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Abstract— In this paper, we focus on modeling and anal-
ysis of demand-side management in a microgrid where
agents utilize grid energy and a shared battery charged
by renewable energy sources. We model the problem as
a generalized stochastic dynamic aggregative game with
chance constraints that capture the effects of uncertain-
ties in the renewable generation and agents’ demands.
Computing the solution of the game is a complex task
due to probabilistic and coupling constraints among the
agents through the state of charge of the shared battery.
We investigate the Nash equilibrium of this game under un-
certainty considering both the uniqueness of the solution
and the effect of uncertainty on the solution. Simulation
results demonstrate that the presented stochastic method
is superior to deterministic methods.

Index Terms— Stochastic dynamic game, chance con-
straints, microgrids, shared battery, renewable energy
sources.

I. INTRODUCTION

MULTI-agent coordination for energy systems has
emerged as a highly effective approach to achieve

energy savings and maintain stability in microgrid systems. To
accomplish this objective, concepts and techniques from game
theory has been utilized due to their ability to incorporate user
behavior and optimization perspectives [1].

In this paper, we study demand-side management (DSM) in
microgrids as a generalized stochastic dynamic aggregative
game with uncertainties in renewable energy and demand,
using a shared battery and selfish residential consumers. Ad-
ditionally, operational constraints were taken into account in
modeling the problem. To avoid suffering from peak loads, a
term related to the cumulative exchange of power between the
agents and the grid appears in the cost function of the agents
as part of electricity tariff. This leads to the aggregative form
of the proposed game model. Unlike previous studies, a more
comprehensive form of stochastic constraints is considered in
the form of chance constraints. Due to the incorporation of
a shared battery and accounting for the impact of uncertain
sources, the state of charge (SoC) of the battery has stochastic
dynamics shared between the agents. In addition, as we impose
a constraint on the SoC of the shared battery, we have both
dynamic and static stochastic coupling constraints among the
agents, which shape the proposed game in a generalized,
stochastic, and dynamic form. Then, we propose a series of
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reformulations and guaranteed under-approximations over the
cost functions, stochastic dynamics, and chance constraints
such that the game is converted into a static generalized ag-
gregative form. Finally, we verify the conditions under which a
Nash-seeking method can obtain the game’s equilibrium point.
Related Works. Game theory analyzes strategic interactions in
demand-side management, modeling consumer behavior and
optimizing incentives for efficient resource use. The main
types of games studied in this context are dynamic games
that focus on the dynamic relationships among the agents
(e.g., shared battery resources, dynamic pricing, etc.), and
generalized aggregative games, which account for the coupling
constraints among the agents. Comprehensive reviews on the
analysis and decomposition of dynamic games can be found in
[2], [3]. Various theoretical approaches have been employed
to solve dynamic games utilizing optimal control theory to
study open-loop and closed-loop Nash equilibrium [3]–[5]. For
deterministic finite horizon discrete-time dynamic games, the
state dynamic equation can be treated as a finite number of
constraints which transforms the problem into a generalized
aggregative game [6], however, increasing the number of
constraints can impose high computational cost. Stochastic
dynamic games have also been studied for both continuous-
time [7], [8] and discrete-time systems [9], [10]. However,
these works do not study chance constraints on the system’s
state or coupling constraint on the control inputs of agents. In
contrast to previous studies that use almost-sure satisfaction
of constraints [11], [12], we employ chance constraints due
to their flexibility and potential for better outcomes with a
predefined confidence. Imposing deterministic constraints on
estimated random variables have also been considered in [13]–
[15], but this approach overlooks the inherent stochastic nature
of the uncertainties, increasing the risk of practical imple-
mentation failures. From an application perspective, DSM is
addressed through dynamic games with [16], [17] or without
[18], [19] the presence of shared battery. DSM has also been
studied through generalized aggregative games [13], [20], [21].
In [13], [21], the impact of shared dynamics was not taken
into account. These works studied the game in deterministic
setups without considering uncertainty sources in microgrid
systems. In this paper, we are dealing with a DSM game with
stochastic shared dynamics of battery and coupling chance
constraint on the state, referred to as a generalized stochastic
dynamic aggregative game.

Contributions. The contributions of this paper are:

• Introducing a novel framework for demand-side man-
agement as a generalized stochastic dynamic aggregative
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game, featuring constraints in the form of stochastic
dynamics and chance constraints.

• Providing a guaranteed under-approximation for the game
in the form of a generalized static aggregative game with
deterministic constraints, in which, the feasible set of the
resulted game is a subset of the feasible set of the original
game.

• Analyzing the existence and uniqueness of the general-
ized Nash equilibrium (GNE) for the game, and propos-
ing a semi-decentralized algorithm for Nash seeking.

II. REVIEW ON SOME MATHEMATICAL CONCEPTS AND
TOOLS

A. Chernoff-Hoeffding inequality

Consider a sequence of random variables, Zi, where i ranges
from 1 to n, each with bounded support between ai and bi.
Let each of these variables possess an expected value, E{Zi},
belonging to the moment interval, Mi. Now, let’s introduce a
new random variable, Z, defined as the sum of all Zi from
i = 1 to n. By employing the Chernoff-Hoeffding inequality,
we have the following inequalities:

Pr {Z −E {Z} ≤ −ζ} ≤ exp

(
−ζ2

ν
∑n

i=1 (bi − ai)
2

)
∀ζ ≥ 0

Pr {Z −E {Z} ≥ ζ} ≤ exp

(
−ζ2

ν
∑n

i=1 (bi − ai)
2

)
∀ζ ≥ 0 .

In this context, ν = χ(Ĝ)/2 is a positive constant as referred
in [22]. Here, Ĝ signifies the undirected dependency graph
of the random variables Z1, ..., Zn, and χ(Ĝ) represents the
chromatic number of this graph. The chromatic number of Ĝ,
is defined as the minimum number of colors required to color
the vertices of Ĝ such that no adjacent vertices share the same
color. For instances when the variables are independent, the
chromatic number of the graph Ĝ is one.

B. Operator theoretic definitions

• For a closed set S ⊆ Rn, the mapping projS : Rn −→
S denotes the projection onto S, i.e., projS(x) =
argminy∈S∥y − x∥.

• A set-valued mapping F : Rn ⇒ Rn is l−Lipschiz
continuous, with l > 0, if ∥u − v∥ ≤ l∥x − y∥ for all
x, y ∈ Rn,u ∈ F(x), v ∈ F(y).

• A set-valued mapping F : Rn ⇒ Rn is monotone if
(u− v)T (x− y) ≥ 0 for all x ̸= y ∈ Rn, u ∈ F(x), v ∈
F(y).

• A set-valued mapping F : Rn ⇒ Rn is strictly monotone
if (u−v)T (x−y) > 0 for all x ̸= y ∈ Rn, u ∈ F(x), v ∈
F(y).

• A set-valued mapping F : Rn ⇒ Rn is η−strongly
monotone with η > 0, if (u − v)T (x − y) ≥ η∥x − y∥2
for all x, y ∈ Rn, u ∈ F(x), v ∈ F(y).

