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Abstract— This paper addresses the problem of distributed
optimization, where a network of agents represented as a directed
graph (digraph) aims to collaboratively minimize the sum of their
individual cost functions. Existing approaches for distributed
optimization over digraphs, such as Push-Pull, require agents
to exchange explicit state values with their neighbors in order
to reach an optimal solution. However, this can result in the
disclosure of sensitive and private information. To overcome this
issue, we propose a state-decomposition-based privacy-preserving
finite-time push-sum (PrFTPS) algorithm without any global
information, such as network size or graph diameter. Then, based
on PrFTPS, we design a gradient descent algorithm (PrFTPS-
GD) to solve the distributed optimization problem. It is proved
that under PrFTPS-GD, the privacy of each agent is preserved
and the linear convergence rate related to the optimization
iteration number is achieved. Finally, numerical simulations are
provided to illustrate the effectiveness of the proposed approach.

Index Terms— Distributed optimization, privacy-preserving,
finite-time consensus, directed graph.

I. INTRODUCTION

In this paper, we consider an optimization problem in a
multi-agent system of n agents. Each agent i has a private cost
function fi, which is known to itself only. All the agents aim
to collaboratively solve the following optimization problem

min
x∈Rp

F (x) :=

n∑
i=1

fi(x), (1)

where x is the global decision variable. The agents are
connected through a communication graph and can only
transmit messages to their neighbors. By local computation
and communication, each agent seeks a solution that mini-
mizes the sum of all the local objective functions. Such a
distributed paradigm facilitates breaking large-scale problems
into sequences of smaller ones. That is why it has been widely
adopted in several applications, such as power grids [1], sensor
networks [2] and vehicular networks [3].

To solve problem (1), decentralized gradient descent (DGD)
is the most commonly used algorithm, requiring diminishing
stepsizes to ensure optimality [4]. To overcome the challenge
of slow convergence caused by diminishing stepsizes, Xu et
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al. [5] adopted the dynamic average consensus [6] to propose
a gradient tracking (GT) method with a constant stepsize.
Recently, Xin et al. [7] and Pu et al. [8] devised a modified
GT algorithm called AB/Push-Pull algorithms for distributed
optimization, which can be applied to a general digraph. A
comprehensive survey on distributed optimization algorithms
is provided by Yang et al. [9].

The aforementioned distributed algorithms share state val-
ues in each iteration, which can compromise the privacy
of agents if they have private information. By hacking into
communication links, an adversary could potentially access
to transmitted messages among agents and potentially gather
private information using an inferring algorithm. Mandal [10]
presented theoretical analysis of privacy disclosure in dis-
tributed optimization, where the parameters of cost functions
and generation power can be correctly inferred by an adver-
sary. As the number of privacy leakage events is increasing,
there is an urgent need to preserve privacy of each agent in
distributed systems.

Recently, many results have been reported on the topic of
privacy-preserving distributed optimization. One commonly
used approach is differential privacy (DP) [11] due to its
rigorous mathematical framework, proven privacy preservation
properties and ease of implementation [12]. However, DP-
based approaches face a fundamental trade-off between pri-
vacy and accuracy, which may result in suboptimal solutions
[13]. To address this challenge, Lu et al. [14] combined
distributed optimization methods with partially homomorphic
encryption. Nonetheless, this approach has limitations due to
high computation complexity and communication costs. To
overcome these limitations and achieve accurate results, Wang
[15] proposed a privacy-preserving average consensus using a
state decomposition mechanism that divides the state of a node
into two sub-states.

It is worth noting that none of the aforementioned ap-
proaches is suitable for agents over digraphs. To preserve
privacy of nodes interacting on a digraph, Charalambous et al.
[16] proposed an offset-adding privacy-preserving push-sum,
and Gao et al. [17] protected privacy by adding randomness on
edge weights, both of which are only effective against honest-
but-curious nodes (see Definition 3). To improve resilience
to external eavesdroppers (see Definition 4), Chen et al.
[18] extended the state decomposition mechanism to digraphs
and introduced an uncertainty-based privacy notion. In terms
of privacy-preserving distributed optimization over digraphs,
Mao et al. [19] designed a privacy-preserving algorithm based
on the push-gradient method with a decaying stepsize, which
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lacked a formal privacy notion. Wang and Nedić [20] designed
a DP-oriented gradient tracking based algorithm (DPGT) that
can ensure both differential privacy and optimality. However,
it adopted a diminishing stepsize to ensure convergence,
resulting in a slow convergence rate. To speed up the con-
vergence, Chen et al. [21] proposed a state-decomposition-
based push-pull (SD-Push-Pull) algorithm, which guarantees
both linear convergence and differential privacy for digraphs.
Nevertheless, SD-Push-Pull only converges to a suboptimal
value.

