (v), Yo, (8)

we can generate an “equivalent” dual iterate (I —IIx)(v) €
KC°, that is y’C we obtained in ADMM [17]. Therefore, we
claim the early termination we proposed in [17] can be
implemented for any OSM within a B&B solver.

B. Correction for primal-dual IPMs

Note that the main idea behind our correction strategy
is to make the iterate (z¥,y*, y% y¥ 2*) dual feasible. A
similar idea can be applied to primal-dual IPMs, which also
generate dual-feasible conic iterates y* for every iteration k.
Suppose we define Ay, := Ay, —Ay_ with Ay, Ay_ >0
for the IPM dual formulation (5). We can verify Ay, is an
unconstrained variable for the dual correction. If we only
make corrections on y_ and y, leaving other variables fixed,
then the change of dual cost in (5) becomes

—Ayfu+Ayll= Ayl (1 —u)+ (Ay_ — Ayy) Tl
= Ayl (Il —u)— Ay, L.

Note that we have Ay (I—u) < 0due to Ay >0,l—u <
0. Meanwhile, the linear residual is

€))

rk = ka—i—q—i-GTzk-&-ATyk—i-yi —yﬁ (10)

before the correction. To maximize the dual objective in (5)
given Ayf = —rF, we set Ay, Ay* as

Ayk =max{0,Ayf}, Ayt =Ayh - Ayp. (D)
Hence, (2%, y", y% + Ay% y* + Ay* , 2¥) is a dual feasible
point and we can enable early termination checking via (5).

C. Optimization-based correction

In Section III-A and III-B, we need the correction for
each entry of yi,y’i ensuring dual feasibility, and that is
why Assumption 3.1 comes into play. However, the core of
early termination is to offset the linear residual 7* in (10)
via corrections on unconstrained dual variables, which means
we can exploit other dual variables beyond box constraints.
Suppose we are going to utilize unconstrained dual variables
x, Yy, 2 for correction in early termination, Assumption 3.1
can be generalized to the assumption below.

Assumption 3.2: [P,I},G"] is of rank n, i.e. full row-
rank, where B is the set of entries that have explicit bounded
constraints g < zp < up and Ip is the incidence matrix
from the span of = to entries in B, i.e. zg = Ipx.

Under Assumption 3.2, we can always generate a dual
feasible correction (Az*, Ay¥ AzF) since the following
linear system always has a solution,

PAzF + IgAyg +GTAZF = —pF. (12)
It is also a generalization for setting AyF = —r* discussed
in Section III-B, which is useful if some entries of [, u for
box constraints are infinite or the difference v —1 is so large
that the corrected dual cost is excessively sensitive to the
correction Ay{f.

Due to the existence of different coefficients for the
support function oy () in (3) or —uly, +1Ty_ in (5),
we divide the optimization-based correction into two steps.
For the first step, we solve the optimization problem

1 X .

min  —AzFTPA2® + (PzF)TAz® + hTAZF
Amk,Azk,Ayg2

n i 13

+ agsl + Jaz 4

st. PAz® + I Ayl + GTAZF = —F,

which produces a correction (Az*, Ay, Az*) while max-
imizing the corrected dual cost w.rt. Az*, AzF with regu-
larizations for Ayg, Az*. The corresponding KKT condition
of (13) is

P Ig GT Axk —rk
Is —nI 0 Ayk| = | —Igat (14)
G 0 —AI| [AZF h — Ga*

if we set A\¥ = 2% + Az*. The matrix on the left-hand side
does not depend on the active node, and hence only needs
to be factored once at the initialization of a MIP solver and
can be reused later for any node’s computation. Meanwhile,
solving (14) is computationally efficient compared to the
factorization step of an IPM in every iteration (compare
(6)), or not worse than the computation of an OSM per
iteration. For the second step, we complete Ay} by setting
Ay; = 0 for any index j ¢ B. If an IPM is used, we compute
Ay, Ay* via Ay} as what we have shown in Section III-B,
and (zF + Azk y* y% + Ayk yE + Ayk 2P+ AZF) s a
dual feasible point for early termination.



D. Applications in Control

A common type of MIP arising in control engineering is
optimal control with discrete-valued inputs as encountered
in hybrid MPC problems, which takes the form:

T—1
min Z(I:Qﬂ?t +u) Rewy) + 20 Qrar + 2qrar

=0 B (15)
St Tpp1 = Az + Bug, To = Tingt,

u €Uy, Vt=0,1,...,T—1,

where x;,;; € R™ is the initial state and system dynamics
is xy11 = Axz; + Bu; with constraints I/, for each input
uy € R™ . U; can be composed wholly or in part by discrete
valued constraints. Our optimization-based correction is suit-
able for the hybrid-MPC (15) as due to the next theorem.

Theorem 3.3: The optimization-based correction is appli-
cable to the hybrid MPC (15) when U; is bounded for
t=0,1,..., T — 1.