C. Generalized Variational Inequality
Consider a closed convex set S ⊂ Rn, a set-valued mapping

Ψ : S ⇒ Rn, and a single-valued mapping ψ : S → Rn. The
generalized variational inequality problem GVI(S,Ψ), seeks
to find x∗ ∈ S and g∗ ∈ Ψ(x∗) the following condition holds
for all x ∈ S:

(x− x∗)Tg∗ ≥ 0.

If Ψ(x) = ψ(x) for all x ∈ S, then the generalized varia-
tional inequality problem GVI(S,Ψ) reduces to the standard
variational inequality problem VI(S, ψ). [23]

D. Gershgorin circle theorem
The Gershgorin circle theorem may be used to bound the

spectrum of a square matrix.
Let A be a complex n× n, with entries aij . For i = 1, . . . , n
let Ri be the sum of absolute values of non-diagonal entries
in i−th row:

Ri =

n∑
j=1,j ̸=i

|aij |

Let D(aii, Ri) ⊂ C , be a closed disc centered at aii with
radius Ri. Such a disc is called Gershgorin disc.

Lemma 1: Every eigenvalue of A lies within at least one
of the Gershgorin discs D(aii, Ri).
Notations. R denotes the set of real numbers. 0τ (1τ ) denotes
a vector with dimention τ × 1 that all elements equal to 0(1).
1τ×τ denotes a matrix with dimention τ × τ that all elements
equal to 1. Iτ denotes a τ × τ identity matrix. A⊗B denotes
the Kronecker product between matrices A and B. Suppose
that we have N vectors, x1, ...,xN ∈ Rn, then we define
x ≜

[
xT
1 , ...,x

T
N

]T
. Mτ is a τ × τ lower triangular matrix

such that Mτ (i, j) = 1 if i ≤ j, and zero otherwise.

III. SYSTEM MODEL

We investigate a grid-connected community microgrid as
shown in Figure 1, which comprises N selfish residential
households serving as agents in the system. Each household
has the capacity to meet its own energy requirements via
the power grid and a shared battery, which is recharged
using renewable resources. Furthermore, we incorporate in our
model the uncertainty in both the renewable energy sources
and the energy demand. The microgrid operates under a tariff
scheme with a retailer communicating the tariff information to
the households. Each household uses this information to decide
its battery discharging profile for minimizing the total cost of
electricity consumption, which includes the cost of purchasing
electricity from the retailer and the cost of using the battery
to store and discharge energy. We consider the system where
agents interact solely with a coordinator. All the decisions are
taken over the day-ahead horizon.

A. Shared Battery Model
Battery plays an important role in microgrid systems by

providing energy storage solutions that can balance energy
supply and demand, and contribute in peak load shaving



by proving a grid-free source of energy in peak hours. We
consider that the battery is charged only through renewable
energy and discharged by consumption of the agents from the
battery. The state of charge (SoC) of the shared battery xt is
considered to have the following dynamics

xt+1 = xt + η∆t

rt − N∑
j=1

utj

 . (1)

At time t, utj is the discharging decision of the battery by the

Fig. 1. System model. Red, blue and purple solid lines show respec-
tively the energy supplied by the Distributed Network Provider, shared
battery and renewable energy. Green dashed line shows Essential
Information Exchange (e.g. demands, common tariff).
jth agent and rt is the power generated by renewable energy
sources, which is unknown and stochastic. The parameter η is
the charging/discharging efficiency of the shared battery, and
∆t is the sampling time.

Due to the stochastic input in (1), we consider the following
chance constraints on the SoC and its final value:

Pr{x ≤ xt ≤ x̄} ≥ 1− δtx ∀t ∈ {0, . . . , τ} , (2)

Pr{|xτ − r| ≤ ϵ} ≥ 1− δτ,finalx , (3)

where x, x̄, δtx, and δτ,finalx are positive constants in [0, 1]
such that x < x̄, r ∈ [x, x̄] is a positive constant, and
ϵ ∈ (0,min {r − x, x̄− r}). The chance constraint in (3)
guarantees that the SoC at the final time step lies within a
specific range around r with a certain confidence. We also
have the following constraint:

0 ≤ uti ≤ ūi ∀t ∈ {0, . . . , τ − 1} . (4)

B. Power exchange model

The load balance equation for household i at time t ∈
{0, ..., τ−1} can be written as gti = dti−uti, where gti is power
exchange of the ith agent with the grid and dti is its stochastic
power demand. Let gt ≜

∑N
i=1 g

t
i . The retailer imposes the

following constraints on the allowable power exchange with
the community of the microgrid:

Pr
{
0 ≤ gt ≤ ḡ

}
≥ 1− δtg ∀t ∈ {0, . . . , τ − 1}, (5)

where ḡ is the maximum power supply of the retailer, and
δtg ∈ [0, 1].

C. Electricity tarrifs
All the agents in the neighbourhood are billed using com-

mon electricity tariffs, modelled as

π(gt) = Kt
ToU +

N∑
j=1

gtjk
N
c , (6)

where π(gt) is the common electricity tariff for agents at
time t and Kt

ToU is the conventional time-of-use pricing
tariff that could depend on hour of the day. The positive
constant kNc influences the cost in proportion to the peak
power consumption creates a balance between the microgrid’s
objectives and ensuring fairness, peak shaving, and stability in
the tariff system. As mentioned in [11], [24], kNc is selected
to be inversely proportional to the number of agents (this
dependency is denoted by the superscript N ), which performs
normalization in aggregative term of grid electricity use of
agents. The tariff function (6) is based on the hypothesis that
increasing the price of electricity at times of peak demand will
motivate a rational household to schedule the shared battery
such that the community peak can be shaved [25], [26].

D. Cost Function of Each Agent in Model
The cost function of each agent (household) is

Ji = E

{
τ−1∑
t=0

[
π
(
gt
)
gti +

N∑
j=1

(
αdch

(
utj
)2

+ βdchutj

)]}
,

(7)

where αdch, βdch are positive constants. The cost function has
a conventional form used frequently in the literature (see e.g.,
[11], [13]). It consists of two parts: one related to the cost of
electricity and the other to battery degradation, which serves
as a proxy for the shared battery lifespan.

Let ui = [u0i , u
1
i , . . . , u

τ−1
i ]T . We are now equipped to

delineate the game-theoretic setup for our demand-side man-
agement model, as

G =



Players: A set of residential agents N = {1, 2, . . . , N}
Strategies of Agents: ui i ∈ N
Cost Functions: Ji (ui,u−i) i ∈ N
Stochastic Dynamic: (1)

Constraints:

{
Local: (4)
Coupling (Chance Constraints): (2), (3), (5)

As demonstrated above, G evidently corresponds to a gener-
alized stochastic dynamic aggregative game.

IV. APPROXIMATION WITH GENERALIZED STATIC
AGGREGATIVE GAME

We raise the following assumption for constructing an
under-approximation of the feasible set of the game.

Assumption 1: The initial state x0 is known and x ≤ x0 ≤
x̄. Additionally, rt and dti are random variables with bounded
support [at, bt] and [cti, f

t
i ], and their mean values are available

to each agent. Random variables rt and dti could in general
be dependent with known dependency graph.

The above assumption is based on the fact that the power
generated by renewable energy sources and power demand of



agents are bounded. Let us denote the input constraints in (4)
in vector format as 0τ ≤ ui ≤ ūi1τ .