Inspired by recent results that privacy can be enabled in
consensus over digraphs by state decomposition [18] and that
finite-time push-sum can be used in distributed optimization
to deliver the optimal solution [22], this paper presents a novel
PrFTPS algorithm that accurately computes the average value
for digraphs in a finite time, as opposed to the asymptotic
average consensus achieved in [18]. Then, combined with
gradient decent, PrFTPS-GD is proposed to solve problem
(1) allowing each node in a digraph to achieve optimal value
linearly while preserving its privacy. The main contributions
of this paper are summarized as follows:

1) We propose PrFTPS (Algorithm 1) based GD algorithm
(Algorithm 2) to solve problem (1) over digraphs.
Moreover, we show that Algorithm 1 can compute the
exact average value in finite time and Algorithm 2
guarantees the linear convergence to the optimal value
of problem (1) (Theorem 1).

2) We analyze the privacy-preserving performance of
PrFTPS-GD against honest-but-curious nodes and eaves-
droppers (Theorem 2). Specifically, we adopt the
uncertainty-based privacy notion [18] and show that the
adversary has infinite uncertainty about agents’ private
information under certain topological conditions.

3) PrFTPS-GD performance is evaluated via simula-
tions and compared with other state-of-the-art privacy-
preserving approaches (e.g., [20], [21]) over digraphs. It
is shown that our approach apart from adopting an easily
tuned constant stepsize (unlike the diminishing stepsize
in [20]), it computes the optimal solution instead of the
suboptimal one in [21].

Notations: In this paper, Rn and Rn×p represent the set of
n dimensional vectors and n × p dimensional matrices. Z++

denotes the set of positive integers. 1n ∈ Rn, In ∈ Rn×n and
0n ∈ Rn×n represent the vector of ones, the identity matrix
and the zero matrix, respectively. For an arbitrary vector x, we
denote its ith element by xi. For an arbitrary matrix M , we
denote its element in the ith row and jth column by [M ]ij . ⊗
denotes the Kronecker product. The spectral radius of matrix
A is denoted by ρ(A). Matrix A is called row-stochastic if
the sum of each row equals to 1 and the entries of A are
non-negative. Similarly, matrix A is called column-stochastic
if the sum of each column equals to 1 and the entries of A
are non-negative.

II. PRELIMINARIES AND PROBLEM STATEMENT
A. Network Model

We consider a digraph G ≜ (V, E) with n nodes, where the
set of nodes and edges are V = {1, . . . , n} and E ⊂ V × V ,

respectively. A communication link from node i to node j is
denoted by εji = (j, i) ∈ E , indicating that node i can send
messages to node j. The nodes who can send messages to node
i are denoted as in-neighbours of node i and the set of these
nodes is denoted as N−

i = {j ∈ V | εij ∈ E}. Similarly, the
nodes who can receive messages from node i are denoted as
out-neighbours of node i and the set of these nodes is denoted
as N+

i = {j ∈ V | εji ∈ E}. The cardinality of N+
j , is called

the out-degree of node j and is denoted as D+
j = |N+

j |. A
digraph is called strongly connected if there exists at least one
directed path from any node i to any node j with i ̸= j.

B. Push-Sum Algorithm

The push-sum algorithm, introduced originally in [23], aims
at achieving average consensus for each node communicating
over a digraph which satisfies the following assumption.

Assumption 1: The digraph G is assumed to be strongly
connected.

Consider a network of n nodes, where each node has a
private initial state, termed as xi(0). The push-sum algorithm
introduces two auxiliary varaibles, xi,1(k) and xi,2(k), and
assumes the out-degree is known for each node. The details
are as follows: for each node i,

xi,l(k + 1) =
∑

j∈N−
i ∪{i}

pij(k)xj,l(k), k ≥ 0, l = 1, 2,

where pij(k) = 1/(1 + D+
j ),∀i ∈ N+

j ∪ {j} and xi,1(0) =
xi(0), xi,2(0) = 1 for i ∈ V .
Proposition 1. [23] If a digraph G(V, E) with n nodes satisfies
Assumption 1, then the ratio ri(k) := xi,1(k+1)/xi,2(k+1)
asymptotically converges to the average of the initial values,
i.e., we have

lim
k→∞

ri(k) =

∑
i∈V xi(0)

n
,∀i ∈ V.

C. Information Set and Privacy Inferring Model

Before defining privacy, we first introduce the privacy
inferring model. The adversary set A is assumed to obtain
some online data by eavesdropping on some edges Er ⊆ E
and nodes Va ⊆ V . The information set accessible to A at
time k is denoted as IA(k), which contains all transmitted
information accessible to A.

Then all the information accessible to A at time iteration
K is denoted as IA(0 : K) ≜ {IA(0), IA(1), . . . , IA(K)}.

