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Abstract— This paper presents a funnel synthesis al-
gorithm for computing controlled invariant sets and feed-
back control gains around a given nominal trajectory for
dynamical systems with locally Lipschitz nonlinearities
and bounded disturbances. The resulting funnel synthe-
sis problem involves a differential linear matrix inequality
(DLMI) whose solution satisfies a Lyapunov condition that
implies invariance and attractivity properties. Due to these
properties, the proposed method can balance maximization
of initial invariant funnel size, i.e., size of the funnel entry,
and minimization of the size of the attractive funnel for
attenuating the effect of disturbance. To solve the resulting
funnel synthesis problem with the DLMI as constraints, we
employ a numerical optimal control approach that uses a
multiple shooting method to convert the problem into a
finite dimensional semidefinite programming problem. This
framework does not require piecewise linear system ma-
trices and funnel parameters, which is typically assumed
in recent related work. We illustrate the proposed funnel
synthesis method with a numerical example.

Index Terms— Lyapunov methods, LMIs, Robust control

I. INTRODUCTION

FUNNEL, also referred to as tube, represents regions of
finite-time controlled invariant state space for closed-loop

systems equipped with an associated feedback control law
around a given nominal trajectory [1]. Funnel synthesis refers
to a procedure for computing both the controlled invariant set
and the corresponding feedback control law. Once we compute
a library of funnels along different nominal trajectories, the
resulting funnel can be used for different purposes such as real-
time motion planning [2] and feasible trajectory generation [3].

The studies in funnel synthesis can be separated into two
categories depending on whether they aim to maximize [3]–
[5] or minimize the size of the funnel [2], [6]. The funnel
computation inherently aims to maximize the size of the funnel
to have a larger controlled invariant set in the state space. On
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the other hand, when it comes to systems under uncertainty or
disturbances, the funnel size should be minimized to bound
the effect of the uncertainty. For example, [2] minimize
the size of the funnel to prohibit collision with obstacles
instead of imposing obstacle avoidance constraints directly.
However, minimizing the size of the funnel is against the
original purpose of having a large controlled invariant set in
the state space. In this work, we provide a funnel synthesis
algorithm that balances maximizing the size of the funnel
and minimizing the effect of the bounded disturbance. To this
end, we exploit invariance and attractivity conditions derived
from Lyapunov theory [7] by solving linear matrix inequalities
(LMIs) [8], [9] and imposing state and input constraints
directly on the funnel.

When employing the Lyapunov condition, the resulting
optimization problem has a differential inequality of the Lya-
punov function in continuous-time for a finite-time interval.
Since it is intractable to satisfy the inequality for all time in
the given interval, many approaches focus on imposing the
differential inequality at a finite number of node points [2],
[4], [5]. When a quadratic Lyapunov function with a time-
varying positive definite (PD) matrix is employed, the resulting
differential inequality ends up with a differential linear matrix
inequality (DLMI). To solve the resulting DLMI, one can
assume that first-order approximations (Jacobians matrices)
of the nonlinear dynamics computed around the nominal
trajectory are continuous piecewise linear in time. By applying
the same piecewise linear parametrization to the PD matrix
in the Lyapunov function, one can obtain a finite number of
LMIs whose feasibility is a sufficient condition for the original
DLMI [3], [10]. The main downside of this approach is that
the assumption of piecewise linear system matrices may have
large errors, and applying the same parametrization on the PD
matrix can be conservative.

In this paper, we provide a constrained funnel synthe-
sis algorithm for locally Lipschitz nonlinear systems under
bounded disturbance. To this end, we express the closed-loop
system around the given nominal trajectory as a linear time-
varying system having uncertain terms. Then, the DLMI is
derived based on the Lyapunov condition that guarantees the
invariance and the attractivity conditions. With the Lyapunov
condition, the continuous-time funnel optimization problem
maximizes the size of the funnel entry and minimizes the
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attractive funnel for attenuating the effect of disturbance.
Furthermore, the proposed method can satisfy linear state and
control constraints in a way that the resulting funnel around
the given nominal trajectory remains inside the feasible sets
of states and controls. To convert the funnel synthesis problem
into a finite dimensional semidefinite programming (SDP)
problem, we employ a numerical optimal control approach
with a multiple shooting method [11].

