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Abstract— This paper considers iterative learning control
design for discrete dynamics in the presence of backlash
in the actuators. A new control design for this problem is
developed based on the stability theory for nonlinear repetitive
processes. An example of this design’s effectiveness is where
the dynamics model was obtained using data collected from
frequency response tests on a physical system.

I. INTRODUCTION

Iterative learning control (ILC) emerged from the problem
of how to better the operation of robots that complete
the same finite-duration task over and over again [1]. The
key feature is that the dynamics repetitively operate over a
finite duration, where one example is a pick-and-place robot
undertaking the following tasks in sequence, i) collect the
payload from a specified location, ii) transfer the payload
over a fixed time interval, iii) place the payload on a moving
conveyor under synchronization, iv) return to the starting
location, and v) repeat i)-iv) as many times as required or
until a halt is needed for maintenance or other reasons.

In the literature, each repetition is termed a trial (iteration
or pass are also used), and the finite duration is known as the
trial length. Suppose that a reference trajectory is specified
representing the desired behavior of the output on any trial.
Then the error on each trial is defined as the difference
between this trajectory and the output of this trial. Also the
control problem can be specified as the construction of a
sequence of trial inputs that force the sequence of trial errors
to converge, under an appropriate norm, with the trial number
either to zero (the ideal case) or within a specified tolerance.

A prevalent form of ILC law constructs the input for the
subsequent trial as the sum of the previous trial input plus a
correction. Once a trial is complete, all information generated
during its execution is available, at the cost of storage, to
update the control input to be applied on the subsequent trial.
Consider discrete dynamics at sample p on trial k: Then the
construction of the following trial input at this sample can,
as one example, use information from sample p + λ on the
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previous trial. Using such information is the distinguishing
feature of ILC over alternative forms of control action.

A prevalent form of ILC law constructs the input for the
subsequent trial as the sum of the previous trial input plus a
correction. Once a trial is complete, all information generated
during its execution is available, at the cost of storage, to
update the control input to be applied on the subsequent trial.
Consider discrete dynamics at sample p on trial k: Then the
construction of the following trial input at this sample can,
as one example, use information from sample p + λ on the
previous trial. Using such information is the distinguishing
feature of ILC over alternative forms of control action.

Early results on ILC research can be found, e.g., in the sur-
vey papers [2], [3]. Since then, ILC has remained an active
area of research both in developing new theoretical results
and design methods and experimental validation and imple-
mentation. More recent developments include applications to
additive manufacturing, e.g. high-precision multilayer laser
deposition systems [4], robotic-assisted stroke rehabilitation,
where the initial results are in [5] with more recent work
in, e.g., [6]. Supporting clinical trial results have also been
reported. Also, an application to heart ventricular support
devices, e.g., [7] has been reported.

This paper reports new results on two aspects of ILC
design. The first is the problem of actuator backlash arising in
an implementation, which introduces nonlinearity into a lin-
ear design. The appearance of nonlinearities in the actuators
can have, at the very least, a detrimental effect on the control
signal applied to the system. Typical effects of nonlinear
behavior in the actuators include reducing the achievable
accuracy, slowing down the ILC law convergence from trial
to trial or result in complete failure. Consequently, control
design in the presence of such implementation nonlinearities
is a critical issue in some applications.

The second aspect of the ILC design considered in this
paper relates to using data from previous trials. In many
ILC designs, the input for the subsequent trial is constructed
as the sum of the input used on the previous trial plus a
correction term that uses information from the error on the
previous trial. In general, however, information (at the cost of
data storage) from all previously completed trials is available
to compute the input for the subsequent trial. In this paper,
the interest is in using a law (sometimes called higher-order)
that uses a static and dynamic combination of previous input
vectors, the current trial error, and the errors on a finite
number of previous trials. Particularly, using a finite number
of control inputs on previous trials for design in the presence
of input backlash is considered.



Previous research on ILC with backlash includes [8],
where a Timoshenko beam system described by a second
order distributed parameter model was considered, and the
backlash term is divided into a linear term and an unknown
bounded term, which is estimated. Also, in [9], a model
of a two-link rigid-flexible manipulator with backlash is
considered, where the analysis is in an identical manner
to [8], and the effects of an external disturbance are also
considered. Both of these designs apply only to the specific
systems they consider. In [10], an adaptive ILC scheme for
a particular class of nonlinear systems with unknown time-
varying delays and control direction preceded by an unknown
nonlinear backlash-like hysteresis is considered.