With the above model, we adopt an uncertainty-based notion
of privacy, which is proposed in [18]. Denote the private
information of node i as xp,i ∈ Rp and define a set ∆IA(xp,i)
as

∆IA(xp,i) = {x̄p,i | the adversary’s information set = IA(0 : K)},

which contains all possible states that can correspond to xp,i

when the information set accessible to A is IA(0 : K).
The diameter of ∆IA(xp,i) is defined as

Diam{∆IA(xp,i)} = sup
x̄p,i,x̄′

p,i∈ ∆IA(xp,i)

|x̄p,i − x̄′
p,i|,

where x̄p,i and x̄′
p,i are two different states that belong to set

∆IA(xp,i).



Definition 1: The privacy of xp,i is preserved against A if
Diam{∆IA(xp,i)} =∞.

In this paper, we consider distributed optimization prob-
lems, where local objective gradients usually carry sensitive
information. For example, in distribited-optimization-based
localization and rendezvous, directly exchanging the gradient
of an agent leads to disclosing its position [13]. Recent work
shows that gradients are directly calculated from and embed
sensitive information of training learning data [24]. Hence, the
private information is the gradient of each agent at all time
iteration. Then, we define the privacy preservation of each
agent as follow.

Definition 2: For a network of n agents in distributed
optimization, the privacy of agent j is preserved against A
if the privacy of its gradient value ∇fj(xj) evaluated at any
point xj is preserved.

We consider two types of adversaries, defined as follows.
Definition 3: An honest-but-curious adversary is a node or

a group of nodes which knows the network topology and
follows the system’s protocol, attempting to infer the private
information of other nodes.

Definition 4: An eavesdropper is an external adversary who
has the knowledge of network topology, and is able to eaves-
drop on a portion of coupling weights and transmitted data.

III. MAIN RESULTS

In this section, we first propose a privacy-preserving finite-
time push-sum algorithm via a state decomposition mecha-
nism. Then, we adopt the proposed privacy-preserving ap-
proach to address problem (1) based on a gradient descent
approach.

A. Privacy-Preserving Finite-Time Push-Sum Algorithm

The main idea of our privacy-preserving approach is a state
decomposition mechanism.

Decomposition Mechanism: Let each node decompose its
state xi,l(k) into two substates xα

i,l(k) and xβ
i,l(k), l = 1, 2.

The initial values xα
i,l(0) and xβ

i,l(0) can be randomly chosen
from the set of all real numbers under the following constraint

xβ
i,1(0) + xα

i,1(0) = 2xi(0), x
α
i,2(0) = 0, xβ

i,2(0) = 2,∀i ∈ V,

where xi(0) denotes the private initial state of node i.
Under the state decomposition mechanism, the overall dy-

namics become
xα
i,l(k + 1) =

∑
j∈N−

i ∪{i}

pij(k)x
α
j,l(k) + aα,βi (k)xβ

i,l(k),

xβ
i,l(k + 1) = aβ,αi (k)xα

i,l(k) + aβ,βi (k)xβ
i,l(k),

(2)
with i ∈ V , l = 1, 2. In this decomposition scheme, the
substate xα

i,l(k) is exchanged with other nodes while xβ
i,l(k) is

never shared with other nodes. The coupling weights between
the two substates xα

i,l(k) and xβ
i,l(k) are asymmetric and

denoted as aα,βi (k) and aβ,αi (k). The update weights for
substate xβ

i,l(k) is denoted as aβ,βi (k). The outgoing link
weight from agent i to agent j is denoted as pji(k). These
are design parameters and will be designed in the following
weight mechanism (Section III-A.1).

We next introduce details of the weight mechanism to
enable algorithm convergence and privacy preservation.

1) Weight mechanism: For k = 0,∀i ∈ V , we set aβ,βi (0) =
0, aα,βi (0) = 1 and pji(0) = 0,∀j /∈ N+

i . Also, we allow
pji(0),∀j ∈ N+

i ∪ {i} and aβ,αi (0) to be arbitrarily chosen
from the set of all real numbers under the constraint

n∑
j=1

pji(0) + aβ,αi (0) = 1.

For k ≥ 1, we let pji(k) = 1(2 +D+
i ) for j ∈ N+

i ∪ {i} and
pji(k) = 0, otherwise. Also,

aβ,αi (k) =
1

2 +D+
i

, aβ,βi (k) = aα,βi (k) =
1

2
.

Remark 1: Under the above weight mechanism, the state-
decomposition-based push-sum (2) still preserves the property
of conventional push-sum. Rigorous theoretical analysis will
be provided in Section III-C.

To obtain the exact average value in finite time, we use the
minimal polynomial associated with iteration (2), in conjunc-
tion with the final value theorem [25], [26]. Next, we provide
definitions on minimal polynomials.

Definition 5: (Minimal Polynomial of a Matrix.) The min-
imal polynomial of matrix P , denoted by

Q(t) = tD+1 +

D∑
i=0

αit
i,

is the monic polynomial of minimum degree D + 1 that
satisfies Q(P ) = 0n and αi is the polynomial coefficient.