The contributions of this work are as follows: First, the
proposed funnel synthesis approach for locally Lipschitz non-
linear systems provides a new optimization framework that
can 1) balance maximizing the size of the funnel entry and
minimizing the effect of the disturbance, and 2) guarantee
the satisfaction of linear state and control constraints on
the funnel. Second, we provide a new approach based on
multiple shooting in numerical optimal control for solving the
DLMI. This is in contrast to the prior approaches that assume
the piecewise linear approximation on the PD matrix in the
Lyapunov function.

The notations R, R+ R++, and Rn are the field of real, non-
negative, positive numbers, and the n-dimensional Euclidean
space, respectively. The set N r

q is a finite set of consecutive
nonnegative integers, i.e., {q, q + 1, . . . , r}. The symmetric
matrix Q = Q⊤(⪰)≻ 0 implies Q is PD (PSD) matrix, and
(Sn+)Sn++ denotes the set of all PD (PSD) matrices whose size
is n×n. The symbols ⊗ is the Kronecker product. The notation
* denotes the symmetric part of a matrix. The squared root of
a PSD matrix A is defined as A

1
2 such that A = A

1
2A

1
2 . We

omit the time argument t if it is clear from the context. The
operation ⊕ is Minkowski sum.

II. CONSTRAINED FUNNEL SYNTHESIS

A. Locally Lipschitz Nonlinear Systems

Consider the following continuous-time dynamics:

ẋ(t) = f(t, x(t), u(t), w(t)), t ∈ [t0, tf ], (1)

where x(t) ∈ Rnx is state and u(t) ∈ Rnu is input. The vector-
valued function w(t) ∈ Rnw represents bounded disturbance
such that ∥w(·)∥∞ ≤ 1 where ∥w(·)∥∞ := supt∈[t0,tf ]

∥w(t)∥,
and t0 and tf are initial and final time, respectively. The
function f : R+×Rnx ×Rnu ×Rnw → Rnx is assumed to be
continuously differentiable. Suppose that a nominal trajectory
(x̄(·), ū(·), w̄(·)) is a solution of the system (1). Particularly,
we choose a zero disturbance for the nominal trajectory, that
is w̄(t) = 0 for all t ∈ [t0, tf ]. Then, we can convert (1)
into the linear time-varying (LTV) system with the nonlinear
remainder term via linearization around the nominal trajectory,
resulting in the following Lur’e type system [3], [12]:

ẋ(t) = A(t)x(t) +B(t)u(t) + F (t)w(t) + Ep(t),

p(t) = ϕ(t, q(t)), q(t) = Cx(t) +Du(t) +Gw(t), (2)

where p(t) ∈ Rnp is a lumped nonlinearity represented by
a nonlinear function ϕ(t) and its argument q(t) ∈ Rnq . The
matrices A(t), B(t), and F (t) are first-order approximations
of the nonlinear dynamics (1) around the nominal trajectory.
The matrices E ∈ Rnx×np , C ∈ Rnq×nx , D ∈ Rnq×nu , and

G ∈ Rnq×nw are assumed to be time-invariant 1. The more
details in choosing these matrices could be found in [3].

With the state difference η := x−x̄, the difference dynamics
can be derived as

η̇(t) = f(t, x, u, w)− f(t, x̄, ū, 0),

= A(t)η(t) +B(t)ξ(t) + F (t)w(t) + Eδp(t),

δp(t) = ϕ(t, q(t))− ϕ(t, q̄(t)),

δq(t) = Cη(t) +Dξ(t) +Gw(t),

where ξ := u− ū and δq := q − q̄ with q̄ = Cx̄+Dū. Since
continuously differentiable functions are locally Lipschitz, f
and ϕ are locally Lipschitz. It follows that for all t ∈ [t0, tf ]

∥p− p̄∥2 ≤ γ(t)∥q − q̄∥2, ∀ q, q̄ ∈ Q,

where γ(t) ∈ R+ is a Lipschitz constant for each t and Q ⊆
Rnx is any compact set. By employing the linear feedback
controller, that is ξ(t) = K(t)η(t), the closed-loop system
can be written as

η̇ = (A+BK)η + Fw + Eδp, ∥w(·)∥∞ ≤ 1, (3a)
δq = Cη +Dξ +Gw, ∥δp∥2 ≤ γ∥δq∥2. (3b)

With (3), we can express the nonlinear closed-loop system
as the LTV system having the state and input dependent
uncertainty δp. This could be a conservative way to handle
the nonlinear system, but it allows us to design a quadratic
Lyapunov function with which we can guarantee the invari-
ance and attractivity conditions of the funnel for the original
nonlinear system.