Proposition 1: The feasible domain of the chance con-
straint (2) can be under-approximated with the deterministic
inequalities

(
x− x0

)
1τ − ρMτµr + qx,1 +

N∑
j=1

ρMτuj ≤ 0, (8)

(
x0 − x̄

)
1τ + ρMτµr + qx,2 −

N∑
j=1

ρMτuj ≤ 0, (9)

where µr =
[
E
{
r0
}
,E

{
r1
}
, . . . ,E

{
rτ−1

}]T
,

qx,1 =
[
q1x,1, q

2
x,1, . . . , q

τ
x,1

]T
, qx,2 =

[
q1x,2, q

2
x,2, . . . , q

τ
x,2

]T
,

with qtx,1 ≜
√
−ρ2νtr

∑t−1
k=0 (b

k − ak)2 Ln(δ̃tx),

qtx,2 ≜
√
−ρ2νtr

∑t−1
k=0 (b

k − ak)2 Ln(δ̃tx − δtx) , 0 ≤ δ̃tx ≤ 1,
0 ≤ δtx− δ̃tx ≤ 1, and ρ ≜ η∆t. Moreover, νtr = χ(Ĝt

r)/2 with
Ĝt

r being the undirected dependency graph of the random
variables r0, . . . , rt−1, and χ(Ĝt

r) represents the chromatic
number of this graph (see [22]).

Proof: The proof is based on deriving from (1) the
explicit form of xt as

xt = x0 +

t−1∑
k=0

−ρ
 N∑

j=1

ukj

+ ρrk

 (10)

and using Chernoff-Hoeffding inequality [22].
It is obvious that:

Pr{x ≤ xt ≤ x̄} ≥ 1− δtx ⇐⇒

Pr
{(
x ≤ xt

)⋂(
xt ≤ x̄

)}
≥ 1− δtx ⇐⇒

Pr
{(
xt ≤ x

)⋃(
x̄ ≤ xt

)}
≤ δtx ⇐={

Pr {xt ≤ x} ≤ δ̃tx
Pr {x̄ ≤ xt} ≤ δtx − δ̃tx

.

where δ̃tx is real value in [0, 1] such that 0 ≤ δtx − δ̃tx ≤
1. Consequently, we establish certain sufficient conditions for
Pr{x ≤ xt ≤ x̄} ≥ 1 − δtx. Initially, we commence with the
condition Pr {xt ≤ x} ≤ δ̃tx.

Pr

x0 +

t−1∑
k=0

N∑
j=1

(−ρ)uk
j +

t−1∑
k=0

ρrk ≤ x

 ≤ δ̃tx ⇐⇒

Pr

x0 +

t−1∑
k=0

N∑
j=1

(−ρ)uk
j +

t−1∑
k=0

ρrk −
t−1∑
k=0

ρµk
r ≤ x−

t−1∑
k=0

ρµk
r

 ≤ δ̃tx

⇐⇒

Pr


t−1∑
k=0

ρrk −
t−1∑
k=0

ρµk
r ≤ x− x0 −

t−1∑
k=0

N∑
j=1

(−ρ)uk
j −

t−1∑
k=0

ρµk
r

 ≤ δ̃tx

⇐⇒

Pr


t−1∑
k=0

rk −
t−1∑
k=0

µk
r ≤

1

ρ

x− x0 −
t−1∑
k=0

N∑
j=1

(−ρ)uk
j −

t−1∑
k=0

ρµk
r


≤ δ̃tx

In order to employ the Chernoff-Hoeffding inequality, it is
essential that the following condition be satisfied:x− x0 − t−1∑

k=0

N∑
j=1

(−ρ)ukj −
t−1∑
k=0

ρµk
r

 ≤ 0

If the aforementioned condition is met, we can, based on the
Chernoff-Hoeffding inequality, state the following:

Pr


t−1∑
k=0

rk −
t−1∑
k=0

µk
r ≤ −

1

ρ

−x+ x0 +

t−1∑
k=0

N∑
j=1

(−ρ)uk
j +

t−1∑
k=0

ρµk
r


≤ exp

−
[
1
ρ

(
−x+ x0 +

∑t−1
k=0

∑N
j=1(−ρ)uk

j +
∑t−1

k=0 ρµ
k
r

)]2
νt

∑t−1
k=0(b

k − ak)2


So it is necessary to have:

exp

−
[
1
ρ

(
−x+ x0 +

∑t−1
k=0

∑N
j=1(−ρ)uk

j +
∑t−1

k=0 ρµ
k
r

)]2
νt

∑t−1
k=0(b

k − ak)2

 ≤ δ̃tx

⇐⇒−x+ x0 +

t−1∑
k=0

N∑
j=1

(−ρ)uk
j +

t−1∑
k=0

ρµk
r

2

≥ −ρ2νtLnδ̃tx
t−1∑
k=0

(bk − ak)2

Clearly, the term −ρ2νtLnδ̃tx
∑t−1

k=0(b
k−ak)2 is non-negative,

thus we can state:

− x+ x0 +

t−1∑
k=0

N∑
j=1

(−ρ)ukj +

t−1∑
k=0

ρµk
r

≥

√√√√−ρ2νtLnδ̃tx t−1∑
k=0

(bk − ak)2

Or

− x+ x0 +

t−1∑
k=0

N∑
j=1

(−ρ)ukj +

t−1∑
k=0

ρµk
r

≤ −

√√√√−ρ2νtLnδ̃tx t−1∑
k=0

(bk − ak)2

But −x + x0 +
∑t−1

k=0

∑N
j=1(−ρ)ukj +

∑t−1
k=0 ρµ

k
r ≥√

−ρ2νtLnδ̃tx
∑t−1

k=0(b
k − ak)2 is only valid, base on(

x− x0 −
∑t−1

k=0

∑N
j=1(−ρ)ukj −

∑t−1
k=0 ρµ

k
r

)
≤ 0. Hence,

we arrive at the following conclusion:

x− x0 −
t−1∑
k=0

N∑
j=1

(−ρ)ukj −
t−1∑
k=0

ρµk
r

+

√√√√−ρ2νtLnδ̃tx t−1∑
k=0

(bk − ak)2 ≤ 0

Now, we commence with the condition Pr {x̄ ≤ xt} ≤



δtx − δ̃tx.