Definition 6: (Minimal Polynomial of a Matrix Pair.) The
minimal polynomial associated with [P, e⊤j ], denoted by

Qj(t) = tDj+1 +

Dj∑
i=0

αj,it
i = 0, αj,i ∈ R,

is the monic polynomial of minimum degree Dj + 1 that
satisfies e⊤j Qj(P ) = 0.

In what follows, we will show how to use the coefficients
of the minimal polynomial to obtain the final value in finite
time. By using the iteration in (2), we have

Dj+1∑
i=0

αj,ix
α
j,1(k + i) = 0,∀k ∈ Z++,

where αj,Dj+1 = 1. Thus, the minimal polynomial of a
matrix is unique due to the monic property. We denote the
Z-transform of xj,1(k) as Xj,1 = Z(xj,1(k)). By the time-
shift property of the Z-transform, it is easy to obtain that

Xj,1(z) =

∑Dj+1
i=1 αj,i

∑i
l=1x

α
j,1(l)z

i−l

Qj(z)
.

Since the communication topology of the networked system is
strongly connected, the minimal polynomial Qj(z) does not
have any unstable poles apart from one. Hence, we can define
polynomial

pj(z) ≜
Qj(z)

z − 1
≜

Dj∑
i=0

β
(j)
i zi.



By the final value theorem [25] and [26], the final state
values of (2) are computed as

ϕα
xl
(j) = lim

k→∞
xα
j,l(k) = lim

z→1
(z − 1)Xα

j,l(z) =
(xα

l,Dj
)⊤βj

1⊤βj
,

where

(xα
l,Dj

)⊤ = (xα
j,l(1), x

α
j,l(1), . . . , x

α
j,l(Dj + 1)), l = 1, 2,

and βj is the coefficient vector of the polynomial pj(z).
Denote the following vectors of 2k+1 successive discrete-

time values for the two iterations xα
j,l(k), l = 1, 2 at node j

as

(xα
l,2k)

⊤ = (xα
j,l(1), x

α
j,l(1), . . . , x

α
j,l(2k + 1)), l = 1, 2.

Moreover, define the associated Hankel matrix and the
difference vectors between successive values for l = 1, 2 as

Γ{(xα
l,2k)

⊤} ≜
xα
j,l(1) xα

j,l(2) · · · xα
j,l(k + 1)

xα
j,l(2) xα

j,l(3) · · · xα
j,l(k + 2)

...
...

. . .
...

xα
j,l(k + 1) xα

j,l(k + 2) · · · xα
j,lt(2k + 1)

 ,

(x̄α
l,2k)

⊤ ≜

(xα
j,l(2)− xα

j,l(1), . . . , x
α
j,l(2k + 2)− xα

j,l(2k + 1)).

It is shown in [26] that for arbitrary initial conditions
xα
j,1(1) and xα

j,2(1), βj can be computed as the kernel of the
first defective Hankel matrices Γ{(x̄α

1,2k)
⊤} and Γ{(x̄α

2,2k)
⊤},

except a set of initial conditions with Lebesgue measure zero.
From the above analysis, we know βj and Dj can be

different for node j. Thus, in existing works [22], [25], all
nodes are assumed to know the upper bound of the network
size. To relax this assumption, Charalambous and Hadjicostis
[27] proposed a distributed termination mechanism, allowing
all nodes to agree when to terminate their iterations, given they
have all computed the average. The procedure is as follows:

• Once iterations (2) are initiated, each node j also initiates
two counters cj , cj(0) = 0, and rj , rj(0) = 0. Counter
cj increments by one at every time step, i.e., cj(k+1) =
cj(k)+1. The way counter rj updates is described next.

• Alongside iterations (2) a max-consensus algorithm is
initiated as well, given by

θj(k + 1) = max
vi∈Nj∪{vj}

{
max{θi(k), ci(k)}

}
, (3)

with θj(0) = 0. Then, rj is updated as follows:

rj(k + 1) =

{
0, if θj(k + 1) ̸= θj(k),

rj(k) + 1, otherwise.
(4)

• Once the Hankel matrices Γ{(x̄α
1,Dj

)⊤} and Γ{(x̄α
2,Dj

)⊤}
lose rank, node j saves the count of the counter cj at that
time step, denoted by koj , as coj , i.e., coj ≜ cj [k

o
j ], and it

stops incrementing the counter, i.e., ∀k′ ≥ koj , c[k
′] =

cj [k
o
j ] = coj . Note that coj = 2(Dj + 1) + 1.

• Node j can terminate iterations (2) when rj reaches coj .

Therefore, based on the distributed termination mechanism
[27], [28], we design a privacy-preserving finite-time push-
sum algorithm (PrFTPS) as presented in Algorithm 1, which
guarantees the minimum number of iteration steps to obtain
the exact average without any global information.

