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Abstract— Moving horizon estimation (MHE) offers benefits
relative to other estimation approaches by its ability to explicitly
handle constraints, but suffers increased computation cost. To
help enable MHE on platforms with limited computation power,
we propose to solve the optimization problem underlying MHE
sub-optimally for a fixed number of optimization iterations per
time step. The stability of the closed-loop system is analyzed
using the small-gain theorem by considering the closed-loop
controlled system, the optimization algorithm dynamics, and the
estimation error dynamics as three interconnected subsystems.
By assuming incremental input/output-to-state stability (δ-
IOSS) of the system and imposing standard ISS conditions on
the controller, we derive conditions on the iteration number
such that the interconnected system is input-to-state stable (ISS)
w.r.t. the external disturbances. A simulation using an MHE-
MPC estimator-controller pair is used to validate the results.

I. INTRODUCTION

MHE is an optimization-based method that considers a
fixed window of past measurements and the system’s con-
straints in estimating the current state. Due to the inclusion of
the constraints explicitly in the problem formulation, MHE
has been shown to produce more accurate state estimates
compared to the extended Kalman Filter [1]. Assuming
detectability of the system, rather than observability, MHE
was shown to posses robust global asymptotic stability w.r.t.
bounded disturbances and the estimation error converges in
case of bounded and vanishing disturbances [2].

Although MHE offers the benefit of considering con-
straints, its application is limited by the computational cost,
particularly in systems with fast dynamics or platforms with
limited computational resources. To alleviate this issue, [3]
introduced an auxiliary observer to provide pre-estimation
for MHE. However, despite reduced computation time, the
iteration number required to solve the MHE problem with
stability guarantees cannot be determined offline. In [4],
a feasible candidate solution from an auxiliary observer is
improved for a limited but varying amount of iterations to
obtain a sub-optimal solution so that the resulting estimate is
robustly stable. The proximity-MHE scheme in [5] performs
limited optimization iterations with a proximity regularizing
term to improve the prior estimate from an auxiliary observer
and guarantees the nominal stability of the MHE.

Other approaches concentrated on the optimization scheme
that underlies the MHE problem. For example, [6] proposed
to enforce move blocking on the disturbance sequence in
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MHE to reduce the associated computation burden, which
also guarantees the nominal stability of MHE. In [7], a real-
time iteration scheme is applied to MHE without inequality
constraints. Local convergence is guaranteed when a single
optimization iteration is performed per time step. The work
[8] combined this scheme with automatic code generation to
obtain highly efficient source code of MHE algorithms. For
noise-free systems, [9] solves the MHE problem for single or
multiple iterations with gradient-based, conjugate gradient-
based, and Newton methods and achieves local stability.

Compared to the aforementioned works, we study the
stability of the closed-loop with a sub-optimal MHE and
a feedback control law. Earlier studies often treated MHE
and the feedback controller as separate modules, with MHE
providing estimates with bounded error [10], and the con-
troller designed to ensure stability. Instead, we aim to jointly
determine conditions that guarantee stability of both MHE
and the controlled system. To achieve this, we employ an
stability analysis framework from the sub-optimal model pre-
dictive control (MPC) literature [11],[12],[13]. Therein, the
closed-loop system was formulated as an interconnection of
a controlled system and an optimization algorithm dynamics.

In this paper, we propose a sub-optimal MHE scheme
where, at every time step, the MHE problem is warm-
started with the previous solution and then solved by an
optimization algorithm with a fixed number of iterations.
Then, the resulting sub-optimal estimate is used for feedback
control of a linear system with state and input constraints.

Our main contribution lies in the stability analysis, which
follows a similar approach as [11], [12], and [13]. We
first characterize the interaction between the closed-loop
controlled system, the sub-optimality error dynamics (of the
optimization algorithm used for solving the MHE problem),
and the state estimation error dynamics as three intercon-
nected subsystems. Then, assuming the controller is robustly
stabilizing, the small-gain theorem is used to derive condi-
tions on the optimization iteration number for guaranteeing
the interconnected system is input-to-state stable (ISS) w.r.t
to the external disturbances.

Notations: Let S�0 be the set of positive definite matrices.
Let In be the identity matrix of size n. Let 0m×n be the
zero matrix of size m × n. For a vector x ∈ Rnx and a
matrix U ∈ Snx×nx

�0 , let ‖x‖ and ‖x‖U denote the l2-norm
and the weighted l2-norm of x, respectively. Consider square
matrices U and V . Let ‖U‖ denote the spectral norm. Let
λU and λU denote the largest and smallest eigenvalues of U ,
respectively. Let ΛUV := λ(U)/λ(V ). Let I[a,b] denote the set
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of integers in [a, b] ∈ R. For a variable vt ∈ Rnv and time
steps a, b ∈ I[a,b], let v[a,b] := {va, · · · , vb} and ‖v[a,b]‖ :=
supt∈I[a,b]

‖vt‖. A continuous function γ : R+ → R+ is of
class K if it is strictly increasing and γ(0) = 0. If it is also
unbounded, then it is of class K∞. If γ is strictly decreasing
and γ(s)→ 0 as s→ 0, then it is of class L. A continuous
function β : R+ × R+ → R+ is of class KL if β(·, s) ∈ K
for each fixed s and β(r, ·) ∈ L for each fixed r.