B. Lyapunov Conditions

With a continuously differentiable positive definite matrix-
valued function Q : R+ → Snx

++, the Lyapunov function is
defined as

V (t, η) := η⊤(t)Q−1(t)η(t). (4)

Here we aim to impose the following Lyapunov condition for
the closed-loop system (3):

V̇ (t, η) ≤ −αV (t, η), (5a)
for all ∥δp(t)∥2 ≤ γ(t)∥δq(t)∥2, (5b)

and V (t, η) ≥ ∥w(t)∥22, ∀ t ∈ [t0, tf ], (5c)

where α ∈ R++ is a decay rate. With the above Lyapunov
condition, we can establish the following lemma.

Lemma 1. Suppose that the Lyapunov condition (5) holds with
a positive definite matrix-valued continuous function Q(t) ,
then the time-varying ellipsoid defined as

E(t) = {η | η⊤Q(t)−1η ≤ 1}, (6)

is invariant for the closed-loop system (3), that is, if η(·) is
any solution with η(t0) ∈ E(t0), then η(t) ∈ E(t) for all t ∈

1The matrices E,C,D, and G are selector matrices with 0s and 1s to
organize the nonlinearity of the system. The simplest case has E = I , q =
[x⊤, u⊤, w⊤]⊤, and p = ϕ(t, q) = f(t, x, u, w)−Ax−Bu− Fw.
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Fig. 1. Illustration of the ellipsoids E(t) and Ec(t). An example of
solution η(t) is given as a dashed red line. Since E is attractive, any
solution η(·) starting with η(t0) ∈ Ec(t0)\E(t0) converges to E if tf
is sufficiently large. The proposed funnel synthesis aims to maximize the
size of Ec(t0) and minimize that of E(t) for all t in [t0, tf ].

[t0, tf ]. Furthermore, the ellipsoid E(t) is attractive such that
for any solution η(·), the following holds for all t ∈ [t0, tf ]:

V (t, η(t)) ≤ max{e−α(t−t0)V (t0, η(t0)), 1}. (7)

The above lemma can be deduced from [9, Lemma B10] and
[13, Lemma 1], so here we skip the proof.

Now we define a invariant state funnel with a pair of Q in
(4) and a continuous scalar-valued function c : R+ → (0, 1]
as

Ec(t) :=
{
η

∣∣∣∣ η⊤Q(t)−1η ≤ 1

c(t)

}
, (8)

where the function c(t) satisfy the following condition:

1

c(t)
≥ max

{
1, e−α(t−t0)

1

c(t0)

}
, (9)

with 0 < c(t0) ≤ 1. With the ellipsoid Ec(t) having 1/c(t) as
the support value, we show the invariance property of Ec(t)
in the following lemma.

Lemma 2. The ellipsoid Ec(t) defined in (8) with (9) is
invariant for the closed-loop system (3) such that if η(·) is
any solution with η(t0) ∈ Ec(t0), then η(t) ∈ Ec(t) for all
t ∈ [t0, tf ].

Proof. If the solution η(·) satisfies η(t0) ∈ E(t0), it is
trivial to prove the invariance of Ec(t) since E(t) is invariant
and E(t) ⊆ Ec(t). Consider the solution η(·) such that
η(t0) ∈ Ec(t0) \ E(t0). By the attractivity condition (7), we
have V (t, η(t)) ≤ max{e−α(t−t0)V (t0, η(t0)), 1}. It follows
from V (t0, η(t0)) ≤ 1/c(t0) and 0 < c(t0) ≤ 1 that
V (t, η(t)) ≤ max{e−α(t−t0) 1

c(t0)
, 1} ≤ 1/c(t) for t ∈ [t0, tf ].

This completes the proof.