This paper develops a new design for ILC in the presence
of backlash in the actuator, where the control law includes
the weighted sum of the control signals on a finite number
of previous trials The approach is based on representing
the dynamics in the form of a repetitive process, where
such processes are a a distinct class of 2D systems and on
the further development of the vector Lyapunov functions
approach to the stability of nonlinear repetitive processes,
see, e.g. [11]. A simulation-based case study using a model
of a physical process constructed from measured frequency
response data highlights the benefits of the new design.

Throughout this paper, the notation for variables is of the
form hk(p), 0 ≤ p ≤ N − 1, k ≥ 0, where h denotes
the scalar or vector-valued variable under consideration, N
denotes the number of samples along a trial (N times the
sampling period gives the trial length) and the integer k
denotes the trial number. Moreover, � 0 and ≺ 0 denote a
symmetric positive definite and a symmetric negative definite
matrix. Also, � 0 and � 0 denote, respectively, a symmetric
positive semi-definite and a symmetric positive semi-definite
matrix.

II. PROBLEM DESCRIPTION

Consider a single-input single-output discrete-time system
operating in a repetitive mode, where on trial k the dynamics
are described by the state-space model

xk(p+ 1) = Axk(p) +Bψk(p),

ψk(p) = back(uk(p)), (1)
yk(p) = Cxk(p) p ∈ [0, N − 1], k ≥ 1,

where xk(p) ∈ Rnx is the state vector, uk(p) is the control
input, yk(p) is the trial profile (or output), and ψk(p) denotes
the backlash function. This last function is illustrated in
Fig. 1), and described [12] by

ψk(p) =

 ml(uk(p)− cl), if uk(p) ≤ uk(p),
mr(uk(p)− cr), if uk(p) ≥ uk(p),
ψk(p− 1), if uk(p) < uk(p) < uk(p),

(2)

where ml, mr, cr are positive constants, cl is a negative
constant, and

uk(p) =
1

ml
ψk(p− 1) + cl,

uk(p) =
1

mr
ψk(p− 1)) + cr.

Fig. 1. Backlash model (shown for input u and output y.

This paper considers the case when mr = ml = m, and
cl = cr which is of application relevance (the other cases
follow by appropriate amendments to the analysis in this
paper). Also, no loss of generality results from assuming that
the boundary conditions are xk(0) = 0 and yk(0) = f(p),
where f(p) is known scalar functions of p, p ∈ [0, N − 1].
It is also assumed that the pair {A,B} is controllable and
CB 6= 0.

Let yref(p) ∈ R, 0 ≤ p ≤ N − 1 denote the supplied
reference signal and then

ek(p) = yref(p)− yk(p) (3)

is the error on trial k. The control design problem is to
construct a control input sequence {uk}, such that

||ek(p)|| ≤ κ%k + µ, κ > 0, µ ≥ 0, 0 < % < 1, (4)
lim
k→∞

||uk(p)|| = ||u∞(p)|| <∞, (5)

where the bounded variable u∞(p) is termed the learned
control, || · || denotes the chosen norm (which is the absolute
value for scalar functions). If there is no backlash present,
the design developed in this paper reduces to the case for
linear dynamics, and limk→∞ ||ek(p)|| = 0 is ensured.

A commonly used ILC law constructs the input for the
subsequent trial as the sum of the previous trial input plus a
correction term that uses previous trial data. This approach is
considered in this paper, and the control law has the structure

ψk+1(p) = back(ψk(p) + δuk+1(p)), (6)

where δuk+1(p) is the control update that is designed using
previous trial information. As discussed in the previous
section information (at the cost of data storage) from all
previously completed trials is available to compute the input
for the subsequent trial. In this paper, the interest is in a
law (sometimes called higher-order) uses a finite number of
control inputs from d > 1 previous trials for design. The
premise is that the use of such information will assist in
overcoming the effects of the backlash and progress in this
respect providing motivation for considering other higher-
order laws.