II. CONTROLLER AND MHE FORMULATION

A. Dynamic System with State Feedback Controller

Consider a system with linear time-invariant dynamics

xt+1 = Axt +But + w1
t ,

yt = Cxt + w2
t ,

(1)

with state xt ∈ X ⊂ Rnx , input ut ∈ U ⊂ Rnu , output
measurement yt ∈ Y ⊂ Rny , external disturbance w1

t ∈
W1 ⊂ Rnx , and measurement noise w2

t ∈ W2 ⊂ Rny .
Let wt := [w1

t
>
, w2

t
>

]> ∈ W ⊂ Rnx+y be the augmented
disturbance. Let Z := X × U × Y × W be the Cartesian
product of the constraint sets.

Assumption 1 Z is convex and contains the origin.

Assumption 2 Consider system (1). There exist P,Q,R ∈
S�0 and η ∈ [0, 1) that satisfy(

A>PA− ηP − C>RC A>PB̄ − C>RD̄
B̄>PA− D̄>RC B̄>PB̄ −Q− D̄>RD̄

)
� 0,

B̄ = [Inx , 0nx×ny ], D̄ = [0ny×nx , Iny , ]. (2)

From Corollary 3 of [14], we know Assumption 2 implies
system (1) admits a δ-IOSS Lyapunov function and is
detectable. Specifically, for (x, u, y, w), (x′, u, y′, w′) ∈ Z ,
where y = Cx+ w2 and y′ = Cx′ + w2′, the function

Wδ(x, x
′) = ‖x− x′‖2P (3)

is a δ-IOSS Lyapunov function for system (1), satisfying

Wδ(Ax+Bu+ w1, Ax′ +Bu+ w1′)

≤ ηWδ(x, x
′) + ‖w − w′‖2Q + ‖y − y′‖2R. (4)

Consider the system (1) with a state feedback controller
ut := π(x̂t) : X → U satisfying Assumptions 3 and 4,

xt+1 = Axt +Bπ(x̂t) + w1
t , (5)

where x̂t ∈ X is a state estimate with estimation error et :=
x̂t − xt.

Assumption 3 There exists a positive constant Lπ such that,
for any x, x′ ∈ X , π(·) satisfies

‖π(x)− π(x′)‖ ≤ Lπ‖x− x′‖. (6)

Assumption 4 The closed-loop controlled system in (5) is
input-to-state stable (ISS): Given an initial state xt ∈ X ,
an input sequence u[t,t+g] ∈ U × · · · × U generated from
applying π(·), an estimation error sequence e[t,t+g] ∈ Rnx×
· · ·×Rnx , and a disturbance sequence w[t,t+g] ∈ W×· · ·×
W , there exist β1 ∈ KL, and γ1,3, γ

w
1 ∈ K such that, for all

g ≥ 0, the resulting state xt+g ∈ X and satisfies

‖xt+g‖ ≤β1(‖xt‖, g) + γ1,3(‖e[t,t+g]‖) + γw1 (‖w[t,t+g]‖).
(7)

B. Sub-Optimal Moving Horizon Estimation
At time step t, we obtain the state estimate x̂t by solving a

MHE problem based on a prior estimation xprior
t−Mt

, past inputs
u[t−Mt,t−1], and past output measurements y[t−Mt,t−1], with
estimation horizon Mt := min(M, t), M ∈ I≥0. The MHE
problem Pt(xprior

t−Mt
,ut,yt) is formulated as

(x̂∗t ,ŵ
∗
t , ŷ
∗
t ) = argmin

x̂t,ŵt,ŷt

VMHE(x̂t−Mt|t, ŵt, ŷt) (8a)

s.t. x̂i+1|t = Ax̂i|t +Bui + ŵ1
i|t, i ∈ I[t−Mt,t−1], (8b)

ŷi|t = Cx̂i|t + ŵ2
i|t, i ∈ I[t−Mt,t−1], (8c)

ŵi|t ∈ W, ŷi|t ∈ Y, i ∈ I[t−Mt,t−1], (8d)
x̂i|t ∈ X , i ∈ I[t−Mt,t], (8e)

where the cost is defined as

VMHE(x̂t−Mt|t, ŵt, ŷt) := 2ηMtWδ(x̂t−Mt|t, x
prior
t−Mt

)