Pr
{
x̄ ≤ xt

}
≤ δtx − δ̃tx ⇐⇒

Pr

x̄ ≤ x0 +

t−1∑
k=0

N∑
j=1

(−ρ)uk
j +

t−1∑
k=0

ρrk

 ≤ δtx − δ̃tx ⇐⇒

Pr

x̄− x0 −
t−1∑
k=0

N∑
j=1

(−ρ)uk
j −

t−1∑
k=0

ρµk
r ≤

t−1∑
k=0

ρrk −
t−1∑
k=0

ρµk
r


≤ δtx − δ̃tx ⇐⇒

Pr


t−1∑
k=0

rk −
t−1∑
k=0

µk
r ≥

1

ρ

x̄− x0 −
t−1∑
k=0

N∑
j=1

(−ρ)uk
j −

t−1∑
k=0

ρµk
r


≤ δtx − δ̃tx

In order to employ the Chernoff-Hoeffding inequality, it is
essential that the following condition be satisfied:

x̄− x0 −
t−1∑
k=0

N∑
j=1

(−ρ)ukj −
t−1∑
k=0

ρµk
r ≥ 0

If the aforementioned condition is met, we can, based on the
Chernoff-Hoeffding inequality, state the following:

Pr


t−1∑
k=0

rk −
t−1∑
k=0

µk
r ≥

1

ρ

x̄− x0 −
t−1∑
k=0

N∑
j=1

(−ρ)uk
j −

t−1∑
k=0

ρµk
r


≤ exp

−
[
1
ρ

(
x̄− x0 −

∑t−1
k=0

∑N
j=1(−ρ)uk

j −
∑t−1

k=0 ρµ
k
r

)]2
νt

∑t−1
k=0

(
bk − ak

)2


Like the previous part, it is necessary to have:x̄− x0 − t−1∑
k=0

N∑
j=1

(−ρ)ukj −
t−1∑
k=0

ρµk
r

2

≥ −ρ2νtLn
(
δtx − δ̃tx

) t−1∑
k=0

(
bk − ak

)2
It is obvious that −ρ2νtLn

(
1− δt − δ̃t

)∑t−1
k=0

(
bk − ak

)2
is

non-negative, so:

x̄− x0 −
t−1∑
k=0

N∑
j=1

(−ρ)ukj −
t−1∑
k=0

ρµk
r

≥

√√√√−ρ2νtLn(δtx − δ̃tx) t−1∑
k=0

(bk − ak)2

Or

x̄− x0 −
t−1∑
k=0

N∑
j=1

(−ρ)ukj −
t−1∑
k=0

ρµk
r

≤ −

√√√√−ρ2νtLn(δtx − δ̃tx) t−1∑
k=0

(bk − ak)2

But x̄ − x0 −
∑t−1

k=0

∑N
j=1(−ρ)ukj −

∑t−1
k=0 ρµ

k
r ≥√

−ρ2νtLn
(
δtx − δ̃tx

)∑t−1
k=0 (b

k − ak)2 is just valid, base on

x̄ − x0 −
∑t−1

k=0

∑N
j=1(−ρ)ukj −

∑t−1
k=0 ρµ

k
r ≥ 0. Hence, we

arrive at the following conclusion:

− x̄+ x0 +

t−1∑
k=0

N∑
j=1

(−ρ)ukj

+

t−1∑
k=0

ρµk
r +

√√√√−ρ2νtLn(δtx − δ̃tx

) t−1∑
k=0

(
bk − ak

)2 ≤ 0

Proposition 2: The feasible domain of the chance con-
straint (3) can be under-approximated with the deterministic
inequalities

r−ϵ−x0−ρ1T
τ µr+qx,final,1+

N∑
j=1

ρ1T
τ uj ≤ 0, (11)

x0−r−ϵ+ρ1T
τ µr+qx,final,2+

N∑
j=1

(
−ρ1T

τ

)
uj ≤ 0, (12)

where qx,final,1 =
√
−ρ2ντr

∑τ−1
k=0 (b

k − ak)2 Ln(δ̃τ,finalx ),

qx,final,2 =
√
−ρ2ντr

∑τ−1
k=0 (b

k − ak)2 Ln(δτ,finalx − δ̃τ,finalx ),
with 0 ≤ δ̃τ,finalx ≤ 1, and 0 ≤ δτ,finalx − δ̃τ,finalx ≤ 1.
Proof: The proof is like Proposition 1.

Proposition 3: The feasible domain of the chance con-
straint (5) can be under-approximated with the deterministic
inequalities

−
N∑
j=1

µdj
+ qg,1 +

N∑
j=1

uj ≤ 0, (13)

− ḡ1τ +

N∑
j=1

µdj
+ qg,2 −

N∑
j=1

uj ≤ 0, (14)

where µdj =
[
E
{
d0j
}
,E

{
d1j
}
, . . . ,E

{
dτ−1j

}]T
, qg,1 =[

q0g,1, q
1
g,1, . . . , q

τ−1
g,1

]T
, qg,2 =

[
q0g,2, q

1
g,2, . . . , q

τ−1
g,2

]T
,

with qtg,1 =
√
−νtd

∑N
j=1

(
f tj − ctj

)2
Ln(δ̃tg), qtg,2 =√

−νtd
∑N

j=1

(
f tj − ctj

)2
Ln(δtg − δ̃tg), 0 ≤ δ̃tg ≤ 1, and 0 ≤

δtg − δ̃tg ≤ 1. Moreover, νtd = χ(Ĝt
d)/2 with Ĝt

d being
the undirected dependency graph of the random variables
dt1, . . . , d

t
N .

Proof: We know, that gti = dti−uti and gt =
∑N

j=1 g
t
j =∑N

j=1 d
t
j −

∑N
j=1 u

t
j . We also considered Pr {0 ≤ gt ≤ ḡ} ≥

1− δtg as retailer constraint. Now like what we have done in
Proposition 1, we have:

Pr
{
0 ≤ gt ≤ ḡ

}
≥ 1− δtg ⇐⇒

Pr
{(

0 ≤ gt
)⋂(

gt ≤ ḡ
)}
≥ 1− δtg ⇐⇒

1−Pr
{(
gt ≤ 0

)⋃(
gt ≥ ḡ

)}
≥ 1− δtg ⇐⇒

Pr
{(
gt ≤ 0

)⋃(
gt ≥ ḡ

)}
≤ δtg ⇐⇒

Pr
{
gt ≤ 0

}
+Pr

{
gt ≥ ḡ

}
≤ δtg ⇐={

Pr {gt ≤ 0} ≤ δ̃tg
Pr {gt ≥ ḡ} ≤ δtg − δ̃tg



We know:

Pr
{
gt ≤ 0

}
= Pr


N∑
j=1

dtj −
N∑
j=1

utj ≤ 0

 =

Pr


N∑
j=1

dtj −
N∑
j=1

utj −
N∑
j=1

µt
dj
≤ −

N∑
j=1

µt
dj

 =

Pr


N∑
j=1

dtj −
N∑
j=1

µt
dj
≤

N∑
j=1

utj −
N∑
j=1

µt
dj


For identifying a sufficient condition that ensures
Pr {gt ≤ 0} ≤ δ̃tg is satisfied, we use Chernoff-Hoeffding
inequality. For using Chernoff-Hoeffding inequality, it is
necessary the following condition satisfied:

N∑
j=1

utj −
N∑
j=1

µt
dj
≤ 0

If the aforementioned condition is met, we can, based on the
Chernoff-Hoeffding inequality, state the following:

Pr


N∑
j=1

dtj −
N∑
j=1

µt
dj
≤ −

 N∑
j=1

µt
dj
−

N∑
j=1

utj


≤ exp

−
(∑N

j=1 µ
t
dj
−
∑N

j=1 u
t
j

)2

νtd
∑N

j=1

(
f tj − ctj

)2


So it is necessary to have:

exp

−
(∑N

j=1 µ
t
dj
−
∑N

j=1 u
t
j

)2

νtd
∑N

j=1

(
f tj − ctj

)2
 ≤ δ̃tg ⇐⇒

−
(∑N

j=1 µ
t
dj
−
∑N

j=1 u
t
j

)2

νtd
∑N

j=1

(
f tj − ctj

)2 ≤ Ln
(
δ̃tg

)
⇐⇒

−

 N∑
j=1

µt
dj
−

N∑
j=1

utj

2

≤ νtdLn
(
δ̃tg

) N∑
j=1

(
f tj − ctj

)2 ⇐⇒
 N∑

j=1

µt
dj
−

N∑
j=1

utj

2

≥ −νtdLn
(
δ̃tg

) N∑
j=1

(
f tj − ctj

)2
It is obvious that −νtdLn

(
δ̃tg

)∑N
j=1

(
f tj − ctj

)2
is non-

negative, so: N∑
j=1

µt
dj
−

N∑
j=1

utj

 ≥
√√√√−νtdLn(δ̃tg) N∑

j=1

(
f tj − ctj

)2
Or N∑

j=1

µt
dj
−

N∑
j=1

utj

 ≤ −
√√√√−νtdLn(δ̃tg) N∑

j=1

(
f tj − ctj

)2
But

(∑N
j=1 µ

t
dj
−
∑N

j=1 u
t
j

)
≥√

−νtdLn
(
δ̃tg

)∑N
j=1

(
f tj − ctj

)2
is just valid. So, we

consider:

N∑
j=1

utj −
N∑
j=1

µt
dj

+

√√√√−νtdLn(δ̃tg) N∑
j=1

(
f tj − ctj

)2 ≤ 0

Now we discuss similarly about Pr {gt ≥ ḡ} ≤ δtg − δ̃tg . We
know:

Pr
{
gt ≥ ḡ

}
= Pr


N∑
j=1

dtj −
N∑
j=1

utj ≥ ḡ

 =

Pr


N∑
j=1

dtj −
N∑
j=1

utj −
N∑
j=1

µt
dj
≥ ḡ −

N∑
j=1

µt
dj

 =

Pr


N∑
j=1

dtj −
N∑
j=1

µt
dj
≥ ḡ −

N∑
j=1

µt
dj

+

N∑
j=1

utj


For identifying a sufficient condition that ensures
Pr {gt ≥ ḡ} ≤ δtg − δ̃tg is satisfied, we use Chernoff-
Hoeffding inequality. For using Chernoff-Hoeffding inequality,
it is necessary the following condition satisfied:

ḡ −
N∑
j=1

µt
dj

+

N∑
j=1

utj ≥ 0

If the aforementioned condition is met, we can, based on the
Chernoff-Hoeffding inequality, state the following:

Pr


N∑
j=1

dtj −
N∑
j=1

µt
dj
≥ ḡ −

N∑
j=1

µt
dj

+

N∑
j=1

utj


≤ exp

−
(
ḡ −

∑N
j=1 µ

t
dj

+
∑N

j=1 u
t
j

)2

νtd
∑N

j=1

(
f tj − ctj

)2


So it is necessary to have:

exp

−
(
ḡ −

∑N
j=1 µ

t
dj

+
∑N

j=1 u
t
j

)2
νtd
∑N

j=1

(
f tj − ctj

)2
 ≤ δtg − δ̃tg ⇐⇒

−
(
ḡ −

∑N
j=1 µ

t
dj

+
∑N

j=1 u
t
j

)2
νtd
∑N

j=1

(
f tj − ctj

)2 ≤ Ln
{
δtg − δ̃tg

}
⇐⇒

−

ḡ −
N∑
j=1

µt
dj

+

N∑
j=1

utj

2

≤ νtdLn
{
δtg − δ̃tg

} N∑
j=1

(
f tj − ctj

)2
⇐⇒ḡ −

N∑
j=1

µt
dj

+

N∑
j=1

utj

2

≥ −νtdLn
{
δtg − δ̃tg

} N∑
j=1

(
f tj − ctj

)2

It is obvious that −νtdLn
{
δtg − δ̃tg

}∑N
j=1

(
f tj − ctj

)2
is non-



negative, so:

ḡ −
N∑
j=1

µt
dj

+

N∑
j=1

utj ≥

√√√√−νtdLn{δtg − δ̃tg} N∑
j=1

(
f tj − ctj

)2
Or

ḡ −
N∑
j=1

µt
dj

+

N∑
j=1

utj ≤ −

√√√√−νtdLn{δtg − δ̃tg} N∑
j=1

(
f tj − ctj

)2
But ḡ −

∑N
j=1 µ

t
dj

+
∑N

j=1 u
t
j ≥√

−νtdLn
{
δtg − δ̃tg

}∑N
j=1

(
f tj − ctj

)2
is just valid. So,

we consider:

−ḡ +
N∑

j=1

µt
dj
−

N∑
j=1

ut
j +

√√√√−νtdLn{
δtg − δ̃tg

} N∑
j=1

(
f t
j − ctj

)2
≤ 0

All the inequalities in (8)–(9) and (11)–(14) can be written as
N∑
j=1

Auj ≤ b, (15)

with appropriately defined matrices A and b, like,

A =



ρMτ

. . . . . .
−ρMτ

. . . . . .
ρ1T

τ

. . . . . .
−ρ1T

τ

. . . . . .
Iτ

. . . . . .
−Iτ


, b = −



(
x− x0

)
1τ − ρMτµr + qx,1

. . . . . .(
x0 − x̄

)
1τ + ρMτµr + qx,2

. . . . . .
r − ϵ− x0 − ρ1T

τ µr + qx,final,1
. . . . . .

x0 − r − ϵ+ ρ1T
τ µr ++qx,final,2

. . . . . .

−
∑N

j=1 µdj + qg,1

. . . . . .

−ḡ1τ +
∑N

j=1 µdj
+ qg,2


,

and with explicit local constraint or local decision set

Ωi =
{
ui ∈ RT |0τ ≤ ui ≤ ūi1τ

}
. (16)

Reformulation of the cost function. We can rewrite the cost
function (7) as

Ji = uT
i Gui + Tiui +

 1

N

N∑
j=1

uT
j

Hui + ci , (17)

where

G = αdchIτ , H = NkNc Iτ ,

Ti =

−KToU − kNc µdi − kNc

N∑
j=1

µdj + βdch1τ

T

ci = µT
di
KToU +

τ−1∑
t=0

[
kNc E


N∑
j=1

dtid
t
j


+ αdch

N∑
j=1,j ̸=i

(
utj

)2
+
(
−kNc µdti

+ βdch
) N∑

j=1,j ̸=i

utj

]
.

KToU =
[
K0

ToU ,K1
ToU , . . . ,Kτ−1

ToU

]T
,

µrt = E
{
rt
}
, µdti

= E
{
dti

}
.

The above under-approximations and reformulation of the cost
function gives the following game G′:

G′ =



Players: A set of residential agents N = {1, 2, . . . , N}
Strategies of Agents: ui i ∈ N
Cost Functions: Ji (ui,u−i) i ∈ N

Constraints:

{
Local: (16)
Coupling (deterministic and static): (15)

where u−i = col
(
{uj}j ̸=i

)
. Each agent seeks to minimize

its cost function, Ji(ui,u−i), while taking into account both
the coupling constraint (15) and the local constraint (16).