In the remainder of this paper, ψk(p) is replaced by

Ψk(p) =

d∑
i=0

τiψk−i(p), (7)



where d is the number of previous trials whose control
input directly contributes to the computation of the new trial
control and τi, 1 ≤ i ≤ d, is a non-negative scalars, and
and ψk−i = 0 if k − i < 0. Next, the formulation of the
dynamics as a nonlinear repetitive process is detailed. Note
also from this point onwards ψk(p) in (6) denotes this new
structure.

III. REPRESENTATION AS A NONLINEAR REPETITIVE
PROCESS

Introduce the variables x̌k,1(p) = ψk(p), x̌k,2(p) =
ψk−1(p), . . . , x̌k,d(p) = ψk−d+1(p), x̌k,d+1(p) = ψk−d(p)
and the vector x̌k = [x̌>k,1 . . . x̌

>
k,d+1]>. Then by construction

x̌k(p) = Adx̌k−1(p) +Bdψk(p), (8)

where

Ad =


0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 , Bd = [1 0 0 . . . 0]>.

Using (8), the first equation in (1) can be written as

xk(p+ 1) = Axk(p) +BCdx̌k(p), (9)

where Cd = [τ0 0 . . . 0 τd].

Introduce, for the design purpose only, the auxiliary vec-
tors

ηk(p) = xk(p)− xk−1(p),

η̌k(p) = x̌k(p)− x̌k−1(p). (10)

Then using (8) and (10) it follows that

η̌k(p) = Adη̌k−1(p) +Bd∆ψk(p), (11)

where ∆ψk(p) = ψk(p)− ψk−1(p). Also

ηk(p+ 1) = Aηk(p) +BCdAdη̌k−1(p)

+ BCdBd∆ψk(p). (12)

Using (3) ek(p) = yref (p)−Cxk(p), and then using (12)
gives the following system of equations in terms of the
incremental variables

ηk(p+ 1) = Aηk(p) +BCdAdη̌k−1(p)

+BCdBd∆ψk(p),

η̌k(p) = Adη̌k−1(p) +Bd∆ψk(p), (13)
ēk(p) = −CAηk(p)− CBCdAdη̌k−1(p)

+ ēk−1(p)− CBCdBd∆ψk(p),

where ēk(p) = ek(p+ 1). Also, consider the case of (6)

δuk(p) = K1ηk(p) +K2ēk−1(p), (14)

where K1 and K2 are matrices of compatible dimensions to
be designed. Then, using (13) and (14), the model of the
controlled dynamics can be written as

ηk(p+ 1) = Acηk(p) +BCdAdη̌k−1(p)

+BCdBdK2ēk−1(p) +BCdBdϕk(p),

η̌k(p) = BdK1ηk(p) +Adη̌k−1(p)

+BdK2ēk−1(p) +Bdϕk(p), (15)
ēk(p) = −CAcηk(p)− CBCdAdη̌k−1(p)

+ (1− CBCdBdK2i)ēk−1(p)

− CBCdBdϕk(p),

where Ac = A + BCdBdK1, ϕk(p) = ∆ψk(p) − δuk(p).
Also, it follows from (2) and Fig. 1 that ∆ψk(p) = ψk(p)−
ψ(uk−1(p) satisfies the constraints

mδuk(p)−m∆c ≤ ∆ψk(p) ≤ mδuk(p) +m∆c,

where ∆c = cr − cl. Also ϕk(p) satisfies the constraints

m1δuk(p)−m∆c ≤ ϕk(p) ≤ m1δuk(p) +m∆c,

or

m2(∆c)2 − [ϕk(p)−m1δuk(p)]2 ≥ 0, (16)

where m1 = m − 1. If mr = ml = m, back(mu) =
mback(u) and hence, without the loss of generality, the case
m = 1 will be considered and the quadratic constraint (16)
can then be written as

(∆c)2 − ϕk(p)2 ≥ 0. (17)

The model (15) is in the form of a discrete repetitive
process, a particular class of 2D systems. In the presence of
backlash, the ILC dynamics are nonlinear, and there has been
recent work on developing a stability theory for nonlinear
repetitive processes. One approach is based on the use of
vector Lyapunov functions [11]. This theory is used for ILC
design in this paper, starting from the convergence conditions
given in the next section.