+

Mt∑
i=1

ηi−1
(

2
∥∥ŵt−i|t∥∥2

Q
+
∥∥ŷt−i|t − yt−i∥∥2

R

)
, (9)

with η, P , Q, and R satisfying (2). The decision variables
x̂t := {x̂t−Mt|t, · · · , x̂t|t}, ŵt := {ŵt−Mt|t, · · · , ŵt−1|t},
and ŷt := {ŷt−Mt|t, · · · , ŷt−1|t} denote the estimated states,
augmented disturbances, and measurements, respectively.
The cost functions (9) can be reformulated as

VMHE(x̂t−Mt|t, ŵt, ŷt) := ‖zt − z̃t‖2Ht
, (10)

where

zt :=[x̂>t−Mt|t, ŵ
>
t−Mt|t, ŷ

>
t−Mt|t, · · · , ŵ

>
t−1|t, ŷ

>
t−1|t]

>,

z̃t :=[xprior>
t−Mt

,0nw>, y>t−Mt
, · · · ,0nw>, y>t−1]>,

Ht := blkdiag(2ηMtP, 2ηMt−1Q, ηMt−1R, · · · , 2Q,R).
(11)

Given ut, the state sequence x̂t can be constructed from zt.
Let (x̂∗t , ŷ

∗
t , ŵ

∗
t ) and z∗t denote the optimal solution to (8),

considering the formulations in (9) and (10), respectively.
To solve Pt(xprior

t−Mt
,ut,yt), we consider optimization algo-

rithms that satisfies Assumption 5.

Assumption 5 Pt(xprior
t−Mt

,ut,yt) is solved by an optimiza-
tion algorithm whose iteration can be described by a nonlin-
ear mapping zk+1

t = Φ(zkt , z̃t), where k ≥ 0 is the iteration
number. Furthermore, given an initial solution z0

t , the Kth-
iteration solution zKt obtained from applying Φ(·) for K
times is feasible, i.e., satisfying (8b)-(8e), and satisfies

‖zKt − z∗t ‖ ≤ φ(K)‖z0
t − z∗t ‖, (12)

where φ(K) ∈ (0, 1)∀K > 0 and φ ∈ L.

Let (x̂Kt , ŷ
K
t , ŵ

K
t ) and zKt denote the sub-optimal solution

to (8) and define the sub-optimality error as εt := ‖zKt −z∗t ‖.
III. SUB-OPTIMAL MHE-BASED FEEDBACK CONTROL

In this section, we introduce a sub-optimal MHE scheme.
We characterize the closed-loop system controlled with the



Algorithm 1 Sub-Optimal MHE in Feedback Control

Require: K, M , Φ(·), z0
0 , xprior

0 , u0, y0;
For t = 0, 1, 2, · · · Do
1. Obtain x̂Kt by solving Pt(xprior

t−Mt
,ut,yt) for K iterations

using optimization algorithm Φ(·) with initial solution z0
t ;

2. Warm-starting: z0
t+1 ← Σtz

K
t ;

3. Update problem parameters: xprior
t−Mt

← x̂Kt−Mt|t, ut+1 ←
Υ(ut, π(x̂Kt )), yt+1 ← Υ(yt, yt);
4. Apply π(x̂Kt ) to the system (5);
End

proposed scheme as three interconnected subsystems and
show each subsystem is ISS. Lastly, we derive conditions
on the optimization iteration number that guarantee the
interconnected system is ISS w.r.t. the augmented disturbance
wt, through the small-gain theorem. We present the proofs
of Propositions 1-3 in the Appendix.

A. The Sub-Optimal MHE Scheme

Alg. 1 introduces the proposed sub-optimal MHE scheme,
employing a warm-start strategy. When t < M , the formu-
lation in (8) represents the full information estimator, which
grows in size as more information is obtained. Due to this,
the solution zKt of Pt(xprior

t−Mt
,ut,yt) has a lower dimension

compared to the solution zKt+1 of Pt+1(xprior
t−Mt+1,ut+1,yt+1)

when t < M . To ensure the warm-starting step can be
smoothly carried out for time steps t < M , we use the matrix

Σt :=

{
blkdiag(Inzt−nx−ny ,0nx+ny ), t < M,
Inzt , t ≥M,

(13)

in Step 2 to map zKt to Σtz
K
t , which has the same dimension

as zKt+1. In Step 3, the operator Υ(yt, yt) appends yt to the
end of the sequence yt for all t ≥ 0, and discards the first
element yt−Mt

in yt if t > M .