Algorithm 1 A Privacy-Preserving Finte-Time Push-Sum
Algorithm (PrFTPS)

1: Input: Initial state xj(0), step t, graph G(V, E).
2: if t = 0 then
3: Run the privacy-preserving iteration (2) and the max-

consensus algorithm (3), store the vectors (x̄α
1,Dj

)⊤,
(x̄α

2,Dj
)⊤, increment the value of the counter cj(k) and

find the value of the counter rj(k) via (4).
4: Increase the dimension k of the Hankel matrices

Γ{(x̄α
1,Dj

)⊤} and Γ{(x̄α
2,Dj

)⊤} until koj at which they lose
rank. Once this happens, store the kernel βj of the first
defective matrix and the value coj = 2(Dj + 1) + 1.

5: Continue iteration (2) until iteration kj,t where rj(kj,t) =
coj and store

Dmax =
kj,t − 2Dj − 2

2
− 1.

6: else
7: Run the privacy-preserving algoirthm (2) for kmax =

Dmax + 2 steps with the same βj .
8: end if
9: Compute the average value as x̂ave

j =
(xα

1,Dj
)⊤βj

(xα
2,Dj

)⊤βj
.

10: Output: Node j ∈ V outputs x̂ave
j .

Remark 2: Compared to existing state-decomposition-
based privacy-preserving average consensus in [15] and [18],
PrFTPS is applicable to general digraphs, while the method
in [15] is limited to undirected graphs with doubly-stochastic
methods. Moreover, our innovative weight mechanism (Sec-
tion III-A.1) maintains constant weights in the privacy-
preserving iteration (2) for k ≥ 1, as opposed to the time-
varying weights in [15] and [18]. These constant weights play
a crucial role in the final value theorem [26], allowing PrFTPS
to compute an exact average consensus in finite time using
the coefficients of the minimal polynomial associated with
iteration (2). In contrast, the weight mechanisms in [15] and
[18] only permit asymptotic average consensus, which limits
their application to solving distributed optimization problems.
Our proposed weight mechanism overcomes this limitation
and facilitates the application of our PrFTPS algorithm to solve
distributed optimization problems while preserving privacy, as
shown in Algorithm 2.

B. Finite-Time Privacy-Preserving Push-Sum based Gradient
Descent Algorithm

In this subsection, we design a PrFTPS based gradient
method to address problem (1). We first assume the following
conditions about Problem (1).

Assumption 2: Each objective function fi is µ−strongly



convex with L−Lipschitz continuous gradients, i.e.,

⟨∇fi(x)−∇fi(y),x− y⟩ ≥ µ||x− y||2,
||∇fi(x)−∇fi(y)|| ≤ L||x− y||, ∀x,y ∈ Rp.

Under Assumption 2, Problem (1) has a unique optimal
solution x⋆ ∈ Rp [8].

To address problem (1) distributively, we propose the fol-
lowing PrFTPS based GD algorithm inspired by the distributed
structure in [7], [8], [22]. Starting from the initial condition
xi(0) ∈ Rp and yi(0) = ∇fi(xi(0)), for all t ≥ 0, we have

yi(t)← Algorithm 1(∇fi(xi(t)), t), (5a)

xi(t+ 1) =
∑

j∈N−
i ∪{i}

āijxj(t)− ηyi(t), (5b)

where η is the stepsize and Ā = [āji] ∈ Rn is row-stochastic.
The details are summarized in Algorithm 2 in the following.

Algorithm 2 A Privacy-Preserving Finte-Time Push-Sum
based GD Algorithm (PrFTPS-GD)

1: Initialization: Stepsize η, maximum optimization itera-
tion number T , graph G(V, E).

2: Input: Node i ∈ V sets the initial value xi(0), yi(0) =
∇fi(xi(0)) and t = 0.

3: for t ≤ T do
4: Put ∇fi(xi(t)), t as input to Algorithm 1 and get

output x̂ave; design yi(t) = x̂ave.
5: Compute xi(t+ 1) using (5b) with yi(t).
6: t← t+ 1
7: end for
8: Output: Node i ∈ V obtains the solution x⋆.

Algorithm 2 guarantees that the number of iterations needed
at every optimization step t ≥ 1 is the minimum. Fig. 1 shows
the number of iterations needed at every optimization step.

Fig. 1. The finite-time consensus algorithm is terminated after k1 =
4(Dmax + 1) iterations in the first step of the optimization. After the first
step, the consensus is terminated after kmax = Dmax + 1 iterations.

Remark 3: Compared to conventional distributed optimiza-
tion algorithms, such as AB [7] and Push-Pull [8], PrFTPS-GD
requires additional communication rounds for each optimiza-
tion step, as illustrated in Fig. 1. Although the separate time-
scales for optimization and consensus steps may slow down
the convergence speed, they are crucial for ensuring privacy
preservation and accuracy of PrFTPS-GD, as demonstrated by
the rigorous theoretical analysis presented in Sections III-C
and III-D.