V. GAME THEORETICAL ANALYSIS

Utilizing the coupling constraint and local decision set, we
define the collective feasible set U as

U = Ω ∩

{
(y1, . . . ,yN ) ∈ RτN |

N∑
i=1

Ayi − b ≤ 0

}
, (18)

where Ω = Ω1 × Ω2 × · · · × ΩN . Additionally, we define the
feasible decision set of agent i ∈ {1, . . . , N} as

Ui(u−i) =

yi ∈ Ωi|Ayi ≤ b−
N∑

j=1,j ̸=i

Au−i

 .

Our local optimization problem can be formalized as a game
theory setup:{

minui∈ΩiJ(ui,u−i)

s.t. Aui ≤ b−
∑N

j=1,j ̸=iAuj

for all i ∈ {1, . . . , N}

(19)
In this context, we use the notion of Generalized Nash instead
of Nash, since the coupling among the agents is not only in
their cost functions but also in their constraints.

Definition 1 (Generalized Nash Equlibrium): The collec-
tive strategy u∗ is a generalized Nash equilibrium (GNE) of
the game in (19) if u∗ ∈ U and for all i ∈ {1, . . . , N}

Ji
(
u∗i ,u

∗
−i
)
≤ inf

{
Ji(y,u

∗
−i)|y ∈ Ui(u∗−i)

}
.

Remark 1: In our study, we can easily demonstrate that
for each i ∈ {1, . . . , N} and y ∈ U−i, the local cost function
Ji(·,y) is strictly convex (since G is positive definite) and
continuously differentiable. Additionally, for each agent, its
local decision set is non-empty, compact (i.e., closed and
bounded), and convex (since it is a hypercube, see (16)).
We also consider the following relax assumption.

Assumption 2: The collective feasible set satisfies Slater’s
constraint qualification.

Proposition 4: Under Assumption 2, the GNE exists in our
proposed game setup.

Proof: Based on Remark 1, Assumption 2 and by
utilizing Brouwer’s fixed point theorem [27, Proposition 12.7],
it is evident that a GNE exists.

Our study aims to identify a subset of the GNE that exhibits
favorable properties such as economic fairness and enhanced
social stability. Typically, this subset can be determined by
solving an appropriate variational inequality, known as a
generalized variational inequality (GVI). However, since the



local cost functions are continuously differentiable, we utilize
a specific type of GVI from [23]. Define the pseduo-gradient
F : U → RτN as

F (u) = col
(
{∂ui

J(ui,u−i)}i∈{1,...,N}
)
,

which is single-valued with F (u) = Γu+ Λ, where

Γ = IN×N ⊗

[
2

(
G+

HT

N

)]
+ (1N×N − IN×N )⊗

(
HT

N

)
=
(
2αdch + kNc

)
(IN×N ⊗ Iτ ) + kNc (1N×N ⊗ Iτ )

Λ =
[
T1 T2 . . . TN

]T
.

Based on Remark 1 and [27, Proposition 12.4], any solution
of standard variational inequality problem VI(U , F ) is a
generalized Nash equilibrium of (19), However, the converse
is not necessarily true.

Proposition 5: The variational GNE exists and is unique.
Proof: It has been demonstrated in [27, Proposition

12.11] that under all the system model properties stated in
Remark 1 and Assumption 2, a sufficient condition for the
existence (uniqueness) of a variational GNE in our game setup
(19) is F being monotone (strictly monotone). The definition
of monotonicity (strict monotonicity) implies that if Γ is
positive semidefinite (positive definite), then F is monotone
(strictly monotone). Since

(
2αdch + kNc

)
(IN×N ⊗ Iτ ) and

kNc (1N×N ⊗ Iτ ) are two commuting square matrices, then
based on [28, Theorem 1.3.12], the eigenvalues of Γ are either
(2αdch+kNc +NKN

c ) or (2αdch+kNc ), both strictly positive,
so Γ is positive definite and F is also strictly monotone.

Remark 2: F is ζ-strongly monotone with ζ ∈(
0, 2αdch + kNc

)
. This can be demonstrated by utilizing

the definition of strong monotonicity, in a manner analogous
to Proposition 5.

Remark 3: Based on Lipschitz definition and Gershgorin
Theorem, F is lF -Lipschitz with lF > 2αdch + (N + 1) kNc .

As mentioned in [23], projected-gradient algorithms for gen-
eralized equilibrium seeking in aggregative games are precon-
ditioned forward-backward methods. Based on this, we pro-
pose a semi-decentralized preconditioned forward-backward
algorithm to solve variational inequality problem VI(U , F ),
as presented in Algorithm 1. In the proposed algorithm, we
define αi as real values that belong to the interval

(
0, 2ζ

l2F

)
for all i ∈ {1, . . . , N} and γ ∈ (0, γmax). We set γmax ≜

1
∥1T

N⊗A∥2

[
1

αi,max
− 1

2 ζ

l2
F

]
.

Moreover, we denote αi,min and αi,max as the minimum
and maximum values of αi across all i ∈ {1, . . . , N} re-
spectively, i.e., αi,min ≜ mini∈{1,...,N} αi and αi,max ≜
maxi∈{1,...,N} αi. In this context, the parameters lF and ζ are
determined according to Remark 2 and Remark 3, respectively.

The sequence
(
col(uk, λk)

)∞
k=0

defined by Algorithm 1,

with step sizes αi ∈
(
0, 2ζ

l2F

)
, for all i ∈ {1, . . . , N}, and γ ∈

(0, γmax), with γmax ≜ 1
∥1T

N⊗A∥2

[
1

αi,max
− 1

2 ζ

l2
F

]
, globally

converges to variational GNE based on [23, Theorem 1]. More
details about the Algorithm are expressed in Appendix.

Algorithm 1: Preconditioned Forward Backward
Initialization: k ← 1, u1

i ← uinit
i , λ1 ← λinit

Repeat
Agents: ∀i ∈ {1, . . . , N}

u
k+1
i ← projΩi

[(
Iτ×τ − 2αi

(
G +

HT

N

))
u
k
i − αiA

T
λ
k − αiT

T
i

]
Coordinator:

λ
k+1 ← projRm≥0

λk
+ γ

2 A
N∑

j=1

u
k+1
j − A

N∑
j=1

u
k
j − b


k ← k + 1

Until for all agents ∥uk+1
i − uk

i ∥ ≤ ϵ
stop
u , ∥λk+1 − λk∥ ≤ ϵ

stop
λ

TABLE I
CONVENTIONAL TIME-OF-USE PRICING TARIFF.

Time(t) 0− 4 5− 14 15− 16 17− 21 22− 24
Tariff(Kt

ToU ) 29.45 30 29.5 30.5 29.5

VI. SIMULATION

In this section, we consider a microgrid system consisting
of N = 20 identical residential users. The parameters of the
cost functions in (7) are assigned as αdch = 8, βdch = 10,
and kNc = 0.015. Additionally, the conventional time-of-
use pricing tariff is provided in Table I. The initial SoC is
x0 = 0.5 with minimum and maximum SoC of x = 0.1
and x̄ = 0.9. The battery has a total energy capacity of
E = 20000 units with efficiency η = 1/E. The upper bound
on the discharging power for each user i is ūi = E/ (N∆t).
In the chance constraints (2), (3), and (5), we set δtx = 0.8,
δτ,finalx = 0.9, r = 0.6, ϵ = 0.05, ḡ = 600 and δtg = 0.8.
The time horizon is τ = 24 hours with time step ∆t = 1
hour. We consider dti and rt to have a bounded support with
25% deviation around their mean value. In our configuration,
we set δ̃tx = δ̃τ,finalx = δ̃tg = 0.05 and νtr = νtd = 1.
For Algorithm 1, lF = 16.31, γ = 5.33 × 10−4, and ζ =
4.24. Additionally, α = 10−4diag{p} ⊗ (Iτ×τ ), where p =
[251, 311, 317, 172, 131, 70, 28, 152, 129, 74, 32, 121, 80, 223,
35, 71, 292, 33, 251, 183].