B. Interconnection of Three Subsystems

We identify three dynamic subsystems from Alg. 1:

Subsys. 1:
{
xt+1 = Axt +Bπ(xt + et) + w1

t ,
yt = Cxt + w2

t ,
(14a)

Subsys. 2: εt+1 = ΦK(εt, xt, yt, ut, et), (14b)
Subsys. 3: et+1 = E(et, xt, εt). (14c)

They describe the closed-loop controlled system (Subsys.
1), the sub-optimality error dynamics (Subsys. 2), and the
estimation error dynamics (Subsys. 3), respectively. Fig. 1
illustrates the interconnections between the three subsystems.

In subsystem 1, the controller π(xt) attempts to drive xt
to the origin. However, π(xt) is perturbed to π(x̂Kt|t) by et.
In subsystem 2, Pt(xprior

t−Mt
,ut,yt) is solved for K iterations

with warm-starting to reduce the sub-optimality error (drive
z0
t = Σt−1z

K
t−1 to z∗t ). The optimal solution z∗t can be seen

as a perturbed solution of z∗t−1, resulting from the problem
parameter update in Step 3 of Alg. 1. In subsystem 3, the
MHE attempts to drive the estimation error to zero. This
process is disturbed by the change in state xt and the sub-
optimality error εt. The stability of the interconnected system

Fig. 1: The interconnection of three subsystems.

(14) can be analyzed via the small-gain theorem, which
requires each subsystem to be ISS. Note that subsystem 1 in
(14a) already meets this requirement via Assumption 4.

C. ISS of the Sub-Optimality Error Dynamics (Subsystem 2)

To prove the sub-optimality error dynamics is ISS, we
first show the difference between two consecutive optimal
solutions z∗t−1 and z∗t is bounded w.r.t. the changes in the
parameters of Pt(xprior

t−Mt
,ut,yt).

Lemma 1 Suppose Assumptions 1-2 hold. Then, there exists
a Lipschitz constant LΦ > 1 such that the optimal solutions
of Pt−1(xprior

t−Mt−1,ut−1,yt−1) and Pt(xprior
t−Mt

,ut,yt) satisfy

‖Σt−1z
∗
t−1 − z∗t ‖ ≤ LΦ(‖z̃t−1 − Σ>t−1z̃t‖+ σt), (15)

with z̃t and z̃t−1 defined in (11), Σt defined in (13), and

σt :=

{
(1− η−1)‖Ht‖+ ‖A‖+ ‖B‖+ ‖C‖+ 2, t ≤M,
0, t > M.

(16)

Proof: We prove (15) by treating Pt(·) as a parametric
optimization problem, whose cost function is strongly convex
(from Assumption 2), inequality constraints are convex, and
equality constraints are affine. For t > M , using Theorem
3.1 in [15] and the fact Σt = Inzt for t ≥M from (13), we
know there exists a Lipschitz constant LΦ > 1 such that

‖Σt−1z
∗
t−1 − z∗t ‖ ≤ LΦ‖z̃t−1 − Σ>t−1z̃t‖. (17)

For t ≤ M , we consider an equivalent expression of
Pt(x̂0,ut,yt), given by P′t(x̂0,ut,yt, Ht, A,B, I

nx , C, Iny ).
The matrix Ht is from the cost (10). The last five matrices
are from the system constraints (8b) and (8c), i = t − 1,
respectively. Let P̌t := P′t(x̂0,ut,yt, η

−1Ht,0
nx ,0nx×nu ,

0nx ,0ny×nu ,0ny ), with optimal solution ž∗t . With A,B,
Inx , C, Iny = 0, P̌t is equivalent to Pt−1(x̂0,ut−1,yt−1)
with inactive system constraints at i = t − 1. Thus, ž∗t =
Σt−1z

∗
t−1. Similar to (17), we know there exists LΦ > 1

such that the optimal solutions of ž∗t and z∗t−1 satisfy

‖ž∗t − z∗t ‖ ≤ LΦσt ⇒ ‖Σt−1z
∗
t−1 − z∗t ‖ ≤ LΦσt. (18)

Since ‖z̃t−1 − Σ>t−1z̃t‖ = 0 for t ≤ M and σt = 0 for
t > M , we can combine (17) and (18) to obtain (15).

With the bound in (15), we can show the sub-optimality
error dynamics defined in (14b) is ISS:



Proposition 1 Consider Pt(xprior
t−Mt

,ut,yt) solved by an op-
timization algorithm Φ(·) for K iterations. Suppose Assump-
tions 1-5 hold. For t ≥ 0, the sub-optimality error εt satisfies

‖εt‖≤β2(‖ε0‖, t) + γ2,1(‖x[0,t−1]‖) + γ2,3(‖e[0,t−1]‖)
+ γw2 (‖w[0,t−1]‖) + γσ2 (‖σ[0,t−1]‖), (19)

where β2(s, t) := φ(K)ts, γ2,1(s) := C1(K)/(1− φ(K))s,
γ2,3(s) := C2(K)/(1− φ(K))s, γw2 (s) :=
C3(K)/(1− φ(K))s, and γσ3 (s) := φ(K)LΦ/(1− φ(K))s,
with C1(K), C2(K), and C3(K) defined in (25)-(27).