C. Convergence Analysis

In this subsection, we provide the proof of the convergence
and accuracy of Algorithm 1 and Algorithm 2.

From the weight mechanism, it can be seen that for k ≥ 1,
the coupling weights are constants. Hence, iteration (2) can
be written by using matrix-vector notation as follows:

xl(k + 1) = P̂ xl(k), ∀k ≥ 1, l = 1, 2, (6)

where

xl(k) = [xα
1,l(k), . . . , x

α
n,l(k), x

β
1,l(k), . . . , x

β
n,l(k)]

⊤,

P̂ =

[
P 1

2In
Λ 1

2In

]
with Λ = diag(aβ,α1 , . . . , aβ,αn ) and P = [pij ].

Moreover, equation (5b) can be rewritten as

x(t+ 1) = Ax(t)− ηy(t), (7)

where A = Ā⊗Ip,x(t) = [x1(t)
⊤, . . . , xn(t)

⊤]⊤ and y(t) =
[y1(t)

⊤, . . . , yn(t)
⊤]⊤.

Before presenting Theorem 1, the following lemmas are
needed.

Lemma 1: (Theorem 8.4.4 in [29]) Under Assumption 1,
the matrix A has a unique nonnegative left eigenvector u⊤

(with respect to eigenvalue 1) with u⊤1np = np.
Lemma 2: (Adapted from Lemma 4 in [8]) Under As-

sumptions 1, there exists a matrix norm || · ||A, defined as
||M ||A = AMA−1 for all M ∈ Rnp×np, where A ∈ Rnp×np

is invertible, such that σA := ||A − 1npu
⊤

n ||A < 1, where A
is the update matrix defined in (7), and σA is arbitrarily close
to the spectral radius ρ(A− 1npu

⊤

n ) < 1.
Now, we present Theorem 1 in the following.
Theorem 1: Under Assumptions 1 and 2, for each node j ∈

V ,
1) Algorithm 1 outputs the exact average of initial values

of all nodes, i.e., ∀j ∈ V, x̂ave
j = 1

n

∑
i∈V xi(0).

2) When 0 < η < 1
µ+L , where µ,L are defined in

Assumption 2, Algorithm 2 converges linearly related to
the optimization iteration number to the global optimal, i.e.,
||x(t)− 1⊗ x⋆||2 converges to 0 linearly.

Proof: See Appendix A.

D. Privacy-preserving Performance Analysis

In this subsection, we analyze the privacy-preserving per-
formance of Algorithm 2 against honest-but-curious nodes and
eavesdroppers. First, the following assumption is needed.

Assumption 3: Considering a digraph G(V, E), each agent
i,∀i ∈ V , does not know the structure of the whole network,
i.e., the Laplacian of the network.

This assumption shows that agent i has no access to the
whole consensus dynamics in (2), which is very natural in
distributed systems since agent i is only aware of its outgoing
link weights pji(k), j ∈ N−

i ∪ {i}. Without other agents’
weights, matrix P̂ in (6) is inaccessible to agent i.

Note that only local gradient information is exchanged in
Algorithm 1, and the outputs of Algorithm 1 are the same for
each agent. Hence, if Algorithm 1 is able to preserve privacy
of each agent in the network, we can deduce that Algorithm
2 can preserve privacy of each agent.

Next, we show the privacy preservation of Algorithm 1.



Under Algorithm 1, the information set accessible to the set
of honest-but-curious nodes N at time k can be defined as

IN (k) = {xα
a,l(k), x

β
a,l(k), pja(k), pap(k), x

α
p,l(k),

| p ∈ N−
a , a ∈ N , j ∈ V, l = 1, 2}.

Similar, an eavesdropper R is assumed to eavesdrop some
edges εij ∈ ER and its information set is denoted by

IR(k) ≜ {xα
j,l(k), pij(k) | ∀εij ∈ ER, j ∈ V, l = 1, 2}.

Theorem 2: Under Assumptions 1 and 3, for each node j ∈
V , under Algorithm 1, the privacy of agent j can be preserved:

1) Against a set of honest-but-curious nodes N if at least
one neighbor of node j does not belongs to N , i.e., N+

j ∪
N−

j ⊈ N .
2) Against eavesdropper R if there exists one edge εmj or

εjm that eavesdropper R cannot eavesdrop, where m ∈ N+
j

or m ∈ N−
j .

Proof: See Appendix B.