The illustration of both the ellipsoids E(t) and Ec(t) is given
in Figure 1. Any solution η(·) of the closed-loop system (3)
starting at Ec(t0) remains in the state funnel Ec(t) for all t ∈
[t0, tf ] because of the invariance condition of Ec derived in
Lemma 2. Furthermore, the solution η(·) starting at Ec(t0)
converges to the ellipsoid E if tf is sufficiently large because
of the attractivity of E given in Lemma 1. Since we use the

attractivity condition of E as a key property for our funnel
generation, we refer to E in (6) as an attractive funnel.

Additionally, with the linear feedback control ξ = Kη, the
condition η ∈ Ec implies that ξ is in the following ellipsoid
[14], [15]:

Eu = {(KQK⊤)
1
2 y | ∥y∥2 ≤ 1/

√
c, y ∈ Rnu}. (10)

The set Eu represents the ellipsoid inside which the input
deviation ξ remains, so we refer to Eu as an invariant input
funnel. Now, we are ready to derive the DLMI condition that
guarantees the invariant and attractive conditions.

Theorem 1. Suppose that there exists Q : [t0, tf ] → Snx
++,

Y : [t0, tf ] → Rnu×nx , ν : [t0, tf ] → R++, 0 < λw, and
0 < α such that the following differential matrix inequality
holds for all t ∈ [t0, tf ]:

H :=


M − Q̇ ∗ ∗ ∗
νE⊤ −νI ∗ ∗
F⊤ 0 −λwI ∗

CQ+DY 0 G −ν 1
γ2 I

 ⪯ 0, (11)

M := QA⊤ + Y ⊤B⊤ +AQ+BY + αQ+ λwQ.

Then, the Lyapunov condition (5) holds for the closed-loop
system (3) with K = Y Q−1. Thus, with Q(t) and K(t)
satisfying the DLMI (11), the ellipsoid E(t) in (6) is invariant
and attractive, and Ec(t) in (8) is invariant by Lemma 1 and
Lemma 2.

Proof. By definition of positive definiteness and S-procedure
[12], the sufficient condition for the Lyapunov condition (5)
is that if there exists scalars λp > 0 and λw > 0 such that M̄ −Q−1Q̇Q−1 ∗ ∗

E⊤Q−1 0 ∗
F⊤Q−1 0 0

+ λp

[
Ccl

k 0 Gk

0 I 0

]
︸ ︷︷ ︸

:=CG

⊤ [
γ2I 0
0 −I

]
CG

+λw

 Q−1 0 0
0 0 0
0 0 −I

 ⪯ 0,

where M̄ := A⊤
clQ

−1 + Q−1Acl + αQ−1. Applying
Schur complement, and then multiplying either side by
diag{Q,λ−1

p I, I, I} complete the proof with ν := λ−1
p .

Notice that the above differential matrix inequality (11) is
linear in Q̇, Q, Y , and ν once λw and α are fixed.

C. Feasibility of State and Input Funnels

The funnel synthesis of the proposed work aims to be not
only invariant but also feasible, so constraints on the invariant
state and input funnels should be satisfied. The feasible sets
for the state and input funnels can be described as

X = {x | hi(x) ≤ 0, i = 1, . . . ,mx},
U = {u | gj(u) ≤ 0, j = 1, . . . ,mu},

where hi : Rnx → R and gj : Rnu → R are assumed to
be at least once differentiable (possibly nonconvex) functions.
Since it is not tractable to impose the nonconvex constraints on
the ellipsoid funnel, we linearize the above constraints around



the nominal trajectory, resulting in the following polyhedral
constraints sets [3]:

Px = {x | (ahi )⊤x ≤ bhi , i = 1, . . . ,mx},
Pu = {u | (agj )⊤u ≤ bgj , j = 1, . . . ,mu},

where (ahi , b
h
i ) and (agj , b

g
j ) are first-order approximations of

hi and gj , respectively. The inclusions Px ⊆ X and Pu ⊆ U
hold if the function hi is a concave function, such as ellipsoidal
obstacle avoidance constraints. Here we assume that the input
constraint set Pu is bounded in Rnu to prohibit the control
input from being arbitrarily large. This assumption usually
holds because the unbounded input is not allowable in practice.