D. ISS of the Estimation Error Dynamics (Subsystem 3)

Inspired by [14], we first construct an M -step Lyapunov
function for (14c) based on Wδ(·) defined in (3).

Proposition 2 Suppose Assumptions 1-5 hold. Let H̄ :=
supt≥0(λ(Ht)). For t ≥ 0, the state estimate x̂Kt|t satisfies

Wδ(x̂
K
t|t, xt) ≤ 6ηMtWδ(x̂

K
t−Mt|t−Mt

, xt−Mt
)

+ 2H̄‖εt‖2 + 6

Mt∑
j=1

ηj−1‖wt−j‖2Q. (20)

Based on the M -step Lyapunov function in (20), we show
the estimation error dynamics is ISS.

Proposition 3 Suppose Assumptions 1-5 hold. Then, the
estimation error dynamics is ISS and x̂Kt|t satisfies

‖et‖ ≤β3(‖e0‖, t) + γ3,1(‖x[0,t−1]‖) + γ3,2(‖ε[0,t−1]‖)
+ γw3 (‖w[0,t−1]‖) + γσ3 (‖σ[0,t−1]‖), (21)

where β3(s, t) := Ce(K)
√
ρts, γ3,1(s) :=

√
2ΛH̄P C1(K)s,

γ3,2(s) := Cε(K)s, γw3 (s) := Cw(K)s, and γσ3 (s) :=√
2ΛH̄P φ(K)LΦs, with ρ satisfying ρM = 6ηM and Ce(K),

Cw(K), and Cε(K) defined in (28)-(30).

E. Stability of the Interconnected System

Given that subsystems 1, 2, and 3 are ISS satisfying (7),
(19), and (21), respectively, we can establish conditions on
the iteration number K such that the small-gain theorem is
satisfied and the interconnected system is ISS.

Theorem 1 Consider the interconnected system (14). Sup-
pose Assumptions 1-5 hold. Then, for any K satisfying

γ1,3 ◦ γ3,1(s) < s, (22)
γ2,3 ◦ γ3,2(s) < s, (23)
γ1,3 ◦ γ3,2 ◦ γ2,1(s) < s, (24)

for all s > 0, the interconnected system (14) is ISS w.r.t. the
augmented disturbance wt and virtual disturbance σt.

Remark 1 Since γ1,2, γ1,3, γ2,1, γ2,3, γ3,1, γ3,2 ∈ K, and
γ2,1, γ2,3, γ3,1 → 0 as K → ∞, there always exists a
iteration number K such that (22)-(24) are satisfied.

IV. CASE STUDY WITH AN MHE-MPC

To demonstrate Alg. 1 and the theoretical findings, we con-
sider the discrete-time linear system and the corresponding
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Fig. 2: (a) True state vs. Sub-optimal estimate; (b) Change
in sub-optimality error; (c) The estimated measurement noise
obtained from solving the MHE problem at t = 6.

MPC controller in the case study of [11]. We add an output
matrix C = [0.1, 0.3, 0.8, 0.5] to the system such that the
system is observable. The state x ∈ R4 and measurement
y ∈ R are unconstrained, and the input u ∈ [−1, 1] ×
[−1, 1]. Each element of the disturbance vector wt is sampled
independently and uniformly from [−0.1, 0.1]. We found
γ1,3(s) := 28.8s, through the method used in Proposition
2 of [16], and Lπ = 2.65, through a sample-based method.

The parameters of the MHE problem in (8) are M = 5,
Q = I4, R = 1, and η = 0.8, with P computed to satisfy
(2). Problem (8) is written in a condensed form and solved
using the partial gradient method [11] with convergence rate
‖zKt − z∗t ‖ ≤ 0.98K‖z0

t − z∗t ‖. Accordingly, we define
φ(K) := 0.98K . The Lipschitz constant LΦ = 5.32 is
determined through a sample-based method. Finally, the
iteration number K = 652 is computed, which satisfies (22)-
(24) with the previously defined parameters.