Proof: Suppose x := [xg;...;ZT;Up;...;ur—1]. The

corresponding block components of [P, ] g ,GT] become

P = [Q R:| 7]8 = [OnuTXnm(T+1) InuT} ,

I
A
A I B

where Q = diag(Q1,...,Qr), R = diag(Ry, ..., Ry) are
block diagonal. Hence, [P, I}, G "] can be reordered as an
upper triangular matrix that looks like

_Inw {_XT -
I,, BT
_Im
AT
I,, BT
_[nz

The matrix above is full row rank since the diagonal term is
either 1 or —1. Hence, [P, I}, G "] is full row rank and the
Assumption 3.2 is satisfied. [ ]
Note that the system (14) is also banded for the sparse
formulation (15) and we can exploit its structure to accelerate
the computation as in [24], which reduces the cost per
iteration from O((m;N)3) to O(N(ng + ny)?).

IV. ALGORITHM AND COMPLEXITY OF COMPUTATION

We next summarize how to implement early termination in
a B&B, which corresponds to steps 3-17 in Algorithm 1. For
every iteration k in a node CP(z, Z), we can obtain a primal-
dual iterate (z*, s*, y*, y¥, z*) from an OSM or an IPM with
an approximate dual cost D¥. Note that this iterate is conic
feasible but doesn’t satisfy the dual linear constraint, i.e. (3)
or (5). We then check whether the algorithm finds an optimal

solution & or detects the infeasibility of CP(z, Z) (steps 5-
10). These steps are inherent to a primal-dual algorithm even
without early termination and do not incur any additional
time cost. We then activate early termination when we find
the approximate dual cost is larger than the current upper
bound, i.e DF > U (step 11). This heuristic follows [16]
since D* is close to the optimal solution of CP(z,Z) when
the dual linear residual r* is small enough, and can save
computation time on early termination.

Once early termination is enabled, we then compute a fea-
sible correction (Az*, AyF, Az*) using either of the meth-
ods discussed in Section III-A to III-C and compute the dual
cost D" at the dual feasible point (z¥ 4+ Az*, s* y* yF +
Ayl 2% + AzF) (step 12). If D* is greater than U, we know
the optimum of CP(z,Z) is larger than D* due to weak
duality, and hence larger than U, which indicates that we can
stop the node computation and prune this node immediately.
Otherwise, we continue computing until we solve CP(z, Z)
and then proceeds with the standard B&B ,method (steps
18-27).

Algorithm 1 B&B for MICP with early termination

Require:
Initialize upper bound U < +oo, node tree 7 <
CP(l,u)

1: while 7 # 0 do

2:  Pick and remove CP(z, %) from T

32 fork=1,2... do

4: Generate (2%, s*,y*, yk, 2¥) and an estimated dual
cost D* from OSMs or IPMs

5 if termination criteria is satisfied then

6: return optimal solution & = 2* and f(&)

7: end if

8 if infeasibility of CP(x,Z) is detected then

9: return CP(z, z) infeasible

10: end if

11: if D* > U then

12: Compute the corrected dual cost D¥ via (xF +
Azk yF yp + Ayf, 28+ AZF)

13: if D* > U then

14: return CP(z, Z) terminates early

15: end if

16: end if

17:  end for
18:  if CP(x, T) terminates early or is infeasible then

19: prune current node

20:  else if f(&) > U then

21: prune current node

22:  else if & is integer feasible then

23: U<+ f(&),a* < T

24: prune nodes in 7 with lower bound > U
25:  else

26: branch node CP(z, z)

27:  end if

28: end while

Suppose we already have a dual cost D* based on the



iterate (2", y",yF,2*) from a primal-dual algorithm. In
that case the correction (9) only takes extra O(n) flops
to generate a feasible dual cost. For an optimization-based
correction (13), we need no more than O((2n+p)?) flops to
solve the linear system (14) if we save the factorization of
the matrix in (14) from the start of a MICP. Both correction
flops are relatively small compared to O(n-+p+m)?3 flops per
IPM iteration. For OSM, we check early termination along
with the termination check, which is usually repeated every
M = 25 iterations. Each early termination check is no more
costly than the original computation in one iteration, so that
its computational time is negligible inside every M iterations.

V. NUMERICAL RESULTS

We implement Algorithm 1 and a counterpart without
early termination, i.e. removing steps 3-17 in Algorithm 1.
Both were written in Julia with every convex relaxation
solved by the IPM solver Clarabel [21]. Tests are imple-
mented on Intel Core 17-9700 CPU @3.00GHz, 16GB RAM.