Now we aim to design Ec in (8) and Eu in (10) with Q and
K such that {x̄}⊕Ec ⊆ Px, {ū}⊕Eu ⊆ Pu. These conditions
could be equivalently written as [12]

∥(Q/c)
1
2 ahi ∥2 ≤ bhi − (ahi )

⊤x̄, i = 1, . . . ,mx,

∥(K(Q/c)K⊤)
1
2 agj∥2 ≤ bgj − (agj )

⊤ū, j = 1, . . . ,mu.

Squaring both sides and applying Schur complement equiva-
lently generates

0 ⪯
[ (

bhi − (ahi )
⊤x̄

)2
c (ahi )

⊤Q
Qahi Q

]
, (12)

0 ⪯
[ (

bgj − (agj )
⊤ū

)2
c (agj )

⊤Y ⊤

Y agj Q

]
, (13)

i = 1, . . . ,mx, j = 1, . . . ,mu.

The feasibility conditions (12) and (13) are linear in Q, Y ,
and c.

D. Objectives
The goal of the funnel synthesis aims to 1) maximize the

size of invariant funnel entry Ec(t0) from which the system
can remain inside the invariant funnel and converge to the
attractive funnel, and 2) minimize the size of the attractive
funnel E(t) for all t in [t0, tf ] for the disturbance attenuation.

First, the volume of funnel entry Ec(t0) is proportional to
detQ(t0)/c(t0) [14]. Since a log function is increasing, it is
equivalent to maximizing log det(Q(t0)/c(t0)). It follows that

log det(Q(t0)/c(t0)) = −nx log c(t0) + log detQ(t0).

Hence, to maximize the volume of the funnel entry, we
minimize c(t0) and − log detQ(t0), both of which are convex
functions. Second, minimizing the volume of the set E(t) is
equivalent to minimizing log detQ(t) that is a concave func-
tion. Since minimizing the concave function is a nonconvex
problem, we instead minimize the maximum radius of E(t)
that is equal to the squared root of the maximum eigenvalue
of Q(t) [14]. Therefore, instead of minimizing the volume, we
minimize the maximum eigenvalue of Q(t) that is a convex
function.

In summary, the funnel synthesis aims to minimize a cost
function J given as

J = wcc(t0)− wQ0
log detQ(t0) +

∫ tf

t0

w̄Qv
Q(t)dt, (14)

with Q(t) ⪯ vQ(t)I, ∀ t ∈ [t0, tf ], (15)

where vQ(t) ∈ R++ is a slack variable introduced to minimize
the maximum eigenvalue of Q(t), and wc, wQ0 , w̄Q ∈ R++

are user-defined weight parameters.

E. Continuous-time funnel synthesis problem
The continuous-time funnel synthesis problem can be for-

mulated as follows:

minimize
Q(t), Y (t), c(t), ν(t), vQ(t)

(14) (16a)

subject to ∀ t ∈ [t0, tf ], (16b)
(9), (11), (12), (13), (15), (16c)
Q(t0) ⪰ c(t0)Qi, (16d)
Q(tf ) ⪯ c(tf )Qf , (16e)

where the matrices Qi ∈ Snx
++ and Qf ∈ Snx

++ are constant
parameters used for the boundary conditions. These boundary
conditions imply Ec(t0) ⊇ {η | η⊤Q−1

i η ≤ 1} and Ec(tf ) ⊆
{η | η⊤Q−1

f η ≤ 1}.

III. OPTIMIZING FUNNEL VIA OPTIMAL CONTROL

The problem formulated in (16) is an infinite-dimensional
continuous-time optimization problem, so it is not readily
straightforward to solve it numerically. Here we discuss a way
to transform the problem into a finite-dimensional discrete-
time convex problem.

A. Changing a DLMI to a Differential Matrix Equality
In this subsection, we illustrate how the funnel synthesis

problem (16) can be interpreted as a continuous-time optimal
control problem. Observe that the DLMI in (11) can be equiv-
alently converted into a differential matrix equality (DME)
by introducing a PSD-valued slack variable Z(t) ∈ Snz

+ with
nz = nx + np + nw + nq as follows:

H +


Z11 ∗ ∗ ∗
Z21 Z22 ∗ ∗
Z31 Z32 Z33 ∗
Z41 Z42 Z43 Z44


︸ ︷︷ ︸

:=Z

= 0, Z ⪰ 0, (17)

where H is defined in (11) and Zij(t) have appropriate sizes
for all i, j ∈ {1, . . . , 4}. The first-row and first-column block
has the following form:

Q̇(t) = M(t) + Z11(t). (18)

with M(t) defined in (11). The DME (18) can be interpreted
as a differential equation for a linear dynamical system where
Q is a state, and Y and Z11 are control inputs.