IV. ANALYSIS AND DESIGN

Introduce the vector εk(p) = [η̌>k (p)ēk−1(p)]> and the
vector Lyapunov function for dynamics described by (15) as

V (ηk(p), εk(p)) =

[
V1(ηk(p))
V2(εk(p))

]
, (18)

where V1(ηk(p)) > 0, ηk(p)) 6= 0, V2(εk(p)) >
0, εk(p) 6= 0, V1(0) = 0, V2i(0) = 0 and define the
counterpart of the divergence operator along the trajectories
of (15) as

DV (ηk(p), εk(p)) = V1(ηk(p+ 1))− V1(ηk(p))

+ V2(εk+1(p))− V2(εk(p)). (19)

For ease of presentation this last property will be referred to
as the divergence operator in the remainder of this paper.



Theorem 1: Suppose that there exists a vector Lyapunov
function (18) and positive scalars c1, c2, c3 and γ for dynam-
ics described by (15) such that

c1||ηk(p)||2 ≤ V1(ηk(p)) ≤ c2||ηk(p)||2, (20)

c1||εk(p)||2 ≤ V2(εk(p)) ≤ c2||εk(p)||2, (21)

DV (ηk+1(p), ek(p)) ≤ γ
− c3(||ηk+1(p)||2 + ||εk(p)||2). (22)

Then the error convergence conditions of (4) hold under the
ILC law (6) where δuk+1(p) is given by (14).

Proof: Calculating divergence along the trajectories
(15) and following the same steps as in the proof of Theorem
1 in [13] gives

||ek(p)||2 ≤ ||εk(p)||2 ≤ λk
p∑

q=0

λp−q||ε0(q)||2 +
γ

c1(1− λ)2
,

where λ = 1− c̄3
c2

and c3 ≤ c̄3 < c2, which implies that (4)
holds for

% = λ, κ =
α

1− λ
, α = max

q
||ε0(q)||2, δ =

γ

c1(1− λ)2

.
Two ILC designs are developed in this paper, termed one

step and two step, respectively.

A. One Step Method

Consider the vector Lyapunov function (18) along the
trajectories of (15) in the case when

V1(ηk(p)) = η>k (p)P1ηk(p),

V2(εk(p)) = ε>k (p)P2εk(p),

where P1 � 0 and P2 � 0 and set P = diag[P1 P2]. Also,
introduce ξk(p) = [ηk(p)> η̌k(p)> ēk(p)]> (where in what
follows the dependence of some variables on k and p is
omitted). Computing (19) along trajectories of (15), gives

DVi(η, ε) = [(Ā+B̄KH)ξ + B̄ϕ]>P [(Ā

+ B̄KH)ξ + B̄ϕ]− ξ>Pξ, (23)

where K = [K1 K2],

Ā =

 A BCdAd 0
0 Ad 0
−CA −CBCdAd 1

 ,
B̄i =

 BCdBd

Bd

−CBCdBd

 H =

[
I 0 0
0 0 1

]
. (24)

Since V1(η) � 0 and V2(ε) � 0, (20) and (21) of
Theorem 1 hold.

A sufficient condition for (22) to hold under the con-
straints (17) is that

DV (η, ε) + τ((∆c)2 − ϕ2)

≤ γ − ξ>[Q+ (KH)>RKH]ξ (25)

holds for all ϕ and ξ, where Q � 0 and R � 0 are matrices
of compatible dimensions and τ > 0 (see also [14]). The
inequality (25) holds if γ = τ(∆c)2 and[

(Ā+ B̄KH)>P (Ā+ B̄KH)− P +M
B̄TP (Ā+ B̄KH)

(Ā+ B̄KH)>PB̄
B̄>PB̄ − τ

]
� 0,

where M = Q+(KH)>RKH . Rewriting this last inequality
as [

−P 0
0 −τ

]
+

[
(Ā+ B̄KH)> I (KH)>

B̄> 0 0

]

×

 P 0 0
0 Q 0
0 0 R

 (Ā+ B̄KH) B̄
I 0

KH 0

 � 0

and applying the Schur’s complement lemma gives
−X 0 (Ā+ B̄Y H)>

0 −τ B̄>

(Ā+ B̄Y H) B̄ −X
X 0 0
Y H 0 0

X (Y H)>

0 0
0 0

−Q−1 0
0 −R−1

 � 0, i ∈ [0, d], (26)

where X = P−1, Y = KW and W is a solution of

HX = WH. (27)

If the system of linear matrix inequalities (26) (LMIs) and
the linear matrix equation (27) are solvable for the variables
X, Y and W , then the ILC law (6) ensures that the
convergence condition (4) holds where δuk+1(p) is given
by (14) and

K = [K1 K2] = YW−1.