A. Mixed Integer Model Predictive Control

We consider a hybrid MPC for current reference tracking
from [3], which can be formulated as a MIQP

T
min thl(xt) + 1TV (z7)
=0

a7

S.t. o = Zinit,
zi41 = Azy + Buy,
||ut - ut71||oo < 17 Ut S {_1705 1}67

where v is a discount factor and T is the time horizon.
The quadratic state penalty cost [(z;) is for current tracking
and V(z7) is a final stage cost using approximate dynamic
programming. The initial state is xi,; and the system dy-
namics is x,.1 = Az, + Bu; with z; € R'? representing
the internal motor currents, voltages and the input u; € RS
including three semiconductor devices positions with integer
values {—1,0,1} and three additional binary components
required to model the system. The ramp rate constraint
|lug — ui—1]loc < 1 avoids shoot-through in the inverter
positions (changes from —1 to 1 or vice-versa) that can
damage the components.

By eliminating x4, ¢ € {1,...,T} via the state dynamics,
problem (17) reduces to a problem depending only on input
variables uqg, . .., ur_1 and the initial state x; we refer read-
ers to [3] for details. We set 1" = 8 for the time horizon and
simulate closed-loop MIMPC for 100 consecutive intervals.
Figure 1 compares the performance of B&B with and without
early termination. We run the test with both cold-start and
warm-start to initialize the solver variables using the solution
from the parent subproblem in the B&B tree. We take the
simple early termination introduced in Section III-B. Since a
valid upper bound U is required for early termination, we
start to count IPM iterations only when the first feasible
solution of (17) is found. Here, we define one loop of steps
3-17 in Algorithm 1 as an IPM iteration. For all 100 intervals,
early termination has produced a noticeable reduction in IPM

iterations, averaging to about 25%. Since the simple early
termination only takes additional O(n) flops compared to
the factorization with O(n?) flops per iteration, the ratio of
reduction of total iteration numbers is a good proxy for the
ratio of solve time reduction we can achieve in IPMs when
a simple early termination is implemented.

—— Na early termination, cold start
—— With early termination, cold start
—— No early termination, warm start
—— Wit early termination, warm start
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Fig. 1: MIMPC T = 8, reduced dense form

We then implement another experiment for (17) but use
the non-reduced sparse form as discussed in Section III-
D with the optimization-based correction of n = v = 1.
The optimization-based correction takes an additional O(n?)
flops compared to the factorization with O(n®) flops per
iteration, so the ratio of reduction of total iteration numbers
remains a good proxy for the ratio of solve time reduction
we can achieve in IPMs when a simple early termination
is implemented. Although early termination seems to be
somewhat less effective in the non-reduced form of MPC
relative to the dense form, it arises from the fact that we
have fewer IPM iterations left to go once the first feasible
upper bound U is found, which is shown in Figure 1 and
Figure 2.
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—— No early termination, cold start
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—— No early termination, warm start
—— With early termination, warm start
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# IPM iterations
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Fig. 2: MIMPC T = 8, non-reduced sparse form

B. Portfolio Optimization

We also test our proposed early termination technique on
a portfolio optimization, which can be formulated as a mixed



integer second-order cone (SOC) programming [2],
min ' (zF —z7)
st. (2t —27)TAT —27) <p,

n -y — n <
Zi:l(x ") =1, Zi:l b; <K,

Lmin S Zi:lli S Lmama b S Hl» ZS HTbv

l; € {0,1}, for j € {1,...,L}

0<az! <b,0<z; <by,b€{0,1},i€{1,...,n}.

There are n assets in total, categorized into L industry
sectors, with the mapping from assets to sectors captured
by matrix H € R"*L. We define » = (z+;27) € R?" as
the fractions of portfolio value held in each asset: z+ and
x~ denote buying and selling (i.e. shorting) respectively, and
both are non-negative and must sum up to unity. » € R" is
the expected return for n assets, and A is the covariance for
market volatility and restricted below a certain level p and
formulated as a SOC constraint. The binary vectors bR™ and
I € R” denote whether we invest in an asset, respectively
in a sector or not. The number of assets we can invest in
is upper-bounded by K and the number of sectors is box-
constrained by L,,;, and L,,,, to ensure asset diversity.
We use the early termination strategy as in Section III-B
and choose n = 20, L = 3, T = 2000, Ly,ir, = 1, Lipae =
L,p = 100, K = 10. Figure 3 shows the early termination
can reduce about 10%-15% of IPM iterations after we find
the first integer feasible solution, which proves that our early
termination remains effective for general MICPs.

VI. CONCLUSION

We generalized our early termination technique of ADMM
in [17] to state-of-the-art primal-dual algorithms in MICPs.
We showed how to utilize existing dual iterates inside either
an OSM or an IPM to generate a dual feasible point for early
termination with little additional efforts, and we provided a
sufficient condition when we can find a dual feasible point in
the proposed early termination technique. Numerical results
showed the proposed early termination can reduce the total
number of iterations in MICPs effectively.

— No early termination

—— With early termination
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Fig. 3: Portfolio Optimization
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