According to Proposition 5, the variational generalized Nash
equilibrium is unique in our stochastic approach. We apply
our stochastic method for DSM and compare its results with
two deterministic methods. In these deterministic methods, we
consider two worst-case scenarios for agent demand (lower
bound and upper bound of demands) and use the mean value
of renewable energy at each time as its deterministic value.

The profile of uti in the stochastic and deterministic ap-
proaches can be viewed in Figure 2. This figure illustrates
that in periods when prices and demand are relatively low, the
stochastic approach utilizes less battery energy compared to
the deterministic methods. Conversely, during intervals with
higher demand and electricity prices, the battery is employed
to a greater extent under the stochastic method. Figure 3
illustrates the means of power exchange profile of the agents
with the grid. The results in Figure 3 indicate that the
stochastic approach of this paper performs peak shaving more
effectively than the deterministic methods. Simulation results
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Fig. 2. Profile of ut
i in stochastic and deterministic approaches.
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Fig. 3. Profile of power exchange of all the agents with the grid in
stochastic and deterministic approaches

also reveal that, while the stochastic approach achieves more
effective peak shaving than the deterministic methods, the
power exchange profile of the agents with the grid increases
more frequently compared to the deterministic approaches. We
also compare, numerically, the cost function of our stochastic
approach with the deterministic methods for 1,000 random
demand values and display the histogram in Figure 4. As
evident from the figure, the expected cost for our stochastic
approach is lower, showing that it incurs lower costs for agents.

VII. CONCLUSIONS
This paper studied a microgrid system where residential

users use a shared battery charged through renewable sources
and the grid. The model considered uncertain variables includ-
ing user demand and renewable energy, as well as dynamic and
stochastic coupling constraints. The paper used game theory to
analyze the Nash equilibrium for demand-side management,
examining existence and uniqueness. A semi-decentralized
algorithm for Nash seeking was also proposed. The simulation
results demonstrated the advantages of the proposed setup.

Fig. 4. Histogram comparing the random costs of stochastic and
deterministic approaches.
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APPENDIX
SOME EXPLANATION ABOUT PROOF OF GAME

In the section dedicated to game analysis, it is necessary
to demonstrate that function F possesses certain charac-
teristics (monotone, strictly monotone, η-strongly monotone
and lf − Lipschitz). Subsequent sections will establish the
equivalency of these properties with other concepts in linear
algebra (Positive definitive or Positive semi-definite), and the
corresponding results.

A. The Monotonicity of F
We start with definition of monotonticity.

(F (u)− F (v))T (u− v) ≥ 0⇐⇒ (Γu− Γv)
T
(u− v) ≥ 0

⇐⇒ (Γ (u− v))T (u− v) ≥ 0⇐⇒
(u− v)T

(
ΓT

)
(u− v) ≥ 0⇐⇒ (u− v)T (Γ) (u− v) ≥ 0

We have ascertained that for F to be monotone, the nec-
essary and sufficient condition is that F must be positive
semi-definite. Further, we are also endeavoring to pinpoint
conditions leading to Γ being positive semi-definite.

B. strictly Monotonicity of F

We start with definition of monotonticity.

(F (u)− F (v))T (u− v) > 0⇐⇒ (Γu− Γv)
T
(u− v) > 0

⇐⇒ (Γ (u− v))T (u− v) > 0⇐⇒
(u− v)T

(
ΓT

)
(u− v) > 0⇐⇒ (u− v)T (Γ) (u− v) > 0

We have ascertained that for F to be strictly monotone,
the necessary and sufficient condition is that F must be
positive definite. Further, we are also endeavoring to pinpoint
conditions leading to Γ being positive definite.

C. ζ-strongly monotonicity of F

We start with definition of ζ-strongly monotone of F .

(F (u)− F (v))T (u− v) ≥ ζ∥u− v∥2 ⇐⇒
(Γu− Γv)

T
(u− v) ≥ ζ(u− v)T (u− v)⇐⇒

(Γ (u− v))T (u− v) ≥ ζ(u− v)T (u− v)⇐⇒
(u− v)T

(
ΓT − ζI

)
(u− v) ≥ 0⇐⇒

(u− v)T (Γ− ζI) (u− v) ≥ 0

Now we try to find ζ such that Γ−ζI becomes positive semi-
definite.

D. lf -Lipschitz Continuity of F

We start with definition of lf -Lipschitz of F .

∥F (u)− F (v)∥ ≤ lf∥u− v∥ ⇐⇒
∥Γu− Γv∥ ≤ lf∥u− v∥ ⇐⇒ ∥Γu− Γv∥2 ≤ l2f∥u− v∥2 ⇐⇒
∥Γ(u− v)∥2 ≤ l2f∥u− v∥2 ⇐⇒
(u− v)T ΓTΓ (u− v) ≤ l2f (u− v)

T
(u− v)⇐⇒

(u− v)T
(
l2fI − Γ2

)
(u− v) ≥ 0

Now we try to find lf such that l2fI − Γ2 becomes positive
semi-definite. First, we find Γ2:

Γ2 =

{
IN×N ⊗

[
2

(
G+

HT

N

)]
+ (1N×N − IN×N )⊗ HT

N

}2

=IN×N ⊗
[
4

((
αdch + kNc

)2
Iτ

)]
+(1N×N − IN×N )⊗

[
2
(
αdch + kNc

)
kNc Iτ

]
+(1N×N − IN×N )⊗

[
2kNc Iτ

((
kNc + αdch

)
Iτ
)]

+ [(N − 2)1N×N + IN×N ]⊗
((

kNc

)2
Iτ

)
The diagonal elements of Γ2 are defined by the expression
4
(
αdch + kNc

)2
+ (N − 1)

(
kNc

)2
. Moreover, the summation

of the absolute values of off-diagonal elements within a row is
given by 4kNc (αdch + kNc )(N − 1) + (N − 2)(N − 1)

(
kNc

)2
.