Given an initial state x0 = [12,−10, 10,−10]>, z0
0 =

xprior
0 = [7,−7, 3,−5]>, and empty sequences y0 and u0,

Alg. 1 is applied for 40 time steps. Fig. 2(a) shows the
state x1,t converges asymptotically to a neighbourhood of 0
and the sub-optimal estimate x̂K1,t converges asymptotically
to a neighbourhood of x1,t. Fig. 2(b) shows that the sub-
optimality error εt converges asymptotically to a neighbour-
hood of 0. Thus, subsystems 1-3 defined in (14a)-(14c)
are ISS. Fig. 2(c) shows the estimated measurement noise
sequence ŵ2,K

t obtained from solving (8) at time step t = 6,
which respects the constraint (in red) by the design of MHE.

V. CONCLUSION

In this work, we proposed a sub-optimal MHE scheme
applied to the control of linear systems with constraints.
By characterizing Alg. 1 as three interconnected subsystems,
we derived conditions on the optimization iteration number
for guaranteeing ISS of the interconnected system w.r.t. to
external disturbance and measurement noises. A possible
extension is to consider the stability of systems controlled
by sub-optimal MPC combined with sub-optimal MHE in
applications with limited computation resources.

VI. APPENDIX

We define some terms here for clarity:

C1(K) := 2φ(K)LΦ(1 +M(‖C‖+ Lπ)) (25)
C2(K) := 2φ(K)LΦ(1 +MLπ) (26)



C3(K) := 2φ(K)LΦM (27)

Ce(K) := 2

√
3ΛPPΛH̄P φ(K)LΦ(

√
ρ
−M

+ Lπ
√
ρ
−1

)

+ 4

√
3ΛPPΛH̄P φ(K)LΦLπ

M−1∑
i=1

√
ρ
−1−i

+
√

6ΛPP

+ 2

√
3ΛPPΛH̄P φ(K)LΦ(Lπ + 1)

√
ρ
−M−1

, (28)

Cw(K) :=

√
2ΛH̄P C3(K) +

√
6ΛQP (1−√ρ)−1

+ 4

√
3ΛH̄P ΛQPφ(K)LΦ (LπM + 1) (1−√ρ)−1, (29)

Cε(K) :=

√
2ΛH̄P φ(K) +

√
2ΛH̄P (1−

√
ρM )−1

+ 4ΛH̄P φ(K)LΦ (LπM + 1) (1−
√
ρM )−1. (30)

Proof of Proposition 1: We break the proof into two cases.

Case 1: For t ≤ M , due to the warm-start step (Step 2) in
Alg. 1, we have

‖z0
t − z∗t ‖ = ‖Σt−1z

K
t−1 − z∗t ‖ (31)

≤ ‖Σt−1z
K
t−1 − Σt−1z

∗
t−1‖+ ‖Σt−1z

∗
t−1 − z∗t ‖ (32)

(15)
≤ ‖Σt−1‖‖zKt−1 − z∗t−1‖+ LΦσt. (33)

By multiplying φ(K) on both sides of the above inequality,
and using (12) and the fact ‖Σt‖ = 1∀t ∈ R, we have

‖εt‖≤φ(K)‖εt−1‖+ φ(K)LΦ‖σ[0,t−1]‖. (34)

where we bounded σt with ‖σ[0,t−1]‖.

Case 2: For t > M , due to the warm-start step (Step 2) in
Alg. 1, and Σ>t = Inzt and σt = 0 for t > M , we have

‖z0
t − z∗t ‖ ≤ ‖zKt−1 − z∗t−1‖+ ‖z∗t−1 − z∗t ‖ (35)

(15)
≤ ‖zKt−1 − z∗t−1‖+ LΦ‖z̃t−1 − z̃t‖ (36)

≤ LΦ

Mt−1∑
i=0

(‖ut−1−i − ut−2−i‖+ ‖yt−1−i − yt−2−i‖)

+ LΦ‖x̂Kt−M |t−M − x̂
K
t−M−1|t−M−1‖+ ‖εt−1‖, (37)

where we used xprior
t−M = x̂Kt−M |t−M and xprior

t−M−1 =

x̂Kt−M−1|t−M−1 in (37). Given the above inequality, we can
bound ‖x̂Kt−M |t−M − x̂

K
t−M−1|t−M−1‖ with

‖x̂Kt−M |t−M − x̂
K
t−M−1|t−M−1‖

=‖(xt−M + et−M )− (xt−M−1 + et−M−1)‖ (38)
≤‖xt−Mt‖+ ‖xt−Mt−1‖+ ‖et−Mt‖+ ‖et−Mt−1‖, (39)

bound ‖ut−1−i − ut−2−i‖ with

‖ut−1−i − ut−2−i‖
(6)
≤ Lπ‖x̂Kt−1−i − x̂Kt−2−i‖

≤ Lπ(‖xt−1−i‖+ ‖xt−2−i‖+ ‖et−1−i‖+ ‖et−2−i‖), (40)

and bound ‖yt−1−i − yt−2−i‖ with

‖yt−1−i − yt−2−i‖ ≤ ‖wt−1−i‖+ ‖wt−2−i‖
+ ‖C‖‖xt−1−i‖+ ‖C‖‖xt−2−i‖. (41)