To derive further, we define the following vectors using the
vectorization operation:

q := vec(Q), y := vec(Y ), z11 := vec(Z11), (19)

where the operation vec(·) stacks the columns to make a single
vector. Then the DME (18) can be equivalently expressed with
the vector variables in (19) as

q̇(t) = Aq(t)q(t) +Bq(t)y(t) + Sq(t)z
11(t), (20)



with

Aq = (I ⊗A) + (A⊗ I) + (α+ λw)(I ⊗ I),

Bq = (I ⊗B) + (B ⊗ I)Kc, Sq = (I ⊗ I),

where Kc ∈ Rnxnu×nxnu is a commutation matrix [16] such
that Kcvec(N) = vec(N⊤) for any arbitrary matrix N ∈
Rnu×nx .

B. Multiple Shooting Numerical Optimal Control

To transform (16) into the finite-dimensional discrete-time
optimal control problem, we first choose uniform time grids as
tk = t0 +

k
N (tf − t0) for all k ∈ NN

0 . The decision variables
and the Lipschitz constant γ at each node point are set as
△k = △(tk) where a placeholder △ represents Q,Y, Z, c, ν,
and γ.

We apply continuous piecewise linear interpolation for Y ,
Z, ν and c−1 for each k ∈ NN−1

0 as follows:

□(t) = λm
k (t)□k + λp

k(t)□k+1, ∀ t ∈ [tk, tk+1],

λm
k (t) =

tk+1 − t

tk+1 − tk
, λp

k(t) =
t− tk

tk+1 − tk
, (21)

where a placeholder □ stands for Y, ν, Z, c−1. Notice that we
apply the piecewise linear interpolation to the inverse of c,
that is c−1, not c itself. With this interpolation and additional
conditions, we can show that c(t) satisfies the condition (9)
for all t ∈ [t0, tf ].

Proposition 1. Suppose that for each subinterval c(t) satisfies

c(t) =
ckck+1

λm
k (t)ck+1 + λp

k(t)ck
,∀ t ∈ [tk, tk+1],∀ k ∈ NN−1

0 ,

and

0 < ck ≤ 1, e−α(tk−t0)ck ≤ c0, ∀ k ∈ NN
0 . (22)

Then, c(t) satisfies the condition (9).

Proof. We want to show that 1
c(t) ≥ max{1, e−α(t−t0) 1

c(t0)
}

for all t ∈ [t0, tf ]. The condition (22) implies 1/ck ≥
max{1, e−α(tk−t0) 1

c(t0)
} for all k ∈ NN

0 . Notice that
max{1, e−α(t−t0) 1

c(t0)
} is convex in t, and 1/c(t) is the

convex combination of two points 1/ck and 1/ck+1 for t ∈
[tk, tk+1]. Thus, it follows from the definition of the convex
function that 1

c(t) ≥ max{1, e−α(t−t0) 1
c(t0)

} for t ∈ [tk, tk+1].
Since this holds for all k ∈ NN−1

0 , we complete the proof.

The PD-valued function Q(t) is not assumed to be piecewise
linear, so q(t) is not. Instead, q(t) is the solution of the
ordinary differential equation in (20). Since the system (20)
is linear, we can equivalently express it through discretization
with the interpolation (21) as

qk+1 = Aq
kqk +B−

k yk +B+
k yk+1 + S−

k z11k + S+
k z11k+1,

∀ k ∈ NN−1
0 , (23)

where qk = vec(Qk), yk = vec(Yk), and z11k = vec(Z11
k ).

The matrices Aq
k, B−

k , B+
k , S−

k and S+
k are corresponding

discretized matrices. More details in obtaining these matrices

could be found in [17]. The other blocks in (17) are imposed
as
νkE + Z21

k = 0,−vkI + Z22
k = 0, F⊤

k + Z31
k = 0, Z32

k = 0,−λwI + Z33
k = 0,

CQk +DYk + Z41
k = 0, Z42

k = 0, G+ Z43
k = 0,−νk/γ

2
kI + Z44

k = 0,
(24)

for all k in NN
0 where Fk = F (tk).