To prove the boundedness conditions (5) for this ILC law,
first note that the convergence condition (4) and (3) imply
that ||Cx∞(p)|| = limk→∞ ||Cxk(p)|| is bounded for all
p ∈ [0, N − 1]. If τ0 6= 0 it follows from (1) and using (7)
that

ψk(p− 1) = τ−1
0 (CB)−1[Cxk(p)− CApxk(0)

−
p−1∑
q=0

CAp−1−qB

d∑
i=1

τiψk−i(q)−
p−2∑
q=0

CAp−1−qBτ0ψk(q)].

If p = 2

ψk(1) = τ−1
0 (CB)−1[Cxk(2)− CA2xk(0)

−
1∑

q=0

CAp−1−qB

d∑
i=1

τiψk−i(q)− CABτ0ψk(0)] (28)



All terms in the right hand side of (28) are bounded on
the considered interval, hence ψk(1) is also bounded on this
interval.

If p = 3

ψk(2) = τ−1
0 (CB)−1[Cxk(p)− CA3xk(0)

−
2∑

q=0

CA2−qB

d∑
i=1

τiψk−i(q)−
1∑

q=0

CA2−qBτ0ψk(q)].

(29)

Since ψk(1) is bounded, all terms in the right-hand side
of(29) are bounded, and hence ψk(2) is also bounded on this
interval. Repeating these derivations for all p gives that ψk(p)
is bounded for all p ∈ [0, N − 1] and k = 0, 1, 2, . . .. Then
||ψ∞(p)|| = limk→∞ ||ψk(p)|| <∞ and by the definition of
the inverse backlash function [12] the boundedness condition
(5) holds. Finally, in the case of τ0 = 0, the analysis above
should be repeated for ψk−m(p), where m is minimum
number for which τm 6= 0.

B. Two Step Method

Depending on the specific choice of the vector Lyapunov
function (18) entries, various sufficient convergence condi-
tions can be obtained based on Theorem 1, and it is difficult
to evaluate in advance how the level of conservativeness of
each of them. For example, it could be that the ILC law
constructed using a linear model ensures convergence also
ensures convergence for nonlinear dynamics. This section
develops an alternative design.

Consider the discrete Riccati inequality

Ā>P̄ Ā− (1− σ)P̄ − Ā>P̄ B̄[B̄>P̄ B̄

+R]−1B̄>P̄ Ā+Q � 0 (30)

relative to the matrix P̄i = diag[P1 P2] � 0, where P1 ∈
Rnx×nx , P2 ∈ Rd+2×d+2, 0 < σ < 1. Applying Schur’s
complement formula gives that if the LMI’s (1− σ)X̄ XĀ> X̄

ĀX̄ X̄ + B̄R−1B̄> 0
X̄ 0 Q−1

 � 0,

Xi � 0 (31)

are solvable for X = diag[X1 X2] � 0, where X1 and X2

have the same dimensions as P1 and P2, respectively, then
P = X−1.

Define

L = [ L1︸︷︷︸
nx

L2︸︷︷︸
d+1

L3︸︷︷︸
1

]

= −[B̄>P̄ B̄ +R]−1B̄>P̄ Ā (32)
F = [ F1︸︷︷︸

nx

0︸︷︷︸
d+1

F3︸︷︷︸
1

] = LΘ, (33)

where

Θ =

 Θ1 0 0
0 0 0
0 0 Θ3



is a matrix with blocks of compatible dimensions, satisfying
the LMI’s[

M −MΘ−ΘM −Q Θ
√
M√

MΘ −I

]
� 0 (34)

and M = Ā>P̄ B̄[B̄>P̄ B̄ + R]−1B̄>P̄ Ā. The following
result can now be established.