Using the resulting bound to replace the term ‖z0
t − z∗t ‖ on

the r.h.s. of (12), we have that

‖εt‖ ≤ φ(K)‖εt−1‖+ C1(K)‖x[0,t−1]‖+ C3(K)‖w[0,t−1]‖
+ φ(K)LΦ (‖et−M‖+ ‖et−M−1‖)

+ φ(K)LΦ

M−1∑
i=0

(Lπ(‖et−1−i‖+ ‖et−2−i‖)) . (42)

where the ‖xt‖ and ‖wt‖ terms are bounded with ‖x[0,t−1]‖
and ‖w[0,t−1]‖, respectively. Next, bounding the ‖et‖ terms
in (42) with ‖e[0,t−1]‖ gives

‖εt‖≤φ(K)‖εt−1‖+ C1(K)‖x[0,t−1]‖
+ C2(K)‖e[0,t−1]‖+ C3(K)‖w[0,t−1]‖. (43)

Combining the r.h.s. of (34) and (43) gives

‖εt‖≤φ(K)‖εt−1‖+ C1(K)‖x[0,t−1]‖+ C2(K)‖e[0,t−1]‖
+ C3(K)‖w[0,t−1]‖+ φ(K)LΦ‖σ[0,t−1]‖, (44)

which holds for all time steps t > 0. Finally, applying
(44) for t times and using the geometric series to simplify∑t−1
i=0 φ(K)(t−1−i) as 1/(1− φ(K)) yield (19).

Proof of Proposition 2: We first derive an intermediate
bound on Wδ(x̂

K
t|t, xt). Due to Assumption 5, the sub-

optimal solution (x̂Kt , ŷ
K
t , ŵ

K
t ) is feasible for (8) and forms

a feasible trajectory of the system in (1). Given the actual
trajectory (x[t−M,t],y[t−M,t−1],w[t−M,t−1]), we can apply
the bound in (4) for Mt times to obtain

Wδ(x̂
K
t|t, xt) ≤ η

MtWδ(x̂
K
t−Mt|t, xt−Mt

)

+
∑Mt

j=1 η
j−1(‖ŵKt−j|t − wt−j‖

2
Q + ‖ŷKt−j|t − yt−j‖

2
R)

(45)
≤ 2ηMt‖x̂Kt−Mt|t − x̂

K
t−Mt|t−Mt

‖2P
+2ηMt‖x̂Kt−Mt|t−Mt

− xt−Mt
‖2P +

∑Mt

j=1 η
j−12‖wt−j‖2Q

+
∑Mt

j=1 η
j−1(‖ŷKt−j|t − yt−j‖

2
R + 2‖ŵKt−j|t‖

2
Q) (46)

≤ 2ηMtWδ(x̂
K
t−Mt|t−Mt

, xt−Mt) +
∑Mt

j=1 η
j−12‖wt−j‖2Q

+VMHE(x̂Kt−Mt|t, ŷ
K
t , ŵ

K
t ) (47)

where (46) is obtained by applying the triangle inequality to
Wδ(x̂

K
t−Mt|t, xt−Mt) and ‖ŵKt−j|t−wt−j‖

2
Q. Next, we derive

a bound on VMHE(x̂Kt−Mt|t, ŷ
K
t , ŵ

K
t ). We know that

VMHE(x̂Kt−Mt|t, ŷ
K
t , ŵ

K
t ) = ‖zKt − z̃t‖2Ht

(48)

≤ 2‖zKt − z∗t ‖2Ht
+ 2‖z∗t − z̃t‖2Ht

(49)

≤ 2‖zKt − z∗t ‖2Ht
+ 2VMHE(x̂∗t−Mt|t, ŷ

∗
t , ŵ

∗
t ) (50)

≤ 2‖εt‖2Ht
+ 2VMHE(xt−Mt

,y[t−Mt,t−1],w[t−Mt,t−1])
(51)

where (51) holds since (x[t−Mt,t],y[t−Mt,t−1],w[t−Mt,t−1])
forms a sub-optimal solution to (8). Using the above bound
with (47) and then using (9) give

Wδ(x̂
K
t|t, xt) ≤ 2ηMtWδ(x̂

K
t−Mt|t−Mt

, xt−Mt)

+
∑Mt

j=1 η
j−12‖wt−j‖2Q + 2‖εt‖2Ht

+ 2VMHE(xt−Mt ,y[t−Mt,t−1],w[t−Mt,t−1]) (52)



= 6ηMtWδ(x̂
K
t−Mt|t−Mt

, xt−Mt
) +

Mt∑
j=1

ηj−16‖wt−j‖2Q

+ 2‖εt‖2Ht
. (53)

Lastly, using ‖εt‖2Ht
≤ λ(Ht)‖εt‖2 ≤ H̄‖εt‖2 in the last

equality gives (20).