IV. SIMULATIONS

Consider a strongly connected digraph containing n = 5
agents. The following distributed least squares problem is
considered:

min
x∈Rp

F (x) =
1

n

n∑
i=1

fi(x) =
1

5

5∑
i=1

||Aix− bi||2, (8)

where Ai ∈ Rq×p is only known to node i, bi ∈ Rq is the
measured data and x ∈ Rp is the common decision variable. In
this simulation, we set q = p = 3 and η = 0.1. All elements of
Ai and bi are set from independent and identically distributed
samples of standard normal distribution N (0, 1). The finite-
time consensus (Algorithm 1) stage consists of k1 = 64
(t = 0) and kmax = 17 (t ≥ 1) communication steps inside
each PrFTPS-GD optimization iteration, i.e., the optimization
variable x(0) takes 64 steps to become x(1) and then variable
x(t) is updated every 17 iterations for t ≥ 1.

The normalized residual
∑5

i (||xi(t) − x⋆||/||xi(0) − x⋆||)
is illustrated in Fig. 2 to compare PrFTPS-GD with DPGT
[20] and SD-Push-Pull [21]. Notice that as we have multiple
consensus steps in Algorithm 1 inside our PrFTPS-GD while
there is only one step in DPGT and SD-Push-Pull, we have
scaled each PrFTPS-GD optimization iteration number to
include the consensus number (i.e., k1 and kmax) directly. It
is shown that the proposed PrFTPS-GD converges linearly
related to optimization iteration number. The stepsizes of all
algorithms are manually tuned to obtain the corresponding best
convergence performance. For SD-Push-Pull, the stepsize is
set to be η = 0.1 and it can be seen that SD-Push-Pull only
converge to suboptimality while PrFTPS-GD can converge to
the optimal point. In terms of DPGT, we choose the stepsize
with the diminishing sequence as

λk =
0.02

1 + 0.1k
, γk

1 =
1

1 + 0.1k0.9
, γk

2 =
1

1 + 0.1k0.8
.

Fig. 2 demonstrates clearly that PrFTPS-GD converges faster
to the optimal solution than DPGT.
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Fig. 2. Performance comparison among our proposed PrFTPS-GD, DPGT
[20] and SD-Push-Pull [21].

V. CONCLUSION AND FUTURE WORK
In this paper, a privacy-preserving finite-time push-sum

based gradient descent algorithm is proposed to solve the
distributed optimization problem over a directed graph. Com-
pared to existing privacy-preserving algorithms in the liter-
ature, the proposed one can converge linearly to the global
optimum. Moreover, privacy of each agent is preserved via a
state decomposition mechanism.

Future work includes considering constrained optimization
problems in large-scale. Moreover, privacy-preserving dis-
tributed optimiation algorithm with quantization communica-
tion is a potential research direction.

APPENDIX

A. Proof of Theorem 1
1) By the weight mechanism and the iteration in (2) at it-

eration k = 0, we have 1⊤x1(1) = 1⊤x1(0) = 2
∑n

i=1 xi(0)
and 1⊤x2(1) = 1⊤x2(0) = 2n.

Since P̂ is irreducible, column-stochastic with positive
diagonals, from Perron-Frobenius theorem, we have ρ(P̂ ) =
1. Denote v = [vi] as the right eigenvector corresponding to
the eigenvalue of 1, we have limk→∞ P̂ k = v1⊤. Then,

xα
j,1(∞)

xα
j,2(∞)

=
[P̂∞x1(1)]j

[P̂∞x2(1)]j
=

[v1⊤x1(1)]j
[v1⊤x2(1)]j

=

∑n
i=1 xi(0)

n
.

Since the coefficient βj is independent of the initial node state,

x̂ave
j =

(xα
1,Dj

)⊤βj

(xα
2,Dj

)⊤βj
=

xα
j,1(∞)

xα
j,2(∞)

=

∑n
i=1 xi(0)

n
. (9)

2) Denote x̄(t) = u⊤x(t)/n, ȳ(t) = 1
n

∑n
i=1∇fi(xi(t))

and g(t) = 1
n

∑n
i=1∇fi(x̄(t)). From the above analysis, we

know that at time iteration t, each agent can obtain the average
gradient at time t via Algorithm 1, i.e, yi(t) = ȳ(t),y(t) =
1ȳ(t). Hence, from iteration (7), we have

x̄(t+ 1)− x⋆ = x̄(t)− ηȳ(t)− x⋆

= x̄(t)− ηg(t)− x⋆ − η(ȳ(t)− g(t)),



x(t+ 1)− 1x̄(t+ 1) = Ax(t)− ηy(t)− 1x̄(t) + η1ȳ(t)

= (A− 1nu
⊤/n)(x(t)− 1x̄(t)).

Based on [30, Lemma 8(c) and 10], if η < 1/(µ+ L), we
have
||x̄(t+ 1)− x⋆||2 ≤ (1− ηµ)||x̄(t)− x⋆||2 + η||ȳ(t)− g(t)||

≤ (1− ηµ)||x̄(t)− x⋆||2 +
ηL√
n
||x(t)− 1x̄(t)||2.

(10)
Moreover, from the result of Lemma 2, we can obtain that

||x̄(t+1)−x⋆||2 ≤ (1−ηµ)||x̄(t)−x⋆||2+
ηqL√
n
||x(t)−1x̄(t)||A.