Theorem 2: Assume that for weighting matrices Q � 0
and R � 0 and scalar 0 < σ < 1 the LMI’s (31), (34) and[

(Ā+ B̄KH)>S(Ā+ B̄KH)− S
B̄>i S(Ā+ B̄KH)

(Ā+ B̄KH)>SB̄
B̄>SB̄ − τ

]
≺ 0, (35)

where

K = [F1Θ1 F3Θ3] (36)

are solvable relative to X , Θ, τ > 0 and S = diag[S1 S2] �
0 with blocks of the same dimensiomn as P1 and P2. Then
the ILC law that ensures that convergence condition (4) holds
and also the boundedness condition (5) is given by (6) where
δuk+1(p) is given by (14) and K = [K1 K2] by (36).

Proof: The inequality (35) implies that for all ξ and ϕ
including those satisfying (17)

[(Ā+ B̄KH)ξ + B̄ϕ]>S[(Ā

+ B̄KH)ξ + B̄ϕ]− ξ>Sξ − ϕ2 < 0. (37)

Since the left hand side is quadratic form relative to ξ and ϕ
and S > 0 then all the conditions of Theorem 1 are satisfied
and convergence condition (4) holds for γ = τ(∆c)2. The
boundedness condition (5) is proved by the same way as in
previous section.
Next, the idea outlined at the beginning of this section can be
fully developed. Consider, therefore, the system (1) without
backlash. In this case the ILC law has form

uk+1(p) = uk(p) + δuk+1(p).

If δuk+1(p) is obtained as in Theorem 2 then it follows as
corollary of theorem 2 from [13] that for this linear case
conditions (4), (5) hold with γ = 0 and by this reason the
condition of this Theorem seems less conservative compared
to the conditions of the previous section.

V. CASE STUDY

As an example, consider the model of one-axis of the
multi-axis gantry robot described in [15]. Frequency response
tests (also detailed in [15]) result in the following 3rd order
continuous-time transfer-function as an adequate model of
the dynamics to use for control law design.

G(s) =
23.7356(s+ 661.2)

s(s2 + 426.7s+ 1.744 · 105)
. (38)

The reference trajectory is the same as in [15] with a trial
length of 2 secs. For discrete design, a sampling period of
0.01 secs was used and in the backlash nonlinearity (Fig. 1)
m = 1 and cr = −cl = c.



As representative results two cases for d = 1 are given,
and hence in (8)

Ad =

[
0 0
1 0

]
, Bd =

[
1
0

]
, Cd = [τ0 τd].

Also in both cases Q = diag[1 1 104 10 10 0.8 · 104], R =
10−2, σ = 0.0125.

Case 1 is for τ0 = τd = 1, and hence on trial k + 1
information from both trials k and k − 1 are used. In this
case Theorem 2 gives

K1 = [−1.6872 − 1.3464 − 551.7177], K2 = 30.1069.

Case 2 is when τ0 = 1, τd = 0, and hence on trial k + 1
only information from trial k is used In this cas Theorem 2
gives

K1 = [−1.1315 − 0.8714 − 357.8247], K2 = 36.2096.

To measure the performance of this ILC law , the root
mean square error for each trial is used, i.e.,

RMS(k) =

√√√√ 1

N

N∑
p=0

||ek(p)||2, (39)

Figure 2 shows that the Case 1 design accelerates the trial-

Fig. 2. The RMSk progression for c = 0.003: Case 1 (red line),
Case 2 (blue line).

to-trial error convergence.
The parameter c in Fig. 1 determines the dead-zone in the

system and it is of interest to examine the effects of varying
this parameter, where here interest is restricted to the Case 1
design. In this case, Fig. 3 shows progression of the RMSk

progression for two values of c. A greater value of c results
in the trial-to-trial error converging to a larger value (recall
that if the nonlinearity is present then convergence to zero
error may not occur).

Fig. 3. The RMSk progression for the Case 1 design with c =
0.001 (red line) and c = 0.003 (blue line).

VI. CONCLUSIONS AND FUTURE WORK

This paper has developed new results on the effects of
actuator backlash on the performance of ILC designs for
discrete linear systems. Moreover, the use of a weighted sum
of previous trial inputs in the computation the control input
for the next trial has been considered. A numerical example
confirms the results obtained.
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