Proof of Proposition 3: Let t = cM + l, with l ∈ I[0,M−1]

and c ∈ I≥0. At time step l, plugging Mt = l into (20) gives

Wδ(x̂
K
l|l, xl) ≤6ηlWδ(x̂

K
0|0, x0) + 2H̄‖εl‖2

+ 6

l∑
j=1

ηj−1‖wl−j‖2Q. (54)

At time step t, applying (20) for c times, and bounding
the resulting Wδ(x̂

K
l|l, xl) with (54) gives

Wδ(x̂
K
t|t, xt) ≤ ρ

kM6ηlWδ(x̂
K
0|0, x0) + 2H̄

c−1∑
i=0

ρiM‖εt−iM‖2

+ 2H̄ρkM‖εl‖2 + 6

c∑
i=0

ρiM
M∑
j=1

ηj−1‖wt−iM−j‖2Q (55)

≤ 2H̄

c∑
i=0

ρiM‖εt−iM‖2 + 6

t−1∑
j=0

ρj‖wt−j−1‖2Q

+ 6ρtWδ(x̂
K
0 , x0) (56)

where ρM is used to replace 6ηM in (55). To obtain (56), ρ
is used to bound η, since ρ/η = 61/M > 1. Then, applying
the bounds λ(P )‖et‖2 ≤ Wδ(x̂

K
t|t, xt) ≤ λ(P )‖et‖2 and

‖wt‖2Q ≤ λ(Q)‖wt‖2 to (56) gives

‖et‖2 ≤ 6ΛQP

t−1∑
j=0

ρj‖wt−j−1‖2 + 2ΛH̄P

c∑
i=1

ρiM‖εt−iM‖2

+ 2ΛH̄P ‖εt‖2 + 6ρtΛPP ‖e0‖2. (57)

Finally, by bounding ‖wt−j−1‖ with ‖w[0,t−1]‖, bounding
‖εt−iM‖ with ‖ε[0,t−1]‖, taking square roots on both sides
of (57) using

√
a+ b ≤

√
a+
√
b, and applying the geometric

series, we obtain

‖et‖ ≤
√

6ΛPP
√
ρ
t‖e0‖+

√
6ΛQP (1−√ρ)−1‖w[0,t−1]‖

+

√
2ΛH̄P (1−

√
ρM )−1‖ε[0,t−1]‖+

√
2ΛH̄P ‖εt‖. (58)

To eliminate ‖εt‖ in (58), we consider two cases:
Case 1: For t ≤M , ‖εt‖ can be bounded by (34) to obtain

‖et‖ ≤
√

6ΛPP
√
ρ
t‖e0‖+

√
6ΛQP (1−√ρ)−1‖w[0,t−1]‖

+

√
2ΛH̄P ((1−

√
ρM )−1 + φ(K))‖ε[0,t−1]‖

+

√
2ΛH̄P φ(K)LΦ‖σ[0,t−1]‖. (59)

where the resulting ‖εt−1‖ is bounded by ‖ε[0,t−1]]‖.
Case 2: For t > M , ‖εt‖ can be bounded by (42) to obtain

‖et‖ ≤
√

6ΛPP
√
ρ
t‖e0‖+

√
2ΛH̄P C1(K)‖x[0,t−1]‖

+ (

√
6ΛQP (1−√ρ)−1 +

√
2ΛH̄P C3(K))‖w[0,t−1]‖

+

√
2ΛH̄P ((1−

√
ρM )−1 + φ(K))‖ε[0,t−1]‖

+

√
2ΛH̄P φ(K)LΦ

M−1∑
i=0

(Lπ(‖et−1−i‖+ ‖et−2−i‖))

+

√
2ΛH̄P φ(K)LΦ (‖et−M‖+ ‖et−M−1‖) . (60)

Using (58) to bound ‖et−1−i‖, ‖et−2−i‖, i ∈ [0,M − 1] in
(60) and simplifying the expression gives

‖et‖ ≤ Ce(K)
√
ρ
t‖e0‖+

√
2ΛH̄P C1(K)‖x[0,t−1]‖

+ Cε(K)‖ε[0,t−1]‖+ Cw(K)‖w[0,t−1]‖. (61)

Since Ce(K) ≥
√

6ΛPP , Cε(K) ≥
√

2ΛH̄P ((1−
√
ρM )−1 +

φ(K)), and Cw(K) ≥
√

6ΛQP (1−√ρ)−1, we can combine
(59) and (61) to obtain (21), which holds for t ≥ 0.
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