Therefore, according to the Gershgorin Circle Theorem, the
following conditions are necessary.

l2F − 4
(
αdch + kNc

)2
− (N − 1)

(
kNc

)2
> 0

So

lF >

{
4
(
αdch + kNc

)2
+ (N − 1)

[
(N − 1)

(
kNc

)2
+ 4kNc

(
αdch + kNc

)]} 1
2

= 2αdch + (N + 1)kNc

DETAILS ABOUT ALGORITHM

In this paper we exploited preconditioned forward-backward
splitting method to compute the generalized Nash equilibria
of the game [23]. Since the convergence characterization of
the forward-backward splitting method is well established, the
advantage of the proposed design is that global convergence
follows provided that some mild monotonicity assumptions on
the problem data are satisfied.
In the classical Nash Equilibrium concept, each player i
chooses their strategy ui to minimize their individual cost
function Ji(ui, u−i), where u−i denotes the strategies of
all other players. In the GNE, there’s an added complex-
ity: the players’ strategy choices are also subject to some
shared/coupled constraints. By writing the KKT condition for
finding GNE, this setup leads to a monotone inclusion problem
of the form:

0 ∈ P(w) +Q(w)

where w =

[
u
λ

]
, that λ is Lagrangian multiplier in the KKT

conditions. Moreover,

P :

[
u
λ

]
−→

[
F (u)
b

]
,

Q :

[
u
λ

]
−→

[
NΩ(u)
NRm

≥0
(µ)

]
+

[
0 (1T

N ⊗A)T
−(1T

N ⊗A) 0

] [
u
λ

]
.

that NS denotes normal cone operator for set S. P and Q
are monotone operators contains the game’s cost functions
and constraints. In Remark 4 and Remark 5, we establish
sufficient conditions under which F is ζ−strongly monotone
and lf − Lipschitz . If F satisfied these properties, we can
also show, similar to Lemma 1 in [23], that Q is maximally
monotone and P is (ζ/l2f )-cocoercive.
This monotone inclusion problem represents the fixed-
point problem associated with finding the GNE. Let
zer(P +Q) = {w ∈ RNn+m | 0 ∈ (P +Q)(w)}. Similarly,
define fix(Vϕ ◦ Uϕ) = {w ∈ RNn+m | w = (Vϕ ◦ Uϕ)(w)}.
Furthermore, let Vϕ = (Id−ϕ−1P) and Uϕ = (Id+ϕ−1Q)−1,
where Id(.) denotes the identity operator and, positive definite
matrix ϕ is preconditioning matrix. In Lemma 2 of [23], it
has been shown that:

w ∈ zer(P +Q)⇐⇒ w ∈ fix(Vϕ ◦ Uϕ), (20)

The forward backward algorithm is the Banach–Picard iter-
ation [29] applied to the mappings Vϕ◦Uϕ in w ∈ fix(Vϕ◦Uϕ)
, i.e.,

wk+1 = (Id + ϕ−1Q)−1 ◦ (Id− ϕ−1P)(wk) (21)

In numerical analysis, Uϕ represents a forward step with size
and direction defined by ϕ, while Vϕ represents a backward
step. Directly from the iteration in (20), we have that

(Id− ϕ−1P)(wk) ∈ (Id+ ϕ−1Q)(wk+1)

⇐⇒ −P(wk) ∈ Q(wk+1) + ϕ−1(wk+1 − wk) (22)

The choice of the preconditioning matrix ϕ in (22) plays a key
role in the algorithm design (it is important in convergence of
our GNE seeking algorithm), and is set base on Theorem 1 in
[23]. So, We consider ϕ like what considered in [23], as

ϕ =

[
α−1 −(1T

N ⊗A)T
−(1T

N ⊗A) γ−1I

]
where α = diag (α1, α2, . . . , αN ) ⊗ Iτ and coefficients

{αi}Ni=1 and γ are chosen such that ϕ is positive definite
(based on design guidelines and Theorem 1 in [23]).
By substituting the the above ϕ in (22) and doing some
manipulation we can easily reach to

−
[
F
(
uk

)
b

]
∈

[
NΩ

(
uk+1

)
NRm≥0

(
λk+1

)]+[(
1T
N ⊗A

)T
λk+1 + α−1

(
uk+1 − uk

)
−

(
1T
N ⊗A

)T (
λk+1 − λk

)
−

(
1T
N ⊗A

)
uk+1 −

(
1T
N ⊗A

) (
uk+1 − uk

)
+ γ−1

(
λk+1 − λk

) ]
First we consider the following equations

−b =−
(
1T
N ⊗A

)
uk+1 −

(
1T
N ⊗A

) (
uk+1 − uk

)
+ γ−1

(
λk+1 − λk

)
(23)

−F
(
uk

)
=
(
1T
N ⊗A

)T
λk+1 + α−1

(
uk+1 − uk

)
−
(
1T
N ⊗A

)T (
λk+1 − λk

)
(24)

Based on (23), we can find

λk+1 = λk + γ
(
2
(
1T
N ⊗A

)
uk+1 −

(
1T
N ⊗A

)
uk − b

)
(25)

By substituting (25) in (24), we can reach to

uk+1 = uk − α
(
F
(
uk

)
+
(
1T
N ⊗A

)
λk

)
(26)

As it has been mentioned in main manuscript, F
(
uk

)
=

Γuk + Λ, so (26) can express as

uk+1 ←− (I− αΓ)uk − α
(
1T
N ⊗A

)T
λk − αΛ.

Now by applying normal cone operator to uk+1 we have

uk+1 ←− projΩ

[
(I− αΓ)uk − α

(
1T
N ⊗A

)T
λk − αΛ

]
.

Also by applying normal cone operator to λk+1 we have

λk+1 ← projRm
≥0

[
λk + γ

(
2
(
1T
N ⊗A

)
uk+1 −

(
1T
N ⊗A

)
uk − b

)]
(27)

So, Algorithm 2 can be used as a centralized algorithm for
GNE seeking.



The centralized algorithm presented was modified to a semi-
decentralized one that employs a coordinator to become GNE
seeking computationally scalable for large scale networks. To
arrive at the semi-decentralized algorithm, we undertook these
steps. Let’s delve deeper into the following update term in
Algorithm 2

uk+1 ←− projΩ

[
(I− αΓ)uk − α

(
1T
N ⊗A

)T
λk − αΛ

]
.

where u = [uT
1 ,u

T
2 , . . . ,u

T
N ]T .

By expanding the right hand side, we found that ui is updated
as

uk+1
i ←− projΩi

[(
Iτ×τ − 2αi(G+

HT

N
)

)
uk
i − αiA

Tλk − αiT
T
i

]
.

Moreover, we can easily find that λ is updated as

λk+1 ←− projRm
≥0

λk + γ

2 A

N∑
j=1

uk+1
j −A

N∑
j=1

uk
j − b


Fig.1 in the paper shows the information flow between

the agents and coordinator. As we can see, the coordinator
does not need to know the local objectives of the agents
and only receives the data of uk

j and uk+1
j from the agents

and then updates the value of λ accordingly. Such a semi-
decentralized scheme has been also used in some other studies
like [30], [31]. So we propose a semi-decentralized algorithm,
as presented in Algorithm 1.

Algorithm 2: Preconditioned Forward Backward (Cen-
tralized Algorithm)

Initialization: k ← 1, u1
i ← uinit, λ1 ← λinit

Repeat

u
k+1 ← projΩ

[
(I− αΓ)u

k − α
(
1
T
N ⊗ A

)T
λ
k − αΛ

]
λ
k+1 ← projRm≥0

[
λ
k
+ γ

(
2
(
1
T
N ⊗ A

)
u
k+1 −

(
1
T
N ⊗ A

)
u
k − b

)]
k ← k + 1

Until ∥uk+1 − uk∥ ≤ ϵ
stop
u , ∥λk+1 − λk∥ ≤ ϵ

stop
λ
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