Denote V (t) = [||x̄(t+ 1)− x⋆||2, ||x(t)− 1x̄(t)||A]⊤, we
have

V (t+ 1) ≤MV (t), (11)

where the transition matrix M =

[
1− ηµ ηqL/

√
n

0 σA

]
.

Since 0 < 1− ηµ < 1 and 0 < σA < 1, we can obtain that
the spectral radius of M is strictly less than 1 and therefore
||x(t)− 1⊗ x⋆||2 converges to zero linearly.

B. Proof of Theorem 2
Since under Algorithm 1, the maximum communication

round equals to k1, the information set IN (0 : k1) and IR(0 :
k1) denote all the information accessible to the adversary.
From Algorithm 2, it can be seen that the private information
∇fj(xj(t)),∀t ≥ 0 is regarded as the input of Algorithm 1.
Hence, it suffices to prove that the privacy of initial value of
agent j, xj(0) is preserved under Algorithm 1.

1) Denote L = V\A as the set of legitimate nodes. Since
N+

j ∪N
−
j ⊈ A, there exists at least one node m that belongs to

N+
j ∪N

−
j but not A. Fix any feasible information set IN (0 :

k1). We denote {xα
n,1(0)

′, xβ
n,1(0)

′, pin(0)
′ | n ∈ L, i ∈ V}

as an arbitrary set of initial substate values and weights that
satisfies IN (0 : k1). Hence, we have xj(0)

′ = (xα
j,1(0)

′ +

xβ
j,1(0)

′)/2. We then denote xj(0)
′′ as xj(0)

′′ = xi(0)
′ +

e, where e is an arbitrary real number. Next we show that
there exists a set of values {xα

n,1(0)
′′, xβ

n,1(0)
′′, pin(0)

′′, n ∈
L, i ∈ V} which makes xj(0)

′′ ∈ ∆j(IN (0 : k1)). The initial
substate values xα

n,1(0)
′′, xβ

n,1(0)
′′ are denoted as follows.

xα
q,1(0)

′′ = xα
q,1(0)

′, xβ
q,1(0)

′′ = xβ
q,1(0)

′,∀q ∈ L\{j,m},
xα
m,1(0)

′′ = xα
m,1(0)

′, xβ
m,1(0)

′′ = xβ
m,1(0)

′ − 2e,

xα
j,1(0)

′′ = xα
j,1(0)

′, xβ
j,1(0)

′′ = xβ
j,1(0)

′ + 2e.
(12)

Then we consider the following two situations.
Situation I: Consider m ∈ N−

j , then the information set
sequence accessible to set N equals to IN (0 : k1) under the
initial substate values in (12) and the following weights:

a(β,α)n (0)′′ = a(β,α)n (0)′,∀n ∈ L,
pmm(0)′′ = (pmm(0)′xα

m,1(0)
′ + 2e)/xα

m,1(0)
′,

pjm(0)′′ = (pjm(0)′xα
m,1(0)

′ − 2e)/xα
m,1(0)

′,

pqm(0)′′ = pqm(0)′,∀q ∈ L\{j,m},
pnp(0)

′′ = pnp(0)
′,∀n ∈ L,∀p ∈ L\{m}.

(13)

Situation II: Consider m ∈ N+
j , then the information set

sequence accessible to set N equals to IN (0 : k1) under the
initial substate values in (12) and the following weights:

a(β,α)n (0)′′ = a(β,α)n (0)′,∀n ∈ L,
pjj(0)

′′ = (pjj(0)
′xα

j,1(0)
′ − 2e)/xα

j,1(0)
′,

pmj(0)
′′ = (pmj(0)

′xα
j,1(0)

′ + 2e)/xα
j,1(0)

′,

pqj(0)
′′ = pqj(0)

′,∀q ∈ L\{j,m},
pnp(0)

′′ = pnp(0)
′,∀n ∈ L,∀p ∈ L\{j}.

(14)

Summarizing Situations I and II, we have that xj(0)
′′ =

xj(0)
′ + e ∈ ∆j(IN (0 : k1)), then

Diam(∆j(IN (0 : k1))) ≥ sup
e∈R
|xj(0)

′ − (xj(0)
′ + e)| =∞.

From Definition 1, the first statement is proved.
2) For the second statement, due to the topology constraints,

the eavesdropper R can not eavesdrop on εmj or εjm, where
m ∈ N+

j or m ∈ N−
j , i.e., pmj(0) or pjm(0) is inaccessible

to R. Moreover, since the self-weights pjj(0), pmm(0) are
not transmitted over the communication network, the eaves-
dropper R can not obtain any information of pjm(0), pmm(0)
or pmj(0), pjj(0)). Then, similar to the proof in the first
statement, we have Diam(∆j(IR(0 : k1))) = ∞, i.e., the
privacy of xj(0) is preserved.
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