C. Discrete-time convex funnel synthesis problem
The discrete-time funnel synthesis problem can be formu-

lated as follows:

minimize
Qk, Yk, ck, νk, v

Q
k ,∀ k ∈ NN

0

wcc0 − wQ0
log detQ0

+
∑N

k=0 wQv
Q
k

(25a)

subject to Z ⪰ 0, (22), (23), (24), (25b)
(12), (13), (15), (25c)
Q0 ⪰ c0Qi, QN ⪯ cNQf , (25d)

where the constraints (12), (13), (15) in (25c) are imposed at
each t = tk for all k in NN

0 . The continuous cost function (14)
is discretized by lower sum between the subintervals, resulting
in wQ = w̄Q(tf − t0)/Nnode. The optimization problem (25)
is convex with LMI constraints, resulting in a SDP problem,
so that we can solve it using any SDP solver.

D. Inter-sample constraint violation
One of the key issues in direct shooting approaches for

optimal control is the inter-sample constraint violation [18]
that the constraint violation can occur during subintervals since
the constraints are enforced only at temporal nodes, not for all
time. This is also an issue for the proposed method as well
as other funnel generation approaches [2]–[4]. Future research
will explore how to impose relevant constraints for all time by
exploiting the form of the solutions of DME (17) [19].

IV. NUMERICAL SIMULATION

For the numerical simulation, we consider a unicycle model
with addictive disturbances written as ṙx

ṙy
θ̇

 =

 uv cos θ
uv sin θ

uθ

+

 0.1w1

0.1w2

0

 , (26)

where rx, ry , and θ are a x-axis position, a y-axis position,
are a yaw angle, respectively, and uv is a velocity and uθ is an
angular velocity. The values w1 and w2 are disturbances such
that w = [w1, w2]

⊤, ∥w∥ ≤ 1. In this model, the argument
q ∈ R2 for the nonlinearity in (2) is [θ, uv]

⊤. We consider N =
30 nodes evenly distributed over a time horizon of 5 seconds
with t0 = 0 and tf = 5. The boundary parameters Qi and
Qf are both diag([0.08 0.08 0.06]). We consider two obstacle
avoidance constraints, leading to nonconvex constraints for the
state illustrated in Fig. 2. The input constraints are given as:
0 ≤ uv ≤ 2 and |uθ| ≤ 2. The 100 samples around the
nominal trajectory are used for the local Lipschitz constant
γk estimation for all k in NN

0 by following the procedure
given in [3]. The weights wc, wQ0

, and wQ are 103, 0.1,
and 0.1, respectively. The parameters α and λw are 0.7
and 0.5, respectively. The simulation can be reproducible by
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Fig. 3. The figure of input funnel (top left and right) and support value
1/c(t) (bottom).

using the code at https://github.com/taewankim1/funnel_
synthesis_multiple_shooting.

The results of the proposed work are given in Fig. 2 and
Fig. 3. We can see that the generated funnel satisfies both state
constraints (obstacle avoidance) and input constraints at each
node point. Also, the resulting support value 1/c satisfies the
constraint (9). To test the invariance and attractivity conditions,
we take a total of 100 samples, 50 from the surface of E(t0)
and 50 from that of Ec(t0). We propagate each sample through
the model (26) with a randomly chosen disturbance w such
that ∥w∥ = 1. In the bottom figure of Fig. 2, the value of the
Lyapunov function for each sample trajectory is plotted. We
can see that the invariance conditions of both E and Ec hold
well, and the samples starting from the surface of Ec converge
to the attractive funnel E due to the attractivity condition.

V. CONCLUSIONS

This paper presents a funnel synthesis method for locally
Lipschitz nonlinear systems under the presence of bounded
disturbances. The proposed funnel synthesis approach aims
to maximize the funnel entry while minimizing the attractive
funnel to bound the effect of the disturbances. To solve
the continuous-time funnel optimization problem having the
DLMI, we apply the direct multiple shooting optimal control
method. In the numerical evaluation with the unicycle model,
the results show that the generated funnel satisfies both invari-
ance and feasibility properties.
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